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Abstract

Why are Geometric Proofs (Usually) “Non-Visual”? We asked this question as
a way to explore the similarities and differences between diagrams and text (visual
thinking versus language thinking). Traditional text-based proofs are considered
(by many to be) more rigorous than diagrams alone. In this paper we focus on
human perceptual-cognitive characteristics that may encourage textual modes for
proofs because of the ergonomic affordances of text relative to diagrams. We sug-
gest that visual-spatial perception of physical objects, where an object is perceived
with greater acuity through foveal vision rather than peripheral vision, is similar
to attention navigating a conceptual visual-spatial structure. We suggest that at-
tention has foveal-like and peripheral-like characteristics and that textual modes
appeal to what we refer to here as foveal-focal attention, an extension of prior
work in focused attention.
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1 Introduction
Why are geometric proofs usually “non-visual”? We asked this question as a way
to explore the similarities and differences between diagrams and text (visual thinking
versus language thinking [19]). We felt that the examples provided by text-based ge-
ometric proofs might be a microcosm for notation use in broader contexts, such as
education, a field similarly traditionally dominated by text relative to visual-spatial in-
formation [13]. We believe that ongoing research to increase an understanding of the
cognitive dimensions of visual-spatial notations relative to text could increase abili-
ties to conceptualize, comprehend, and communicate ideas in education, public policy,
and beyond by introducing principled approaches for using ergonomically appropriate
notations relative to an intended communication or comprehension purpose (cf. [5, 8]).
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Despite a prima facie case that the subject matter of geometry and its underlying
theories seems to be about spatial forms and relationships, geometric proofs are most
often formally represented to people as text-based descriptions of geometric properties
that demonstrate how a geometric relationship is necessarily true as a series of logi-
cal relationships. As Tennant [17] described: “[The diagram] is only an heuristic to
prompt certain trains of inference; . . . it is dispensable as a proof-theoretic device;
indeed, . . . it has no proper place in a proof as such. For the proof is a syntactic object
consisting only of sentences arranged in a finite and inspectable array.” (as quoted in
[4])

For example, if block A is under block B and block C is above block B, then
logic tells us that block A is below block C. Alternatively, we can easily induce that
block A is below block C by observing a diagram, yet the logical text-based proof
is considered more rigorous than a diagram [17]. Indeed, for generations, Euclid’s
Elements was considered to be flawed because of its reliance on diagrams. As Mumma
[11] described: “for some of Euclid’s steps, the logical form of the preceding sentences
is not enough to ground the steps. One must consult the diagram to understand what
justifies it.” For this reason it is commonly felt that Euclid “failed in his efforts to
produce (an) exact, full explicit mathematical proof” [11]. (We will show an example
of this below in section 3.1.)

Barwise and Etchemedy [4] began to question the assumption that diagrams were
less rigorous than (non-diagrammatic) proofs, bolstering their perspective by using
evidence from cognitive psychology [9] that showed how maps enable problem solving
more effectively in certain situations. Nonetheless, text-based “language thinking”
and algebraic notations remain the dominant mode relative to diagrams throughout
mathematics [6]. We asked: “could there be ergonomic properties afforded by text
relative to diagrams that encourages textual modes for proofs?”

An inversion of our question might be phrased as follows: what do the represen-
tational modes of sequential symbolic proofs relative to diagrams reflect about human
cognition? Though others [1, 6, 12] have explored related questions and have described
the dominance of text over visual-spatial representations through historical explana-
tions, we focus our attention on human perceptual-cognitive characteristics that may
encourage proofs (and similar materials) to evolve towards text-based modes relative
to visual-spatial modes because of the ergonomic affordances of text relative to dia-
grams.1

1.1 Related Work
Relative to well developed studies of language in linguistics and related fields, studies
of formal visual representations are sporadic and fall across less connected fields [1, 4,
13]. Very little prior work was found that addressed our specific question (especially
from a perceptual-cognitive perspective), however, some work with results that can be
adapted to explore our question follow:

1We also narrow our focus to the presentation of proofs in their final form, as opposed to also considering
the discovery and construction process of proving geometric theorems. While the two are obvious related,
we believe there is enough to say about the former here that can stand on its own without considering the
latter.

82



Coming from an information processing (cognitive psychology) perspective,
Larkin and Simon [10] sought to explore the differences between information as di-
agrams versus sentences, concluding that sentences embody the characteristic of being
indexed on a list, with each element “adjacent” only to the next element in the list. In
contrast, diagrams are indexed by location on a plane, many elements may share the
same location, and each element may be adjacent to any number of other elements; in
this way, Larkin and Simon propose that diagrams may be more useful than sentences
for solving certain kinds of problems because they can support more efficient computa-
tional processes. (Larkin and Simon include human neurological processes when they
use the word “computational”.) They also noted that this efficiency depends on the
design of the diagram and the ability of the user to interpret the diagram.

Approaching the issue as mathematicians and logicians, Barwise and Etchemendy
[4] begin their work by noting that in the field of mathematics and logic, diagrams are
not considered valid parts of a proof, and are present only as a heuristic aid (Barwise
and Etchemendy [4] citing Tennant [17]). A major purpose of [4] is to overturn this
thinking, bolstering their case by citing cognitive psychologist Kosslyn [9], who used
maps to justify visual presentations as valid problem solving tools, also making the
point that sentences or visual representations offer advantages or disadvantages based
on the purpose of the task at hand.

Barwise and Etchemendy conclude (like Larkin and Simon in [10]) by describing
advantages offered by diagrams that are not offered by sentences, and by doing so offer
a suite of differences between sentences and diagrams that extend [10]. For example,
with diagrams relationships are often implicit, whereas with sentences, even the most
trivial consequences must be inferred explicitly (as demonstrated in the introductory
example). Additionally, they point out that a picture or diagram can support “count-
less facts” (by this they mean that a plurality of sentences can be constructed from a
diagram).

More recently, Mumma approached the question of why geoemtric proofs are
language-based by examining the so-called “flaws” in Euclid’s proofs where he made
use of diagrams and then seeking to provide a rigorous diagramatic foundation for
these proofs [12]. In so doing, Mumma proposed three interrelated factors why Eu-
clid’s reliance on diagrams in his proofs is regarded as non-rigorous These were what
he referred to as:

• the generality problem – proofs are meant to be more general than the particular
instance in a diagram but how should we generalize from a particular diagram to
a more general case?

• the modern mathematical understanding of continuity – diagrams may lead to
simplistic and invalid assumptions about the continuity of lines, e.g. with respect
to the existence of intersection points

• the modern axiomatic method, which requires that all axioms and deductive steps
be explicitly specified, and raises suspicion about the assumptions embedded in
diagrams.

Thus, like Barwise and Etchemendy, Mumma locates the answer in the subject matter
and norms of the field and then attempts to argue that the above three problems can be
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overcome in a more carefully specified hybrid system. We will argue below that there
is also another component to the answer based on basic facts about human cognition.

Along these lines, Shimojima and Katigiri [16] sought to support Barwise and
Etchemendy [4] by gaining empirical evidence to show how diagrams reduce infer-
ential load by drawing on newer discoveries in cognitive science such as Ballard et al.’s
[2] theory of “deictic indices.” Deictic indices are mental pointers to particular objects
in external space. The theory suggests that through an attentional mechanism, people
can maintain a small pool of such indices at once and can easily direct focal (men-
tal) attention or gaze to any of these indices. In Ballard’s et al.’s [2] words “pointing
movements are used to bind objects in the world to cognitive programs.”

Shimojima and Katigiri [16] describe how these indices can be used to keep track
of (mental) “non-physical drawings” they may construct while doing inferences about
diagrams. They suggest that reasoners can then navigate their attention through these
“non-physical” (mental) drawings during reasoning tasks and that these non-physical
drawings are assisted by real drawings (diagrams) and that this assistance reduces “in-
ferential load” during reasoning tasks.

Thus, although none of these works specifically address our question about why
proofs are “non-visual,” we gain important insight regarding the differences between
text and diagrams that can guide our inquiry. The thread running through each prior
work listed above is that text/language/prose guides attention in ways that are different
from visual-spatial representations. The next section will attempt to demonstrate this
more explicitly.

1.2 Integrating and Extrapolating from Prior Research: Language
Appears to Guide Attention through Visual-Spatial Structures

From this loose collection of interrelated work, we can extrapolate some general prin-
ciples regarding the cognitive dimensions of illustrations relative to text.

Larkin and Simon suggested in [10] that a cognitive dimension of sentences is their
list-like structure, in that each item on the list is only adjacent to the item before or
after it on the list. In contrast, items in a diagram are adjacent to many items on a list.
This view is synergistic with Barwise and Etchemendy, who suggested that a picture or
diagram can support “countless facts” (by this they mean that a plurality of sentences
can be constructed from a diagram). In other words, many sentences could be created
by linking together elements in a diagram into a sentence (list-like structure).

In this way, we extrapolate that a list-like structure (as suggested by Larkin and
Simon) can be inferred or induced from a diagram. Each sentence inferred from a
diagram is like a path that guides attention through visual-spatial relationships in a
diagram. This extrapolation is demonstrated by Shimojima and Katigiri’s eye track-
ing study in [16] that showed how reasoners mentally guide their attention through a
“non-physical drawing.” They suggest that actual drawings thus support non-physical
(mental) drawings, thus reducing inferential load. To summarize, it appears that sen-
tences guide attentional paths through both physical and non-physical (mental) visual-
spatial structures. Further, it appears that Shimojima and Katigiri demonstrated that
rational language/propositional logic guides attention and motor movements (through
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eye fixations) through non-physical visual-spatial representations.

1.3 Why does “Language Thinking feel More Precise than Visual
Thinking”?

At this point in the paper, we are almost ready to suggest a contributing reason to the
answer of why “geometric proofs are text-based.” We have suggested that sentences
guide attention through visual-spatial structures. However, a question remains: Why
does navigating attention through a visual spatial structure guided by rational lan-
guage (propositional logic) feel more “rigorous” than experiencing it as a diagram?
As described above, in [12] Mumma proposed a 3-part answer as to why the diagrams
are considered less rigorous by the field in general. Here we narrow the question to
focus on cognitive dimensions of individual mathematicians.

We propose that detailed scrutiny of visual-spatial structures (and perhaps concepts
in general) requires what we will refer to as “higher resolution” foveal-like attention,
even if those visual-spatial structures are conceptual (not directly sensed). We suggest
that visual-spatial perception in the physical world, where an object is perceived with
greater acuity through foveal vision rather than peripheral vision, is similar to attention
navigating a conceptual visual-spatial structure. We suggest that attention has foveal-
like and peripheral-like characteristics. Linkages to traditional (and synergistic) ideas
of attention (e.g., [18]) will be described later in this paper.

To explain how navigating non-physical (mental) drawings may have dimensions
that mimic visual-spatial perception of the external world through foveal and peripheral
vision, we can turn to Barsalou’s [3] theory of perceptual symbol systems where con-
cepts are based on inherently modal neural patterns rooted in direct sensory experience.
As Barsalou [3] describes:

During perceptual experience, association areas in the brain capture
bottom-up patterns of activation in sensory-motor areas.

In a top-down manner, association areas partially reactivate sensory-motor
areas to implement perceptual symbols.

The storage and reactivation of perceptual symbols operates at the level of
perceptual components not at the level of holistic perceptual experiences
[3].

In other words, an experience of a geometric visual-spatial structure is inherently
modal in that, if experienced through the eyes and visual cortex (for example), the
memory of that experience would reflect the experiential mode (i.e. visual versus audi-
tory experience). This means that concepts that emerge from the neurological patterns
created from sensory (modal) experience reflect the characteristics of the experiential
mode. This means that an experience of a visual-spatial structure that emerges as a
concept uses much of the same neurological machinery used to perceive (experience)
the visual-spatial structure.

This relationship between foveal attention and perceptual symbols is the basis for
our theory detailed in the next section.
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2 Theory
Why are geometric proofs (usually) “non-visual?” We propose that perceptual archi-
tectures associated with foveal (sharper, center view, but narrower field of view [FOV]),
and peripheral (outside of the center view, less sharp, but a wider FOV) vision found in
the human eye, in V1, and the rest of the visual cortex extend into the “deepest levels”
of human cognition and are reflected both in conceptual structures and the architecture
of attention that “probes” those conceptual structures. In this paper, foveal attention is
analogous to (and parallels) foveal vision. Likewise, “peripheral perceptual-cognitive
attention” (shortened to peripheral attention [PA] for the rest of this paper) is analogous
to peripheral vision.

We suggest that foveal attention may by synonymous with “focused attention” as
proposed by Treisman [18], who suggested “attention must be directed serially to each
stimulus in a display whenever conjunctions of more than one separable feature are
needed to characterize or distinguish the possible objects presented.” By separable
feature, she means primitives such as basic shapes, objects, and colors prior to inte-
gration into a conceptual “whole.” Furthermore, Treisman uses a metaphor that easily
maps to our description of foveal attention:

Visual attention, like a spotlight or zoom lens, can be used over a small
area with high resolution or spread over a wider area with some loss of
detail. (Treisman [18] citing Eriksen and Hoffman [7])

We can extend the analogy in the present context to suggest that attention can either
be narrowed to focus on a single feature, when we need to see what other features are
present and form an object, or distributed over a whole group of items which share a
relevant feature [18].

This “narrowing of the spotlight” is synonymous with what we mean by foveal
attention. Relative to peripheral attention, we suggest that foveal attention is more pre-
cise and can detect more detail, paralleling Treisman’s spotlight/zoom lens metaphor.
Similar to how the eye must explore areas broader than the narrow FOV of foveal vision
via a sequence of saccades, we suggest that focal attention must also sequentially walk
through mental visual-spatial structures. However, perhaps differently from low-level
saccades, we suggest that language and language-thinking guides attention through
such structures in order to build more precise holistic ideas.

By building on Barsalou’s notion that concepts arise from neural patterns that are
rooted in modal experiences, and our own speculation (extrapolating from Triesman)
that foveal-focal attention may have a limited “FOV,” several explanations for why
proofs are usually text-based and propositional are proposed:

Why proofs are often sequential: Like foveal vision that must saccade to differ-
ent parts of a visual-spatial structure, we suggest that foveal-focal attention must also
“saccade” to different parts of a conceptual visual-spatial structure due to foveal-focal
attention’s narrower FOV (rather than experiencing / attending to the whole structure
at once ).2

2It should be emphasized that we are using the notion of saccade here metaphorically; sequential move-
ment of attention to various parts of a structure will probably bear no resemblence to the way an eye actually
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Why a diagram usually cannot constitute a convincing “holistic” proof: The
need for symbols to fall within the narrow FOV of foveal-focal attention means that
diagrams, and the spatial relationships they embody, usually cannot be taken in (i.e.
attended to) all at once. So they should instead be processed in a way that allows
linkages between earlier perceptual memories and later percepts.

Why text is effective for proofs: External symbolic representations such as text are
designed such that each symbol can sequentially fall within the narrow FOV of foveal
vision [15] and therefore, foveal attention and foveal-focal attention.

Why propositional logic is used for proofs: Propositional structures in proofs may
provide symbolic “short-cuts,” serving as stand-ins for visual-spatial relationships that
cannot all simultaneously be in the limited FOV of foveal attention. For example: The
statement “if C is below B“ references a perceptual symbol constructed from a previ-
ously considered image, and the statement “if B is below A” also references a percep-
tual symbol constructed from a previously considered image. The statement “therefore
C is below A” references the two previous symbols in order to support construction of
a new (mental) image that can serve as the basis for a new perceptual symbol (and that
can be used in future propositional statements).

To summarize our theory; we suggest that a visual-spatial structure, such as a ge-
ometric structure (irregardless of whether it is presented as a diagrammatic represen-
tation) is often beyond the “FOV” of foveal-focal attention. The purpose of sequential
symbolic representations such as text, organized as propositional statements, is to guide
foveal-focal attention through a sequence of patterns in order to create perceptual sym-
bols that are amenable to analytical neurological machinery.

Hence, in addition to being due to the norms of the field of mathematics, as well as
many other social and mathematically technical reasons that have been proposed, we
argue the answer to our initial question is also related to basic facts about how human
cognitition works.

3 Thought Experiment
A thought experiment may help clarify the role of the less-diagrammatic notation style
of propositional logic used in a geometric proof by imagining what a notation style
would look like that was designed to guide narrow FOV foveal-focal attentional pro-
cesses.

First, a notation style where symbols would fit the narrow FOV of foveal vision
would seem to be appropriate, although it is perhaps not the only style that could work.
For example, with a better understanding of processes linking perception and attention,
we might be able to use more “bandwidth” in parallel by providing just the right cues
to guide attention through a diagram (and hence, reduce or even avoid the need for
“symbols” altogether). Yet text appears to be an example of a notation system naturally
suited to the ergonomics of foveal vision [14].

saccades, such as to its ballistic nature for example. Further, the “sequence” implied by the word “sequential”
here is not necessarily imply a particular ordering, especially not one that might correspond with the actual
sequence of eye saccades. We assume that many cognitive and pragmatic factors play into determining in
what order structures must be attended.
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Second, geometric structures expressed through the notation system would need
to be “serialized” as chunks/strings since more complex visual-spatial structures (i.e.
diagrams associated with non-trivial geometric proofs) will presumably require a FOV
that fall outside of the foveal attentional units of a notation system ergonomically de-
signed for foveal vision [14].

Third, the notation style would need to deliver those serialized chunks/strings in
ways that would direct foveal attention in specifically ordered trajectories and patterns
to build a network of foveal-focal perceptual symbols in order to construct and mentally
navigate a visual-spatial conceptual structure that falls outside of the “FOV” of foveal-
focal attention.

This is because sequential patterns of foveal-focal “saccades” support the creation
of perceptual symbols that can be referenced in later attentional “saccades.” This would
be a hierarchical structure of previously attended foveal-focal mental images (percep-
tual symbols) where latter parts of the conceptual structure reference previously at-
tended foveal-focal mental images.

In other words, a notation system that was custom designed to guide foveal-focal at-
tention through a visual-spatial conceptual structure would resemble the ergonomics of
sequential symbolic (i.e. text based) proofs consisting of serialized sequential symbols
(i.e. descriptions), and support the embedding of perceptual symbols, constructed from
previously experienced foveal mental images, into other mental images and perceptual
symbols (i.e. propositional logic).

3.1 Example
A more specific example may reveal the ergonomic characteristics and constraints de-
scribed above. Proposition 35 from Book I of Euclid’s Elements is a classic example
that we suggest demonstrates the way that text appears to focus foveal-focal attention.
It is also a useful example in that it is a hybrid proof, as will be described below, relying
on both text and diagram.

Proposition 35 is that parallelograms that are on the same base and in the same
parallels equal one another. Euclid’s proof proceeds as follows:

Figure 1: Diagram used in proof of Proposition 35

Proof.
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(i) Let ABCD, EBCF be parallelograms on the same base BC and in the same paral-
lels AF, BC.

(ii) Since ABCD is parallelogram, AD equals BC (Proposition 34). Similarly, EF
equals BC.

(iii) Thus, AD equals EF. (Common Notion 1)

(iv) Equals added to equals are equal, so AE equals DF. (Common Notion 2)

(v) Again, since ABCD is a parallelogram, AB equals DC (Proposition 34) and angle
EAB equals angle FDC (Proposition 29).

(vi) By side angle side congruence, triangle EAB equals triangle FDC (Proposition 4).
Subtracting triangle EDG from both, we have that the trapezium ABGD equals
the trapezium EGCF (Common Notion 3).

(vii) Adding triangle GBC to both, we have that ABCD equals EBCF (Common No-
tion 2);

2

Note how the text references aspects of the visual-spatial concept in “chunks,”
revealing the visual-spatial concepts serially, possibly ergonomically optimized for
foveal-focal attentional processes. For example, the first line introduces the symbol
“ABCD”, which, in the presence of the figure, directs attention sequentially through
the verticies A-B-C-D and then to the parallelogram as a whole, separable from the
rest of the figure. However, the figure is not necessary for this step, for ABCD could
also serve the role of a simple “word” (term) in the logical proof without actually re-
ferring to the geometric figure at all. Further, for everything specified early on in the
proof—symbols and relationships—each line can be derived from the previous without
making reference to the figure at all. Although the figure can still play a helpful illus-
trative role, it does not play a role in sanctioning particular inference steps. Indeed, as
Mumma describes in [12], this is the case all the way up to step iv.3

For our purposes, the key point here is that in its linguistic form, devoid of the
figure, the above proof is amenable to cognitive processes, and this is revealed in as-
pects of its design. The structure of the language guides the reader through the proof
in “bite-sized” chunks – both in the the breakdown as to what constitutes an individual
step, and the number of symbols involved in each step – that can be linked together and
composed to gradually build up to the conclusion.

However, things get more complicated in steps iv through vii, in part, because the
author of the proof (Euclid via translation) seems to be making the assumption that we
will be using the figure to provide interpretation for the text statements, and thus both
allow the engagement of our natural perceptual-cognitive chunking abilities and relieve

3Step iv contains a so-called “flaw” in that in order to determine what the “equals” are that have been
added to AD and EF, one needs to realize that DE is a common segment shared by both AE and DF. The
step relies on an understanding that DE has been “added” to both AD and EF and it is reflexively self-equal.
However, while it is true, it was nowhere stated in steps i-iii that DE is a shared segment, i.e., that D lies on
segment AE and that E lies on segment DF. In the above proof, this is knowledge that must be gleaned from
the figure.
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some of our memory burdens by using the figure as external memory. The proof can
be rewritten more “rigorously” to eliminate the need to refer to the figure and to rely
on text alone, but this presumably will also involve a simplification of steps iv through
vii by breaking them down into more, explicit steps that each demand less cognitive
work for the reader.

But could we go the other way? Could we prove the same thing by relying even
more on diagrams and using much less text? If so, what would it take? In the next
subsections we will attempt to do so in order to illustrate our thoery as to how deduc-
tive proofs require the explicit sequential guidance of attention through symbols, and
demonstarte the difficulties that arise when we attempt to employ diagrams for this
purpose.

3.2 Towards a more Visual Version
In the last subsection, we saw an example of a geometry proof that, while not entirely
avoiding reliance on a diagram, was primarily text-based. In light of our argument
above (that this is partly because text is better suited to guide foveal-focal attention
sequentially through the appropriate perceptual symbols), here we seek to illustrate
this point by describing the results of our attempt at a visual proof of Proposition 35.
How could this be achieved without the aid of text? Or in other words, how can one
draw attention without using text?

The most straightforward approach here might be to translate each line of text from
the proof into a diagram seeking to achieve the same thing. In so doing, one might seek
to direct attention to different parts or aspects of the diagram using graphical techniques
such as highlighting with color, luminance (value), shading, or adding arrows (to name
a few techniques). So, for example, to translate the step that establishes that AD equals
EF (step iii), we might highlight both of those seqments in red and add some sort
of connection beteween the two to denote equivalence. Further, we would need to
somehow add the justification for this, somehow refering to Common Notion 1.

After we attempted to do this in a systematic way, several things become apparent.
First, the guidance of attention within a diagram seemed harder to control relative to
text, and even somewhat arbitrary (somewhat like “black magic”) to a practitioner pri-
marily trained to express ideas through text. The guidance of attention with a diagram
seems to be something that requires a solid scientific understanding of how diagrams
are visually processed and/or considerable artistic sophistication and skill. Addition-
ally, relative to our experience with text, it was harder to be precise – to the “right”
degree of precision – in a diagram. For example, how can we call attention to just the
vertices, say, of a parallelogram, without also calling attention to the parallelogram it-
self via gestalt principles of perception? Similarly, as Mumma described in [12], it was
harder to make general points when dealing with specific diagrams, and there seemed
to be the potential to be misled by superfluous details in the diagrams.

So, a straightforward translation of a text-based proof into a visual one seemed to
presents several difficulties. Yet there may be other approaches to visual proof that
are not biased by the texual starting point, perhaps natively taking advantage of unique
affordances of diagrams. We speculate about this in the next subsection.
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An open question is how text and diagrams can best be used together to comple-
ment each other’s strengths in a a hybrid approach. As noted, Euclid’s proof was not
entirely text based; the diagram was required for it to go through. It is instructive to
consider the role the diagram played in this case. In our theory, a primary function of
the diagram is to provide the basis for perceptual symbols to which the text can then
refer and “navigate”, i.e. guide attention through. We unpack this more in the next
paragraph.

As an example of how the diagram works together with the text, consider step vi
of the proof:

• By side angle side congruence, triangle EAB equals triangle FDC (Proposition
4). Subtracting triangle EDG from both, we have that the trapezium ABGD
equals the trapezium EGCF (Common Notion 3).

First, note that the diagram serves to confirm the applicability of Common Notion 3
in a way similar to how the diagram was used to justify step iv. While the text here
could be augmented to ostensibly stand on its own, it is still compelling to look at the
trapezia ABGD and EGCF in the figure to at least confirm that the text was properly
understood. (A reader can “double-check” that they did the subtraction in the right
way by checking that the trapezia they obtained were indeed describable as ABGD and
EGCF, that is, by unpacking the symbols—e.g., ABGD to A-B-G-D—to confirm the
correct vertices were involved.) Next, note that the first sentence not only establishes an
equivalence relationship, but also serves to focus attention on the two relevant triangles,
EAB and FDC, as quasi-independent parts of the diagram, which then makes them
available to mental manipulation (and thus, subsequent use in the text). The operation
of subtracting triangle EDG from both EAB and FDC requires manipulating it as a
“non-rivalrous” (reusable) symbolic unit. Further, as was previously discussed, [16]
has provided evidence of how the diagram is used when mentally reasoning about
such operations, with deictic indices being allocated to diagrammatic symbols from
a limited pool that constrains the number of symbols to which we can simultaneouly
attend. Thus, the mental subtraction requires manipulating holistic triangles as symbols
– each as one thing – as opposed to a loosely coupled collections of their component
vertices and edge segments which would quickly exhaust attentional resources. The
diagram helps to reify these component parts into unitary symbolic wholes thanks to
gestalt principles of perceptual grouping.

So one of the primary roles of the diagram seems to be to serve as the basis for per-
ceptual symbols that can play a role in compositional manipulations, analogous to how
words are composed via grammar in language. That is, the diagram, when it is being
used effectively in a hybrid text-diagram proof system, still seems to be guiding atten-
tion in ways similar to text (sybolically and sequentially). Yet, diagrammatic symbols
may afford more than textual symbols in that they can be unpacked and “inspected”
when necesary, as the trapezia were when verifying the subtraction. This warrants
more research into the affordances of diagrams relative to text in the context of proofs,
as opposed to in more general contexts.
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3.3 Other Hybrid Systems
In the last subection, we started by considering how we might constuct a visual proof
from a primarily text-based one. But starting with text might bias us away from a proof
strategy that might better take advantage of the affordances of diagrams. What if we
were to start from scratch?

Ware points out in [19] that one of the more effective techniques used in HCI and
Information Visualization to draw attention is motion. This implies that animations
might be a useful tool in geometric proofs. However, since traditional (paper oriented)
document formats do not ordinarily support dynamic animations, for the purposes of
this paper a comic strip-like story-board will depict such a possible interaction by way
of example. Figure 2 shows a possible story-board (or comic strip), corresponding to
a potential animation sequence, for the proof of Proposition 35. This is just a tenta-
tive sketch to demonstrate the idea; it is has not been refined nor tested with math-
ematicians, nor has research been done on the proper balance between textual and
non-textual elements in such a medium.

Figure 2: A possible “storyboard” (or “comics”) hybrid proof

Storyboards (or comics), in their own right, also present a potentially useful hybrid
approach for directing attention during a visual proof. In our theory, the storyboard
has a useful property for proofs: the boxes help guide attention, much like the proof
steps and symbols in a text-based proof. Further, the domain of comics provides many
techniques to further refine the guidance of attention (such as cutaway shots) and help
with the problems described above that arise when trying to use diagrams in proofs. For
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example, there are standard comics techniques to “zoom” in and out, both temporally
and spatially, across panels, which may be useful in addressing the problems with
precision.

One final point of interest here that emerged while creating this example is that this
form of reasoning “felt” more inductive than deductive. Our research seeks to increase
the understanding of how different media types might be better suited for diferent sorts
of inference. Understanding ergonomic factors that enable a principled approach to
attention guidance is an area of active future research for us.

4 Conclusion and Implications
We feel that demonstrating how propositional logic guides foveal-focal attention
through non-physical drawings has implications far beyond notation techniques for
geometric proofs; the issues surrounding the text-based nature of geometric proofs are
a microcosm for issues facing other materials, such as textbooks, because many edu-
cational concepts that are also visual-spatial in nature use illustrations in a supporting
role [13]. We feel that understanding how notation styles direct attention can enable the
creation of materials suited for different purposes and for different kinds of learners.

For example, the effectiveness of the Barwise and Etchemedy vision of using vi-
sual materials for logical problem solving would be a function of how well the mate-
rials support the guiding of foveal-focal attention in specific patterns. Indeed, many of
their ideas were rooted in classroom multimedia experiences geared for the teaching
of logic. Using today’s technology of the Web and multimedia (i.e. rollovers, mouse
events, etc.), the sequential symbolic characteristics of comics, and beyond, many op-
tions exist to direct foveal-focal attention using visual materials in ways that may serve
the attentional purposes provided by text-based proofs and text heavy materials. We
feel that such techniques could be extended for other information presentations as well,
finding uses in education, public policy, business, engineering, and beyond.

However, we suggest here that prose may direct attention in ways that may not be
possible through visual-spatial notations such as illustrations and diagrams. Because
text and other sequential symbolic “language” systems inherently require learning, they
may by their very nature “bypass” or “overcome” low level pattern detection neuro-
logical machinery in order to trigger “top down” processes that amplify attentional
neurological machinery in order to focus attention in specific ways on visual-spatial
diagrams or conceptual structures. A more intuitive notation system that relied more
on “natural,” “hard-wired.” or “gestalt-like” abilities might strengthen bottom-up pat-
terns instead, at the expense of the intended abstract reasoning encouraged by such
materials. Instilling neural patterns that overcome lower level neurological machinery
may be the very nature of some aspects of education. At the same time, visual thinking
has been proposed as a key part of “transformational thinking,” and many great dis-
coveries occurred through insights with a strong visual-spatial component [13] and by
individuals who do not learn well through textual modes [15].

Thus, many open questions remain about the ergonomic properties of textual and
diagrammatic modes.

93



Importantly, a better, more rigorous understanding of the explicit and implicit guid-
ance of attention is a necessary step, and a direction for our current and future research.
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