
Implementing an Animated Visual �-Calculus

Torsten Strobl∗ Mark Minas†

Computer Science Department
Universität der Bundeswehr München

85577 Neubiberg, Germany

Abstract

�-calculus is a well-known formal system for investigating computability,
recursion, functional programming, etc. Reduction rules define its semantics.
Several visual representations have been proposed and used for making �-calculus
more comprehensible, easier to teach, or simply more fun to use. Alligator
Eggs [14] is an example of such a playful representation where abstraction is
represented by alligators and variables by alligator eggs. Alligator Eggs is also an
animated visual language where eating alligators correspond to function applica-
tion and hatching eggs to variable substitution. This paper shows how Alligator
Eggs can be implemented as an animated system using the diagram editor gen-
erator DIAMETA. Boolean logic is used as a running example where alligator
families model boolean terms. The generated animated system allows for an
animated illustration of boolean evaluation.

1 Introduction
�-calculus by A. Church [2] is a well-known formal system for investigating com-
putability, recursion, functional programming, etc. It has originally been invented as
an abstract computing approach, and was also the origin of functional programming by
inspiring LISP. But one can also use it for representing and evaluating boolean logic.

�-calculus is based on expressions, which can be transformed by so-called reduc-
tions to other semantically equivalent expressions. However, the textual representation
of �-calculus expressions is not very intuitive since (a) this representation of expres-
sions is difficult to grasp, and (b) the sequence of reductions does not immediately show
what is going on. This paper improves this representation with respect to these issues
(a) and (b). As a solution, we propose to utilize a visual representation of �-calculus
expressions. We apply animation for making immediately clear which reductions are
applied to which sub-expression with which effect.

Several visual representations have been proposed and used for making �-calculus
more comprehensible, or easier to teach. Alligator Eggs [14] is such a visual and
∗Email: Torsten.Strobl@unibw.de
†Email: Mark.Minas@unibw.de

96

playful language representing �-calculus expressions. This language has alligators and
their eggs as visual components. As an example, one type of reduction process can be
represented by an alligator that eats other alligators and eggs. Afterwards, the eating
alligator dies, but its eggs hatch into what the alligator ate. Alligator Eggs thus allows
for obvious and intuitive animations of the formal concept of reductions. Hence, we
chose Alligator Eggs for visually representing and animating �-calculus.

Meta-tools greatly simplify the process of implementing editors for a specified vi-
sual language like Alligator Eggs. Several meta-tools also allow for implementing
transformations of diagrams which can be used for realizing the reduction process. Ex-
amples for such meta-tools are DIAGEN/DIAMETA [10], DEViL [4], GenGED [6],
Tiger [1] and AToM3 [9]. However, the support for realizing a visual editor that also
allows for visualizing rather complex behavior by animations is limited. This paper
describes an extension of the meta-model-based editor generator DIAMETA which al-
lows for easy specification of visual languages with complex dynamic and animated
behavior. The animated visual language Alligator Eggs is used as a running example
although animating reductions of �-calculus expressions is rather straight-forward.

The rest of the paper is structured as follows: The next section is a short intro-
duction to the textual representation of �-calculus, the visual language of Alligator
Eggs and its dynamic behavior. Section 3 describes existing approaches in the con-
text of specifications of animated visual languages and other visual representations of
�-calculus. Section 4 then briefly explains the existing meta-model-based editor gen-
erator and how it has been used to specify and generate the static aspects of Alligator
Eggs. The extension of DIAMETA for animated visual languages is then described in
Section 5 using the example of Alligator Eggs. The last section concludes the paper
and reports about current work as well as plans for future work.

2 �-Calculus
Textual �-calculus expressions can be either a variable x, an application FG of an ex-
pression F to another expression G, or a �-expression, i.e., an (anonymous) function
�x.F where F is again an expression. The latter is the key concept which means a
function with a (bound) variable x as parameter that may be used in F . The semantics
of such expressions is defined by so-called reductions that reduce an expression to an-
other, but semantically equivalent expression. �-conversion changes bound variables,
e.g., variable x in �x.�y.x to another, unused variable z, i.e., �x.�y.x →� �z.�y.z.
�-conversion applies a function to its argument by replacing each occurrence of the pa-
rameter by the argument, e.g., (�x.�y.x)(�z.z) →� �y.�z.z. Of course, no variable
in the argument may be the same as any variable in the function. Otherwise, bound
variables must be changed by �-conversion first.

As mentioned previously, �-calculus can be used in order to evaluate boolean logic.
The boolean values are represented by so-called Church booleans true = �x.�y.x and
false = �x.�y.y. It is easy to verify that the representations not = �p.�x.�y.pyx,
and = �p.�q.pqp, and or = �p.�q.ppq actually are suitable definitions, i.e., reducing
expressions that represent boolean terms is equivalent to evaluating the represented

97

true =
�x.�y.x

false =
�x.�y.y

not =
�p.�x.�y.pyx

and =
�p.�q.pqp

Figure 1: �-expressions modeled by alligator families.

�x.x

Figure 2: Old alligator

boolean terms1. An example evaluation is:

and false true = (�p.�q.pqp)(�x.�y.y)(�x.�y.x)

→� (�q.(�x.�y.y)q(�x.�y.y))(�x.�y.x)

→� (�q.((�x.�y.y)q(�x.�y.y)))(�u.�v.u)

→� (�x.�y.y)(�u.�v.u)(�x.�y.y)

→� (�y.y)(�x.�y.y)

→� �x.�y.y

= false

The visual �-calculus language Alligator Eggs has hungry alligators, old alligators,
and eggs as visual components. Let E be an arbitrary �-calculus expression and ⟨E⟩
the representation of E in Alligator Eggs. ⟨E⟩ is a collection of visual components
that are arranged in a tabular shape. A variable x is represented by an egg ⟨x⟩ where
the egg color corresponds to the variable’s identifier x, i.e., different variables have
eggs of different color. The application FG of two expressions F and G with their
visual representations ⟨F ⟩ resp. ⟨G⟩ is drawn as ⟨F ⟩ and ⟨G⟩ side by side with ⟨F ⟩
left of ⟨G⟩, but aligned at their top. A �-expression �x.F is represented by an hungry
alligator (with open mouth) and the visual representation ⟨F ⟩ of F . The color of the
hungry alligator corresponds to the identifier x, i.e., every egg in ⟨F ⟩ that represents
x has the same color as the hungry alligator. The hungry alligator is drawn on top of
⟨F ⟩; its width is the same as the width2 of ⟨F ⟩. Altogether, they model a so-called
“family”. Figure 1 shows examples of expressions for boolean logic and how they
are represented in Alligator Eggs. Colors have been replaced by shades of gray and
hatching. Expressions in parentheses, (F), are represented by an old alligator (a white
alligator with closed mouth) and ⟨F ⟩. Again, the alligator is drawn on top of ⟨F ⟩ with
the same width as ⟨F ⟩. It is said that the old alligator “protects” ⟨F ⟩. An example is
shown in Figure 2.

�-conversion is translated into the eating rule in Alligator Eggs: The hungry alliga-
tor on top of ⟨�x.F ⟩ in an application ⟨(�x.F)G⟩ “eats” the family ⟨G⟩, i.e., ⟨G⟩ gets
deleted from the diagram. Then the hungry alligator dies, leaving ⟨F ⟩. However, each

1Please note that application in �-calculus is left-associative, i.e., EFG = (EF)G.
2This is an extension of the original description [14] of Alligator Eggs in order to make the language

unambiguous.

98

→� →� →� →�

Figure 3: Evaluation of not true = (�p.�x.�y.pyx)(�x.�y.x) in Alligator Eggs.

egg in ⟨F ⟩ with the same color as the died alligator gets replaced by ⟨G⟩. �-conversion
is also necessary in Alligator Eggs. This is realized by the so-called color rule that
appropriately changes the color of each hungry alligator and its eggs in ⟨�x.F ⟩ if this
color also occurs in ⟨G⟩.3 Finally, the old age rule defines the semantics of old alliga-
tors: An old alligator (representing parenthesis in Alligator Eggs) dies as soon as there
is only a single component directly below the old alligator (e.g. like in Figure 2). A
longer example, the evaluation of not true in Alligator Eggs, is shown in Figure 3.

3 Related Work
There are several tools supporting the generation of editors from visual language spec-
ifications and meta-models [6, 9, 1, 4]. However, only few of them allow animation
specifications or the creation of animated editors in general. Most tools or common ap-
proaches supporting animation specifications are very limited, e.g. there is no possibil-
ity for interaction during animation, the specification of concurrent animation steps is
complicated or impossible, or flexibility is missing. Also older versions of DIAMETA
rudimentarily support animations [11], but practically this only means that diagram
(state) changes, especially position changes, can be interpolated.

Some of the listed limitations are attributed to the utilization of transformation rules
in simulation and animation, because these transformations must basically be consid-
ered as atomic operations. Therefore, a lot of efforts are put into the investigation of
transformations with specified timed behavior. Transformation rules could contain a
(conditional) duration and further mechanisms like interruptibility. In articles like [7]
and [8] these topics are described in more detail. In [12] a graphical notion is shown,
and in [13] also an event-based approach is presented.

An exemplary generator system, which - similar to DIAMETA - also applies graph
models and transformations, is GenGED [6]. The system not only allows the imple-
mentation of visual language editors, but also to write (rule-based) simulation speci-
fications. The visualization of the simulation - in this case called animation - can be
specified separately, so this visualization can have a completely different layout com-
pared to the visual language itself. In this way, the animation can be presented in an-
other domain-specific layout, for which the term animation view has been introduced.
However, GenGED editors cannot show such views. Instead, an automatically running
“movie” has to be exported.

Next to Alligator Eggs, there are also other visual representations for �-calculus.
VEX uses circles for representing �-expressions and variables [3]. Parameters are rep-

3This color rule is a bit more specific that in [14].

99

Figure 4: Architecture of a diagram editor based on DIAMETA.

resented by internally tangential circles, application by externally tangential circles.
The binding of variables is explicitly represented by connecting lines.

4 DIAMETA

DIAMETA is a framework together with a specification tool for generating diagram
editors from a specification [10]. The abstract syntax of a diagram language has to
be specified as a meta model based on EMF [5]. Figure 4 shows the meta model for
Alligator Eggs which comprises the composite pattern: each expression as a diagram
represents an (expression) tree. Guardian comprises a composite node and represents
an object with a (horizontal) sequence of sub-diagrams below. Concrete sub-classes are
Root that represents a complete diagram, Alligator for hungry alligators, and OldAlli-
gator for old alligators. Each instance of these classes contains a sequence of protected
objects. Instances of Egg, which represents alligator eggs, are the leaves of this com-
posite pattern. The protects association is ordered from left to right (not shown in
Figure 4). Instances of this meta model, hence, uniquely represent Alligator Eggs dia-
grams.

Each editor generated by DIAMETA is a free-hand editor, i.e., the user may arrange
visual components freely on the screen. The specification must contain descriptions of
all required visual components. For Alligator Eggs, these are hungry and old alliga-
tors as well as eggs. When the editor user arranges such diagram components on the
screen, the editor has to check whether the arrangement is a correct diagram, and, if
so, what its syntactic structure is. Each editor generated by DIAMETA uses a generic
architecture for solving this problem, see Figure 5: The editor consists of a drawing
tool which is used by the editor user for arranging the diagram components on the
screen. The arrangement is then internally represented by a so-called graph model as a
homogeneous representation which can be used for all diagram languages. Figure 6(b)
shows the graph model for the simple Alligator Eggs diagram in Figure 6(a). Each
diagram component is represented by a component node, here alligator, egg, and root.
The latter represents an invisible component representing the whole canvas. The spec-
ification describes how each diagram component is represented: Each component has
a certain number of attachment areas. The canvas and eggs have a single attachment
area, alligators have two, the alligator shape itself, and the area from the alligator to the

100

DiaGen - Syntax Definition with Graphs, Graph Grammars and Metamodels Mark Minas, Universität der Bundeswehr München 54

DiaGen: Architecture of generated editors
 with Metamodels

Graph
model Modeler Instance

graph Reducer Model
analysis

Java
objects Diagram

Drawing
tool

Editor user

selects
operation

selects
operation

Graph
transformer
(optional) reads

reads

modifies reads

Highlights syntactically correct sub-diagrams

Layouter
(optional)

Figure 5: Architecture of a diagram editor based on DIAMETA.

bottom of the canvas. Each of these areas is represented by an attachment node that is
connected with its component node by an edge with labels canvas, shape, or below. A
relation edge connects two attachment areas that are related in a specific way. E.g., a
protects edge connects the corresponding nodes if an alligator or egg lies underneath
another alligator.

The graph model may grow quite large. E.g., a stack of n alligators requires O(n2)
protects edges. The reducer (see Figure 5) transforms this graph into the instance graph
by applying reducer rules in the specification. They are omitted here since they are not
crucial for the setting of this paper. The obtained instance graph represents an instance
of the specified meta model if the diagram is syntactically correct. This is checked by
the model analysis.4 Model analysis provides feedback to the user about diagram parts
that are not syntactically correct by highlighting those diagram components. Model
analysis also instantiates the EMF model that implements the meta model. This data
structure can then be used by an automatic layout facility for beautifying or layouting
the diagram.

Free-hand editing is complemented by (optional) graph transformation rules that
utilize a graph transformation facility. Graph transformations may be specified for
“implementing” complex diagram modifications that are triggered by the editor user.
However, such transformations that operate on the graph model, but that may use in-
formation from the instance graph, too, are also a helpful mechanism for animation
support.

5 Animated Alligator Eggs
This section describes how the animated aspects of Alligator Eggs can be specified.
First the desired animations are described, and subsequently the different animation
states are identified. Based on such states the used animation approach is explained,

4Model analysis is actually more sophisticated. Not all classes must have been determined by the reducer
rules. Model analysis uses constraint solving techniques for identifying undetermined classes [10].

101

(a)

alligator

egg

egg

root

shape

below

shape

shape

canvas

protectsprotects

protects

protects

(b)

Alligator

Egg

Egg

Root

protectedBy

protects

protectedBy

protects

protectedBy

protects

(c)

Figure 6: (a) Visual representation of (�x.x)y, (b) graph model, and (c) instance graph.

including an event-based strategy. Finally, the concept is compared with common ap-
proaches of other frameworks, which are similar to DIAMETA.

5.1 Animation Description
Section 4 has described in short how the static part of Alligator Eggs can be specified.
As a result, a fully functional editor for static Alligator Eggs diagrams can already
be generated. It has also been mentioned that DIAMETA supports the specification of
graph transformations. The step semantics of Alligator Eggs (see Section 2), can be
implemented by utilizing these transformations. Indeed, only one, but rather complex
graph transformation is required for this. The operation has to analyze the graph, de-
cide on the next applicable rule and finally arrange modifications in order to get the
results after the step. By triggering such a transformation the editor’s user can watch
the conversions step-by-step. However, users cannot follow the reduction process in
more detail, which could be crucial for a better understanding of Alligator Eggs and
the �-calculus. Therefore, it is desirable to generate an editor which also shows internal
processes by animating them. Each individual part of a rule application shall be visu-
alized in a movie-like fashion. Again, the description in [14] was used as orientation.

The eating rule is split into subparts. First, the alligator eats the family in front
of him. Therefore, the family moves towards the alligator’s mouth. Meanwhile, the
alligator is snapping, and it is also meaningful to decrease the victim’s overall size.
Afterwards, the alligator dies, so the shape actually rotates until the alligator is lying
on its back, and it disappears by shrinking. Intermediately, the “reborn family” will
hatch out of the according eggs. This means, that the egg cracks and the families
appear. This way, the user can track the way of the eaten family, and also the alligator,
which causes the action, can be identified. In order to have enough space for the new
structure the whole diagram is also re-layouted. The old age rule is applied similarly.
The old alligator dies and the diagram is layouted (both overlapping in time). Finally,
during the color rule affected components are recolored, which is transacted by cross-

102

Figure 7: Screenshot of the Alligator Eggs editor while alligator is eating

fading their colors. In Figure 7 an exemplary scene while processing the eating rule is
illustrated.5

5.2 Animation States
The previous description already indicates that required animations can be separated
into multiple, also concurrent, phases. The idea now is to encode informations about
currently running phases (along with possible parameters) within the diagram’s state
or even the state of individual components or component groups. Specific state transi-
tions then imply the transition from one phase to the next. Figure 8 shows a possible
translation of the textual animation description (see Section 5.1) into a state machine
diagram, even with more details like the duration of the individual phases. In partic-
ular, it depicts the states of one resp. two families during the execution of a rule, and
how individual members are animated in the meantime. In the lower left corner the
diagram’s start state Static can be found, the editor must not show animation for in-
volved diagram components here. If a rule shall be applied, the state switches to state
Animated, if possible. Before this transition, the system actually has to determine the
applicable rule as shown (also with according priorities).

In the following, the most complex substate of Animated will be exemplified: Eat-
ing Rule. In this state the associated rule with the same name is processed. Directly
after the rule is applied, involved components pass through the Eating Phase, also a
substate. 3 sec. afterwards, the state automatically passes over into the Rebirth Phase.
Concurrently, the dying alligator and the animated re-layout process are shown during
this phase. All substates again can pass over after 3 sec., however, the re-layout process
is delayed by 1.5 sec., so actually 4.5 sec. are required.

5An animated example can be found at: http://www.youtube.com/user/diametaanimated

103

Figure 8: State diagram - rule application

The example has shown the definition of animation states for a group of compo-
nents, but such states can also be defined for individual components. For instance, each
component can be in state Static or Animated. The Animated state itself can be sepa-
rated into multiple substates: Rotating, Shrinking, Moving, Snapping (only alligators),
Hatching (only eggs), etc. Again, concurrent states are possible, e.g., if an alligator is
rotating and shrinking. Figure 9 shows a timing diagram, which outlines the states of
individual diagram components while processing the eating rule.

5.3 Animation Concept
The way a visual language like Alligator Eggs is presented is specified by its concrete
syntax (in contrast to the abstract syntax, e.g., given by the meta-model). In DIAMETA
this syntax can be specified for each visual component. Until now, the possibilities
have been designed for specifying non-animated (static) components. Considering this
specification and the internal graph model together with attributes of component nodes,
e.g., the x and y-position of the component, the editor is able to draw the static vi-
sual representation. However, this basic approach is not necessarily limited to draw
static diagrams, if time is considered for the mapping of the graph to its representation.
Hereby, the time t could be a given parameter for the whole drawing process. Other
animation parameters can be stored within component nodes in exactly the same way
as parameters for the static representation. Possible animation parameters would be
a given start time, a start position or a constant velocity. With these informations a

104

Figure 9: Timing diagrams - eating rule Figure 10: State transitions
consuming time

component can be visualized at different x-positions depending on the drawing time
t. In an animation sequence with continuously increasing t and a periodically redrawn
diagram, this results in a smoothly animated motion. However, animation parameters
are not limited to simple values in the affected component node. Also the relations to
other components and their attributes can be taken into account, e.g. an attached arrow
component which specifies the movement direction.

In order to implement Alligator Eggs, we chose this approach and extend the DI-
AMETA framework by adding an animation package. This package provides the re-
quired functionality, e.g. the global time parameter. The specification for visualizing
the animated component itself is currently a programmed block of code in order to
allow flexible mathematical calculations depending on arbitrary information contained
in the graph model.

Now, also the animation states described in Section 5.2 can be reconsidered. The
state of an individual component can be stored within the component’s attributes, and
this state is the basis for deciding how the component is animated. In addition, ani-
mation parameters (also attributes) can be required for the animated visualization. For
example, if an alligator is in state Rotating (see Figure 9), the following attributes are
used: animationStart, animationStop, angleStart, angleStop. Together with the
global time and a specified algorithm, e.g. linear interpolation between start/stop time
and start/stop angle, the animation can be calculated. Another example is an alligator’s
Eating state in which the alligator’s mouth is snapping. A simple flag snapping, along
with animationStart and animationStop, is sufficient in this case. The alligator’s
component is drawn via two images: the main body and the lower jaw. If the flag is not
set, the lower jaw is drawn statically onto the rest of the body. Otherwise, it is drawn
slightly rotated around the jaw’s joint. Thereby, the angle is interpolated (cosine-based)
between fixed values with periodic repetitions.

105

5.4 Events
Of course, animation parameters can be changed by the user like other attributes. Com-
ponents can be dragged via mouse, or property editors can be used to change internal
values. However, changing animation parameters this way does not make much sense
for many use cases. A useful mechanism in order to set animation parameters, or ani-
mation states to be more general, are graph transformations, which are already available
in DIAMETA. With them important values like start/stop times can be calculated auto-
matically, and complex diagrams can be analyzed and modified in an established way.
As a consequence, they can be used to change animation states. Some of these graph
transformations required in Alligator Eggs are already shown in Figure 8. For exam-
ple, if the eating rule shall be applied and the Eating Phase is entered, the startEating
graph transformation is applied on entry, and this transformation actually sets the new
animation state. Also arguments can be passed to the transformation, in this case that
is the alligator and its victims. A more complex transformation is startRelayout. It
is able to layout the whole diagram. Indeed, the functionality can be shared with the
static layout specification, which is already specified (see Section 2). The difference is
that the results of the algorithm are either used for the definite positions or the arrival
points of linear movements.

The remaining question concerns the point in time these graph transformations,
which actually control the animation flow, are executed. Therefore, it must be possible
to specify events. Whenever an event is triggered, the according transformation is
performed. DIAMETA already provides the specification of an obvious event type:
user events. It is possible to add editor buttons, which initiate graph transformation,
if clicked. However, also other unanticipated events can be considered as user events:
moving components via mouse, key strokes, adding or removing components. The
state transition from Static to Animated is an example of user events, because it is
actually triggered, if the user clicks on the button “Application” (see Figure 7).

The second type of events are timed events. In Figure 8 several transitions are fired
after specific time events, e.g. “after 3 sec”. Therefore, the DIAMETA animation pack-
age also includes an event queue, wherein timed events must be registered. Thereby,
the event times are calculated based on the graph model. For example, three seconds
must be added to the point in time when the Eating Phase was entered in order to ob-
tain the time of the next transition. Also more complex calculations are possible, e.g.
computing the time when two components collide on their trajectory, etc. Individual
component attributes as well as the whole graph structure can be taken as basis of the
calculation. Again, graph matching mechanisms can help finding and calculating the
times of these events. The time along with affected components, the event context, is
then stored in the event queue. The queue, hence, must be revised after each change of
the graph model. If components are added, removed or changed, it is also possible that
new events appear and already registered events must be modified or updated. As soon
as the global time t reaches the time of an enqueued event, the graph transformation
that has been specified for this event type gets triggered along with the actual event
context (affected components). As described, this can lead to a change of the anima-
tion state. If more than one event share the same time, the DIAMETA approach is to
priorize some events by specification.

106

Figure 11: State diagram - animation states of individual components

There is also a third event type: immediate events. They occur time-independently
as soon as a specific state is reached, e.g. after a graph transformations. An example
is the event which fires the transition from the Rebirth Phase to the Relayout Phase
(Alligator). Assuming the former state, the connected graph transformation (rebirth)
recreates an instance of the eaten family for each hatching egg. Directly afterwards,
the state changes to Relayout (Alligator) and the graph transformation for re-layouting,
startRelayout, is performed.

Otherwise, the work for creating the Alligator Eggs event specification for starting
animations based on the state machine diagram is straight-forward. However, there
is still the need to stop animations after specific phases end. Of course, these an-
imation stops could be initiated by individual events, which are triggered if a state
exits. Figure 11 shows an elegant alternative, if “animation stop” always means to re-
set all animation parameters, no matter which component type. The component’s state
shall switch to Static automatically, if the global time t reaches a component’s anima-
tion parameter animationStop. Regularly, this will cause the graph transformation
stopAnimation. However, as a nice additional feature, if the flag obsolete is set for
the component, it is marked for deletion and can even be deleted automatically by the
graph transformation deleteObsolete (cp. Figure 9).

5.5 Comparison With Other Approaches
As already mentioned in Section 3, animation within diagram editors, especially in
the field of generator frameworks, is often used as a supplement to simulation (e.g.
GenGED [6], DEViL [4]). Thereby, animation is used for user-friendly visualization
of individual simulation steps. Without additional techniques each step is an atomic
operation. However, its duration - which is actually 0 - must be stretched in time
in order to animate changes. Figure 10 shows the chronological sequence of state
transitions, which are applied this way. In the following, this animation concept is
called transition animation. On the contrary, the state animation concept outlined in
this paper sticks with instantaneous transitions (cp. Figure 9).

The Alligator Eggs editor can be generated via both approaches. Each rule applica-
tion can be considered as simulation step. With transition animations a way to specify
the whole animation for this single step is required. In case of the rather complex eating
rule, specification possibilities must be very flexible, e.g. an arbitrary amount of reborn
families must be animated. A specification following the concept of state animations

107

applies to shorter, usually less complex animation sequences, which can be described
via graph transformations and events.

Furthermore, transition animation sequences cannot overlap in time, because the
underlying simulation steps themselves cannot overlap. For example, the Alligator
Eggs rule applications - considered as simulation steps - must be executed consecu-
tively. However, it would be possible to execute several independent rule applications
simultaneously and time-shifted.6 Components can be animated independently, and by
using the event approach they could also interact with each other, e.g. collision events
during a movement. Even unpredictable interactivity while running the animation is
possible (user events), and user activities can be considered in the animated visual lan-
guage’s design. In case of the Alligator Eggs editor, it is possible to delete hatching
eggs or victims during the Eating Phase, for example.

Finally, the state animation concept also covers the animation of diagram lan-
guages, whose underlying models cannot be simulated. Animations could always be
used as eye-catcher to highlight particular diagram elements, for example.

6 Conclusions
This paper has shown that also animated editors for visual logic languages like Alliga-
tor Eggs can be successfully specified and generated using DIAMETA. The resulting
editor can be used in order to model visual �-expressions. Animations enable the user
to track changes during the reduction of expressions.

The DIAMETA framework has been extended in order to apply the presented ani-
mation strategy. This strategy differs from other approaches widely spread in the area
of meta-tools and editor generator frameworks. Even some limitations of other ap-
proaches are resolved. However, the specification complexity of animations and events
must still be improved. Currently, the concrete visualization and calculations must be
written by hand. Patterns for different animation types and processes including their
parameters would be desirable, even if loosing flexibility. With such patterns, it is
also more likely, that higher-level cartoon-like animations (e.g. by using predefined ef-
fects), which are especially suitable for an editor like Alligator Eggs, are used instead
of simple interpolated transformations. The approach should also be investigated with
regard to different types of animated visual languages. Perhaps certain specification
procedures, e.g. using state machine diagrams, can be identified and described in order
to simplify overly complex specifications. Finally, the applied strategy also seems to
be suitable for specifying highly interactive animated languages.

References
[1] E. Biermann, C. Ermel, J. Hurrelmann, and K. Ehrig. Flexible visualization of

automatic simulation based on structured graph transformation. In VLHCC ’08:
Proc. IEEE Symp. on Visual Languages and Human-Centric Computing, pages
21–28, Washington, DC, USA, September 2008. IEEE Computer Society.

6This feature has been realized with the concept presented in this article

108

[2] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:354–363, 1936.

[3] W. Citrin, R. Hall, and B. Zorn. Programming with visual expressions. In VL
’95: Proc. 1995 IEEE Symp. on Visual Languages, pages 294–301, Darmstadt,
Germany, Sep 1995. IEEE Computer Society Press.

[4] B. Cramer and U. Kastens. Animation automatically generated from simula-
tion specifications. In VLHCC ’09: Proc. IEEE Symp. on Visual Languages
and Human-Centric Computing, Corvallis, Oregon, USA, September 2009. IEEE
Computer Society.

[5] EMF – Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/,
2009.

[6] C. Ermel. Simulation and Animation of Visual Languages based on Typed Alge-
braic Graph Transformation. PhD thesis, Tech. Univ. Berlin, Fak. IV, Books on
Demand, Norderstedt, 2006.

[7] S. Gyapay, R. Heckel, D. Varro, and D. Varr. Graph Transformation with Time:
Causality and Logical Clocks. In ICGT ’02: Proc. 1st Int. Conf. on Graph Trans-
formation, pages 120–134. Springer-Verlag, 2002.

[8] H.-J. Kreowski and S. Kuske. Graph transformation units with interleaving se-
mantics. Formal Asp. Comput., 11(6):690–723, 1999.

[9] J. d. Lara and H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. In FASE ’02: Proc. 5th Int. Conf. on Fundamental Approaches to
Software Engineering, pages 174–188, London, UK, 2002. Springer-Verlag.

[10] M. Minas. Generating meta-model-based freehand editors. In GraBatTs ’06:
Proc. 3rd Int. Workshop on Graph Based Tools, Satellite event of 3rd Int. Conf.
on Graph Transformation, Natal, Brazil, September 2006.

[11] M. Minas and J. Gottschall. Specifying animated diagram languages. In TVL ’97:
Proc. Workshop on Theory of Visual Languages, Capri, Italy, 1997.

[12] J. E. Rivera, C. Vicente-Chicote, and A. Vallecillo. Extending visual model-
ing languages with timed behavioral specifications. In IDEAS 2009: Proc. 12th
Iberoamerican Conf. on Requirements Engineering and Software Environments,
pages 87–100, Colombia, April 2009.

[13] E. Syriani and H. Vangheluwe. Programmed Graph Rewriting with Time for
Simulation-Based Design. In ICMT ’08: Proc. 1st Int. Conf. on Theory and
Practice of Model Transformations, pages 91–106, Berlin, Heidelberg, 2008.
Springer-Verlag.

[14] B. Victor. Alligator eggs! A puzzle game. http://worrydream.com/AlligatorEggs/,
May 2007.

109

