
Built-ins for JSON Rules

Emilian Pascalau1

Hasso Plattner Institute, Germany
emilian.pascalau@hpi.uni-potsdam.de

Abstract. JSON Rules is a declarative rule language for the World
Wide Web. It has been created to satisfy at least the following list of
requirements: (1) create and execute rules in browser; (2) support for
ECA and PR rules; (3) the Working Memory contains event-facts. Here
we extend the language with the concept of built-ins (predicates and
actions). We focus on the relation with RIF-DTB, however with a strong
emphasis on the environment where the rules are going to be executed:
the web browser. As such we introduce here an initial set of built-ins, as
well as the architectural aspects that should be taken into consideration
for an engine implementing the JSON Rules language.

1 Introduction

There is a multitude of rule languages out there (i.e. Drools [1], F-Logic [2])
each of them with their specificities. However interoperability in a world that
moves at high speeds and where business are interconnected is a must. RIF is
the W3C Rule Interchange Format1 and also the name of the W3C group that
it is in charge of this standard. Although the main goal of RIF is to provide a
rule interchange language, it is more than that. RIF provides different versions,
called dialects in order to tackle the serious trade-offs in nowadays rule languages.
Almost a mandatory request for any rule language it is to provide at least the
guidelines for translating to and from RIF.

JSON Rules introduced initially in [3] and later extended in [4] is a rule
language designed to be run in a web browser and to model web based scenarios.
The main goals of the language are: to move the reasoning process to the client-
side; to offer support for intelligent user interfaces; to handle business workflows;
to allow rule-based reasoning with semantic data inside HTML pages (reasoning
with RDFa [5]); to create intelligent mashups - rule based mashups; to enable
users to collaborate and share information on the WWW (rule sharing and
interchange). JSON Rules fulfills the following requirements: rules run in the
browser; uses Event-Condition-Action rules; rules are defined on top of DOM
structure; uses DOM events plus user defined events; actions are defined by
users and can be any JavaScript function calls. JSON Rules language uses a
special type of Working Memory (WM) – the Document Object Model (DOM)
[6] of the page. As in any forward chaining engine, the main effect of JSON

1 http://www.w3.org/2005/rules/

http://www.w3.org/2005/rules/

rules execution is the update of the WM i.e. the DOM of the page. Therefore,
the language design is tailored to the environment where rules are going to be
executed.

With respect to its condition language, JSON Rules was influenced in its syn-
tax by other rule languages such as Drools [1]. Any valid JavaScript function call
is allowed as actions. This covers also the OMG Production Rule Representation
([7]) and RIF Production Rule Dialect [8].

Any JSON Rule is identified by an id. A rule may have a priority - if this
attribute is missing then its implicit value is 1. The rule engine executes the rules
in a down counting order (from greater priority to lower priority). However, the
execution order for rules with the same priority is irrelevant. One significant
property of a JSON Rule is the appliesTo property. This property stores an
array of URLs to which this rule refers to i.e. a list of URLs defining the context
in which this rule can be applied. Based on this property, rules are grouped in
rule sets.

An EventExpression is an expression capturing any DOM Event [9]. There-
fore, it has a type, target, timeStamp and phase properties, each of them
allowing a JSONTerm as a value. Inside the rule engine, EventExpression is
matched with DOM Events at their occurrence (we allow only atomic events
with no duration i.e. the events are consumed immediately when they occur)
time. Consuming events yields into event-facts creation in the WM and such
facts are immediately consumed. The engine itself is event-based i.e. all internal
processes and activities are event-driven. This is imposed by the environment
where the engine runs - the Web browser. Generally, the engine consumes events,
through its Working Memory, check conditions and execute actions.

A JSON Rule may contain a list of conditions, logically interpreted as a con-
junction of atoms. The language provides the following types of atoms:
Description, JavaScriptBooleanExpression, XPathCondition, NodeEquality
and Negation. The Description conditional is similar to Drools [1] pattern.
With such conditional property restrictions can be defined as well as prop-
erty bindings, in a Drools like fashion. JavaScriptBooleanCondition stands
for JavaScript boolean expression; any JavaScript boolean expression can be
used.
The XPathCondition is used to test that a DOM Node is found in the list of
nodes returned by evaluating an XPath expression. The last two NodeEquality
and Negation are pretty much obvious. They are used to test equality between
two terms, respectively to negate a conditional atom.

As usual, a rule has associated a list of actions that have to be performed,
if the rule conditions hold. An action is a call to any available JavaScript func-
tion. Actions are executed sequentially. The reader may notice that such kind
of actions can determine also side effects i.e. more than simple updates on the
Working Memory (communication with a server that has no effect on the WM).

As stated above since it is almost mandatory for any rule language to provide
means of translation to and from RIF this paper makes the first steps towards

translation from RIF to JSON Rules and vice versa by tackling the problem of
built-ins.

2 Built-ins

This section deals with built-ins for the JSON Rules language, along with the
architectural and technical aspects imposed by the context (web browsers) and
the programming language (JavaScript, ECMAScript [10]) in which the JSON
Rules [3] engine is running and has been implemented.

Built-in means constructed as a non-detachable part of a larger structure. In
case of rule systems built-ins encapsulate commonly used functionality, provided
as predicates or functions. Built-ins also help in maintaining the clean declarative
design of rules.

As described in the Conclusion of RIF-UCR [11] ”the goal of the RIF working
group is to provide representational interchange formats for processes based on
the use of rules and rule-based systems. These formats act as ”interlingua” to
interchange rules and integrate with other languages, in particular (Semantic)
Web mark-up languages.”

JSON Rules foresees compliance with Rule Interchange Format (RIF)2. As
such the JSON Rules aims to provide the built-ins defined in RIF-DTB [12],
beside others that refer to the mashup context.

2.1 RIF built-ins short intro

RIF-DTB [12] is the reference document concerning built-in datatypes, predi-
cates, functions supposed to be supported by RIF dialects such as: RIF Core
Dialect [13], RIF Basic Logic Dialect [14] and RIF Production Rules Dialect [8].
According to RIF-DTB document each dialect takes use of a superset or a subset
of datatypes, predicates or functions defined in RIF-DTB. The datatypes taken
into account by the RIF-DTB [12] are imported either from W3C XML Schema
Definition Language (XSD) [15] or from rdf:PlainLiteral: A Datatype for RDF
Plain Literals [16]. Predicates or functions have been ported from XQuery 1.0
and XPath 2.0 Functions and Operators [17] or from rdf:PlainLiteral: A Datatype
for RDF Plain Literals [16].

The list of predicates and function built-ins taken into consideration by RIF-
DTB comprises among others: predicates for literal comparison, numeric func-
tions and predicates, function and predicates on boolean values, on string, on
date/time and duration, on XMLLiterals, on rdf:PlainLiteral.

2.2 JSON Rules context prerequisites

The general technical guide line that governs the architectural aspects and any
other aspects is the compliance and conformity with the ECMAScript standard
[10].
2 http://www.w3.org/2005/rules/

http://www.w3.org/2005/rules/

Beside the built-ins (predicates and functions) classification introduced in
RIF-DTB [12] that span all the RIF dialects, we introduce here a set of built-in
actions that serve a different purpose, mainly actions needed in dealing with
mashups. As introduced in [4] one of the main purposes of JSON Rules is to be
an execution language for mashups.

Although we are not going to address here the problem of translating RIF
constants’ names, symbols, or namespaces, minimal introduction of ECMAScript
concepts are necessary.

One of the most important concept is the closure concept. The ECMAScript
[10] standard explains a closure as a ”function with some arguments already
bound to values”. Others define a closure3 as ”an expression (typically a func-
tion) that can have free variables together with an environment that binds those
variables (that ”closes” the expression)”.

As stated in [18] ”JavaScript’s extreme dynamism equips it with tremendous
flexibility, and one of the most interesting yet least understood facets of its dy-
namism involves context”.

On top of these two concepts (closure, context) the concept of namespace is
defined. We understand by the notion of namespace hierarchies of nested objects
as defined also in [18].

Another characteristic of JavaScript is that it is weakly typed.

2.3 Guidelines for defining JSON Rules built-ins

There are a couple of general guidelines that should be taken into account when
defining functions and predicates, either user defined or built-in:(1) in order to
avoid name clashing in JavaScript global context it is recommended to use proper
namespaces; (2) predicates should always return a default value, undefined value
should be avoided.

To simplify the process of creating namespaces JavaScript libraries such as
Dojo4 could be used.

Because the function word is reserved in JavaScript its usage should be
avoided in a different context other than defining a JavaScript function.

Another important issue that must be taken into account is that the JavaScript
code for a page runs in a common context, and as such any redefinition of the
same object will override the initial implementation.

2.4 From RIF-DTB to JSON Rules built-ins

This section explains how RIF built-in datatypes, predicates and functions are
translated into JSON Rules, respectively JavaScript.

In order to preserve the semantics type mapping is necessary. Table 1 defines
the mapping between RIF built-in datatypes and JavaScript datatypes. E4X [19]
datatype is also taken into account. Since JavaScript is weakly typed in most
3 http://www.jibbering.com/faq/faq_notes/closures.html
4 http://www.dojotoolkit.org/

http://www.jibbering.com/faq/faq_notes/closures.html
http://www.dojotoolkit.org/

of the cases a custom type must be built. In Table 1 this is emphasized by the
cust. type notation. The same table specifies for each custom type, the base
JavaScript type or types on which the custom type must be based.

Table 1. Mapping of RIF built-in Datatypes to JavaScript Datatypes

RIF datatype JavaScript
datatype

RIF datatype JavaScript
datatype

xs:string String xs:nonNegativeInteger Number, cust. type

xs:normalizedString String, cust. type xs:unsignedLong Number, cust. type

xs:token String, cust. type xs:unsignedInt Number, cust. type

xs:language String, cust. type xs:unsignedShort Number, cust. type

xs:Name String, cust. type xs:unsignedByte Number, cust. type

xs:NCName String, cust. type xs:positiveInteger Number, cust. type

xs:ID String, cust. type xs:decimal Number, cust. type

xs:IDREF String, cust. type xs:boolean Boolean

xs:NMTOKEN String, cust. type xs:dateTime Date

xs:ENTITY String, cust. type xs:date Date, cust. type

xs:NOTATION String, cust. type xs:time Date, cust. type

xs:anyURI String, cust. type xs:gYearMonth Date, cust. type

xs:hexBinary Array, cust. type xs:gMonthDay Date, cust. type

xs:base64Binary Array, cust. type xs:gYear Date, cust. type

xs:float Number, cust. type xs:gDay Date, cust. type

xs:double Number xs:gMonth Date, cust. type

xs:duration String+Date, cust.
type

xs:NMTOKENS String+Array, cust.
type

xs:integer Number, cust. type xs:IDREFS String+Array, cust.
type

xs:nonPositiveInteger Number, cust. type xs:ENTITIES String+Array, cust.
type

xs:negativeInteger Number, cust. type xs:QName String, cust. type

xs:long Number, cust. type xs:anyType E4X XML object

xs:int Number, cust. type rdf:PlainLiteral String

xs:short Number, cust. type rdf:XMLLiteral E4X XML object

xs:byte Number, cust. type

As previously stated datatypes as well as functions and predicates must be
grouped by means of proper namespaces. In the RIF-DTB case datatypes are
identified by the following namespace: http://www.w3.org/2001/XMLSchema#.
As convention this gets translated into org.w3c.xs. For example the xs:duration
datatype is identified with: http://www.w3.org/2001/XMLSchema#duration.
This one gets translated into org.w3c.xs.Duration. The namespace for RDF
datatypes is org.w3c.rdf.

In a similar way the namespaces for the RIF predicates and functions are:
org.w3c.rif.pred and respectively org.w3c.rif.func.

The implementation for custom datatypes is inspired from J2EE implementa-
tion (i.e. javax.xml.datatype.Duration). The Duration custom type provides
the following list of methods: add(org.w3c.xs.Duration rhs); addTo(Date
date); compare(org.w3c.xs.Duration duration); getDays(); getHours();
getMinutes(); getMonths(); getSeconds(); getSign(); getYears();
isLongerThan(org.w3c.xs.Duration duration);
isShorterThan(org.w3c.xs.Duration duration); negate().

In the RIF-DTB context built-in predicates and functions are defined with
the following artifacts: (1) name of the built-in; (2) external schema of the built-
in (the signature of the built-in); (3) for a RIF built-in function - how it maps its
arguments into a result - in RIF terms this means the mapping of Iexternal(σ)
in the formal semantics of [20] and [14]; (4) for a RIF built-in predicate - how
it gives the truth value when arguments are substituted with values from the
domain - this corresponds to the mapping Itruth ◦ Iexternal(σ) in the formal
semantics of [20] and [14]; (5) the domains for the built-ins’ arguments.

RIF-DTB explains that ”typically, built-in functions and predicates are de-
fined over the value spaces of appropriate datatypes, i.e. the domains of the
arguments. When an argument falls outside of its domain, it is understood as
an error.”

In RIF-DTB the predicate evaluating greater than is defined as follows:

name pred:numeric-greater-than
schema (?arg1?arg2; pred : numeric− greater − than(?arg1?arg2))
domains xs:integer, xs:double, xs:float, or xs:decimal for both arguments
mapping When both a1 and a2 belong to their domains

Itruth◦Iexternal(?arg1?arg2; pred : numeric−greater−than(?arg1?arg2))(a1a2) =
t if and only if op : numeric−greater− than(a1, a2) returns true, as defined
in [17], f otherwise. Also RIF-DTB specifies that ”if an argument value is
outside of its domain, the truth value of the function is left unspecified.”

The numeric-greater-than predicate could be implemented in JSON Rules as
depicted in Example 1.

Since the hyphen based notation used by RIF in the predicates and func-
tion names can not be used in JavaScript the camel hump notation should be
used instead. As such the name numeric-greater-than gets translated into
numericGreaterThan.

The mapping of the signature is obvious, with respect to the list of arguments.
Based on Table 1 xs:integer, xs:double, xs:float, or xs:decimal RIF-

DTB datatypes are translated into custom types but based on the JavaScript
number datatype.

With respect to RIF note that if the type of any of the arguments is outside of
the specified domain then no result should be given. This situation can be dealt
at least in three ways: (1) the value returned could be the JavaScript special
value undefined; (2) JavaScript isNaN() function could be used and in case of
true the Number.NaN should be returned; (3) an exception could be raised.

However since the RIF specification states that this predicate should behave
as defined in [17], in case of a NaN value, false is returned. As such this approach
can not be used here. In other cases any of the three approaches could be used.

Example 1 (Defining a built-in predicate).

org=new function(){};
org.w3c=new function(){};
org.w3c.rif=new function(){};
org.w3c.rif.pred=new function(){};
org.w3c.rif.pred.numericGreaterThan=function(arg1,arg2) {

try{
if (isNaN(arg1) || isNaN(arg2))

return false;
if (arg1>arg2)

return true;
else

return false;
}catch(e){

//log error
//console.log(e); i.e. if Firebug is used

}
return false;

}

This approach could be used in general to map all RIF built-in predicates
and functions.

In addition the approach could be used to define libraries of actions oriented
towards usage of well known services such Twitter5, Facebook6, Youtube7 and
so forth through their APIs.

2.5 JSON Rules built-ins for mashups

In mashups case there could be identified a set of operations that happen regu-
larly, such as loading of services, memory cleaning etc. These type of functional-
ity is provided under the org.jsonrules.builtin.mashups.system namespace.
Functionality such as load or memoryCleanUp is provided as built-in functions
the named namespace.

The existence of services is a prerequisite for the mashups, and as such they
have to be available for the mashup, when this is instantiated.

Recall that we have in mind mashups modeled with JSON Rules that run in
the browser [4]. All the involved services interact with each other in a common
context which is the choreographer page. The choreographer is accessible to the
user through a web browser.
5 http://twitter.com/
6 http://www.facebook.com/
7 http://www.youtube.com/

http://twitter.com/
http://www.facebook.com/
http://www.youtube.com/

However firstly they need to be made available to the choreographer. The
browser loads the content of the choreographer and a DOM Basic Event load
it is raised. These functions should be used in general in relation with a load
event, because its main purpose is to make available for the choreographer the
necessary services.

The term services here has a broader understanding and comprises at least
the following: web page, RPC service, AJAX object.

The signature of org.jsonrules.builtins.mashups.load function is:
org.jsonrules.builtins.mashups.load($what,$where). In RIF-DTB termi-
nology the signature of a function is the schema of a function.

The $what argument refers to what needs to be loaded. this could be an URI
(Uniform Resource Identifier) or it could be a reference to an AJAX object.

$where argument refers to the place where the service or the response of an
AJAX request will be stored. This could be for example an iframe, a div, both
of them identified by an id, a reference to a JavaScript object.

3 Conclusions

This paper touched the problem of built-ins for JSON Rules in relation with
RIF. This is a step towards translation JSON Rules to and from RIF. RIF built-
in datatypes, predicates and functions have been taken into consideration, as
well as other type of built-ins that in principal are useful in the mashups con-
text. To maintain similar behavior functionality grouped, namespaces have been
suggested for RIF-DTB and mashups environments. Beside all these technical
aspects necessary for built-ins definition in the context of JSON Rules has been
taken into account.

References

1. Proctor, M., Neale, M., Frandsen, M., Jr., S.G., Tirelli, E., Meyer, F., Verlaenen,
K.: Drools 4.0.7. http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/

html_single/index.html (May 2008)

2. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42 (1995) 741–843

3. Giurca, A., Pascalau, E.: JSON Rules. In: Proceedings of the Proceedings of
4th Knowledge Engineering and Software Engineering, KESE 2008. Volume 425.,
CEUR Workshop Proceedings (2008) 7–18

4. Pascalau, E., Giurca, A.: A Rule-Based Approach of Creating and Executing
Mashups. In: Proceedings of the 9th IFIP Conference on e-Business, e-Services,
and e-Society (I3E 2009). LNCS, Springer (2009) 82–95 forthcoming.

5. Adida, B., Birbeck, M.: RDFa Primer Bridging the Human and Data Webs. W3C
Working Draft (October 2008) http://www.w3.org/TR/xhtml-rdfa-primer/.

6. Hors, A.L., Hegaret, P.L., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne,
S.: Document Object Model (DOM) Level 3 Core Specification. W3C Recommen-
dation (April 2004) http://www.w3.org/TR/DOM-Level-3-Core/.

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/DOM-Level-3-Core/

7. OMG: Production Rule Representation (PRR), Beta 1. Technical report, OMG
(November 2007)

8. de Sainte Marie, C., Paschke, A., Hallmark, G.: RIF Production Rule Dialect.
W3C Working Draft (July 2009) http://www.w3.org/TR/rif-prd/.

9. Hohrmann, B., Hegaret, P.L., Pixley, T.: Document Object Model (DOM) Level
3 Events. Technical report, W3C (December 2007)

10. ECMA: ECMAScript Language Specification. http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf (December 1999)

11. Paschke, A., Hirtle, D., Ginsberg, A., Patranjan, P.L., McCabe, F.: RIF Use Cases
and Requirements. W3C Working Draft (December 2008) http://www.w3.org/

TR/rif-ucr/.
12. Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-Ins 1.0. W3C Working

Draft (July 2009) http://www.w3.org/TR/rif-dtb/.
13. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D.: RIF

Core Dialect. W3C Working Draft (July 2009) http://www.w3.org/TR/rif-core/.
14. Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Working Draft (July 2009)

http://www.w3.org/TR/rif-bld/.
15. Peterson, D., Gao, S.S., Malhotra, A., Sperberg-McQueen, C.M., Thompson,

H.S., Biron, P.V.: W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes. W3C Candidate Recommendation (April 2009) http://www.w3.org/

TR/2009/CR-xmlschema11-2-20090430/.
16. Bao, J., Hawke, S., Motik, B., Patel-Schneider, P.F., Polleres, A.: rdf:PlainLiteral:

A Datatype for RDF Plain Literals. W3C Candidate Recommendation (June 2009)
http://www.w3.org/TR/rdf-plain-literal/.

17. Malhotra, A., Melton, J., Walsh, N.: XQuery 1.0 and XPath 2.0 Functions
and Operators. W3C Recommendation (January 2007) http://www.w3.org/TR/

xpath-functions/.
18. Russell, M.A.: Dojo The Definitive Guide. O’REILLY (2008)
19. ECMA: ECMAScript for XML (E4X) Specification. http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-357.pdf (December 2005)
20. Boley, H., Kifer, M.: RIF Framework for Logic Dialects. W3C Working Draft (July

2009) http://www.w3.org/TR/rif-fld/.

http://www.w3.org/TR/rif-prd/
http://www.w3.org/TR/rif-ucr/
http://www.w3.org/TR/rif-ucr/
http://www.w3.org/TR/rif-dtb/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/
http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/
http://www.w3.org/TR/rdf-plain-literal/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/rif-fld/

	Built-ins for JSON Rules
	Emilian Pascalau

