

3rd East European Workshop
on Rule-Based Applications

Cottbus, Germany, September 21, 2009

Editors:
Adrian Giurca
Grzegorz J. Nalepa
Gerd Wagner

Preface

This volume presents some results of researchers in a rule-based modeling and reasoning
community. The maturity of the research in the discipline and the recent development in
commercial/industrial rule applications provided an opportunity to produce this workshop.
The workshop aims to be a common space where those with experience or interest in rule modeling,
rule languages and rule engines meet researchers with expertise in other areas such as: Artificial
Intelligence, Business Process Modeling, Cloud Computing, Intelligent Agents, Model-Driven
Architecture, and Semantic Web.
We look on contributions addressing, but not limited to, the following topics:

• Artificial Intelligence Rules and Rule Systems
• Best Practices in Business Rules
• Combining rules and ontologies
• Rules in Enterprise Modeling
• Implemented tools and systems
• Rules and Web Services Integration
• Rules Modeling and Business Processes(including Production Rules and ECA Rules)
• Rule base Visualization, Verbalization, Validation, Verification and Exception Handling.
• Rule-based agents modeling and simulation
• Rule-based modeling of mechanisms, policies, strategies and contracts.
• Rule Engines Architectures
• Rules in Web 2.0 and Enterprise 2.0

This year we accepted five papers from the area of reaction rules applications, rule verification,
rule-based reasoning with ontologies, rule engines, and rule-based reasoning with reaction rules.
Boehm and Kanne introduced messaging rules as a programming model for enterprise application
integration, Sergey Lukichev wrote on the declarative approach for anomaly detection in
production rule bases using semantic constraints, Nalepa et al, reports on HeaRT, a complete
custom rule runtime environment executing XTT2 rule bases, Papataxiarhis et al, uses SWRL and
OWL ontologies to create i-footman a knowledge-based framework aiming to provide assistive
services to football managers and Emilian Pascalau wrote on buil-in actions and predicates for
JSON rules.
The organizers would like to thank all who contributed to the success of the workshop. We thank all
authors for submitting papers to the workshop, and we thank the members of the program
committee as well as the external reviewers for reviewing and collaboratively discussing the
submissions. For the submission and reviewing process we used the EasyChair system, for which
the organizers would like to thank Andrei Voronkov, the developer of the system.

Adrian Giurca, Grzegorz J. Nalepa and Gerd Wagner

Program Committee

Grigoris Antoniou, FORTH, Greece

Costin Badica, University of Craiova, Romania

Nick Bassiliades, Aristotle University of Thessaloniki, Greece

Aïcha-Nabila Benharkat, Institut National des Sciences Appliquées de Lyon, France

Jens Dietrich, Massey University, New Zealand

Dragan Gasevic, Athabasca University, Canada

Adrian Giurca, Brandenburg University of Technology, Germany

Ion Iancu, University of Craiova, Romania

Isambo Karali, University of Athens, Greece

Antoni Ligeza, AGH University of Science and Technology, Poland

Grzegorz J. Nalepa, AGH University of Science and Technology, Poland

Viorel Negru, West University of Timisoara, Romania

Adrian Paschke, Freie Universität Berlin

Paula Lavinia Patranjan, SKYTEC AG, Germany

Mark Proctor, Drools, Redhat

Dave Reynolds, Hewlett-Packard Semantic Web Research, England

Kuldar Taveter, Tallinn University of Technology, Estonia

Gerd Wagner, Brandenburg University of Technology, Germany

http://www.ics.forth.gr/%7Eantoniou/
http://software.ucv.ro/%7Ebadica_costin
http://iskp.csd.auth.gr/people/nbassili/
http://liris.cnrs.fr/%7Enbenhark/HomePage.htm
http://www-ist.massey.ac.nz/JBDietrich/
http://www.sfu.ca/%7Edgasevic/
http://www.informatik.tu-cottbus.de/%7Eagiurca/
http://inf.ucv.ro/%7Eiancu/en/index.html
http://www.di.uoa.gr/%7Eizambo/ENG.html
http://www.linkedin.com/pub/3/545/b08
http://home.agh.edu.pl/%7Egjn/
http://www.math.uvt.ro/index.php?option=com_content&task=view&id=56&Itemid=19&lang=romanian&profid=4
http://www.corporate-semantic-web.de/
http://www.skytecag.com/
http://www.markproctor.com/
http://www.drools.org/
mailto:derathplb.hpl.hp.com
http://www.hpl.hp.com/semweb/
http://www.informatik.tu-cottbus.de/%7Egwagner/

Messaging Rules as a Programming Model for

Enterprise Application Integration

Alexander Böhm and Carl-Christian Kanne

University of Mannheim, Germany
alex|cc@db.informatik.uni-mannheim.de

1 Introduction

Today, distributed systems are implemented using imperative programming lan-
guages, such as Java or C#, and executed by multi-tiered application servers [2].
To facilitate application development, rule-based languages have been proposed
to simplify various aspects of these complex processing systems. This includes ac-
tive rules for database systems [13], dynamically controlling application aspects
using business rules [10, 14], or implementing basic message filtering and forward-
ing tasks in message broker components [11]. These languages help to simplify
the implementation of individual aspects of these systems using declarative, rule-
based facilities. However, due to the various different languages, heterogeneous
programming models and runtime systems involved, the overall complexity of
application development remains high. This reduces the productivity of pro-
grammers and may also have a significant impact on the runtime performance
as applications are difficult to implement, maintain and optimize [15].

The Demaq project [5] aims at simplifying the development of complex
messaging-based applications by using a novel programming model. Our focus
is on describing the complete business logic of a distributed application by using
exclusively a rule-based programming language.

In this paper, our goal is to demonstrate the feasibility of using a declara-
tive, closed rule language for the implementation of complex, distributed appli-
cations. For this purpose, we analyze whether the typical processing patterns
characteristic for Enterprise Application Integration (EAI) can be implemented
with our proposed approach. Choosing EAI as an example application domain is
particularly appealing, as EAI applications involve complex interactions among
several heterogeneous and distributed systems that are difficult to implement.
These processing patterns characteristic for this kind of applications have been
identified and systematically discussed in the literature [12].

The remainder of this paper is organized as follows. In Section 2 we intro-
duce our programming model that allows to implement the business logic of
distributed applications based on message queues and declarative application
rules. Section 3 reviews the typical processing patterns in EAI applications and
discusses whether and how these patterns can be implemented using our rule
language. We conclude the paper in Section 4 and give an outlook to our future
work.

3rd East European Workshop on Rule-Based Applications 1

2 Rule-Based Programming Model

Our approach is based on a simple, rule-based programming model that allows to
implement the business logic of a node participating in a distributed application.
It consists of four major components.

1. Messages are used to exchange data with remote communication partners
and for representing node-internal, intermediate state.

2. Message properties allow to annotate messages with additional metadata.
3. Message queues provide asynchronous communication facilities and allow for

transactional, reliable and persistent message storage.
4. Declarative rules operate on these queues and the messages stored within

them and are used to implement the application logic. Every rule specifies
how to react to an arriving message by creating resulting messages.

Unfortunately, due to space constraints, we cannot discuss all details of our
programming model. Instead, we give a brief overview of the key components
and concepts, and refer the interested reader to [5] for an in-depth discussion,
including design and performance aspects of the Demaq rule execution engine.

2.1 Message Queues

An application in our model is based on an infrastructure of message queues.
For this purpose, it incorporates two different types of message queues. Gateway

queues provide incoming and outgoing interfaces for message exchange with
remote systems. Basic queues are used for local, persistent message storage and
to pass intermediate information between application rules.

All messages in our model exclusively use XML as the underlying data for-
mat. This refers to the messages exchanged with external systems, as well as to
local messages sent between the queues of an application. Having XML as an
extensible and expressive message format facilitates to interact with all kinds of
remote services, while a uniform data format for all data avoids performance-
consuming representation changes.

Example 1. This example demonstrates how to create the infrastructure of mes-
sage queues that underlie an application. First, a incoming gateway queue
incomingMessages is created in line 1. This queue can be used to exchange mes-
sages with remote systems using HTTP as underlying transport. As HTTP is a
synchronous transport protocol, the gateway queue is associated with a corre-
sponding response queue. All messages inserted into this response queue will
be sent as synchronous replies to incoming requests.

Additionally, two local queues are created in lines 3 and 4. These queues are
used for local message forwarding and storage. The transient mode indicates
that no persistence guarantees need to be given, while a persistent queue mode
requires messages to be recovered in case of application or system errors.

1 create queue incomingMessages kind incoming interface ”http” port ”2342”
2 response outgoingMessages mode persistent ;
3 create queue customerCare kind basic mode transient ;
4 create queue customerOrders kind basic mode persistent ;

3rd East European Workshop on Rule-Based Applications 2

2.2 Message Properties

Every message in our system is an XML fragment that was either received from
an external source or generated by a local application rule. Apart from their XML
payload, messages can be associated with additional metadata annotations that
are kept separate from the XML payload. These properties are key/value pairs,
with unique names as their key and a typed, atomic value. Apart from setting
properties in application rules, several properties are provided by the runtime
system, such as creation timestamps or transport protocol information.

2.3 Declarative Application Rules

In our programming model, the complete business logic of a distributed ap-
plication is implemented using declarative rules operating on message queues.
Conceptually, every application rule is an Event-Condition-Action (ECA) rule
[13] that reacts to messages by means of creating new messages.

Event Our rules react to a single kind of event, which is the arrival of a mes-
sage at a queue of the application. These messages may either be received from
external communication endpoints or result from the execution of another, local
application rule. To keep our rule language simple and comprehensible to appli-
cation developers, the insertion of a message in a queue of the system is the only

event type that is supported. Other event sources, such as timeouts or various
kinds of error notifications [16], are translated to corresponding messages that
can be handled by application rules.

Condition Instead of developing a novel expression language from scratch, our
approach builds on the existing declarative XML query language XQuery [3] and
the XQuery Update Facility [8], which enables XQuery expressions to perform
side-effects. This approach is inspired by other rule languages (e.g. [1, 6, 7]) that
have successfully been built on the foundation of XML query languages. Conse-
quentially, in our model all rule conditions and other business logic are described
using XQuery expressions that are evaluated with the triggering message as the
context item [3].

Action We restrict the set of resulting actions that a rule may produce to a single
kind of action, which is to enqueue a message into a queue of the application. This
restriction keeps our rule language closed, i.e. all actions produced by application
rules can be directly reacted on by other rules. At the same time, it still allows
application rules to implement the message flow within the local queues of an
application and to external systems using gateway queues.

To express the messaging actions resulting from rule execution, we have ex-
tended the XQuery Update Facility with an additional enqueue message up-
dating expression.

Example 2. Below, we show an example of a simple application rule that per-
forms content-based message forwarding. The rule definition expression in line

3rd East European Workshop on Rule-Based Applications 3

1 is used to create a new rule (named exampleRule) which handles messages
enqueued into the incomingMessages queue. In the rule body (lines 2 to 12),
XQuery expressions are used to analyze the structure of the incoming mes-
sage using path expressions (lines 5 and 8) and to forward the message to an
appropriate queue for further processing using the enqueue message updating
expression. When a message with an unexpected structure is encountered, an
error notification is sent back to the sender (line 12).

1 create rule exampleRule for incomingMessages
2 let $request := .
3 return

4 (: dispatch message to appropriate destination − message dispatcher :)
5 i f ($request//complaint)
6 then

7 enqueue message $request into customerCare
8 else i f ($request//order)
9 then

10 enqueue message $request into customerOrders
11 else

12 enqueue message <error>...</error> into outgoingMessages;

2.4 Persistent State Management

Our programming model achieves data persistence by storing the complete mes-

sage history. All messages received from and sent to external systems are stored
persistently in the queues of an application. Thus, queues are not only used as
staging areas for incoming and outgoing messages, but also serve as durable stor-
age containers. In our model, there are no auxiliary runtime contexts or other
constructs for maintaining state. Instead, message queues are the only way to
persistently store state information in the form of messages.

Application rules may recover state information by querying the message
history. For complex, state-dependent applications, queries to the message his-
tory are a frequent operation. To simplify this reoccurring task of history access,
our rule language incorporates the concept of slicings, which define application-
specific views to the message history. Slicings allow developers to declaratively
specify which parts of the message history are relevant for application rules, and
to access them by using a simple function call.

Example 3. In this example, we illustrate how slicings can be used to organize
and access the message history. The slicing definition expression (lines 1 and 2)
defines a new slicing with name customerOrdersByID for the messages in the
customerOrders queue. For each distinct customerID, a separate slice will be
created. Each slice contains all messages that share the same key, which is the
customerID in this example. The require expression is used to indicate that
only the last ten messages for each slice need to be preserved. Older messages
may be safely removed from the message history using the garbage collection
facilities of the rule execution engine [5].

Application rules may access an individual slice using the slice function
call. In the example below, it is used by the rule to access all messages for a
particular customer (line 6). Depending on the number of items a customer has
ordered, the message is either forwarded to the importantCustomers queue or
handled locally.

3rd East European Workshop on Rule-Based Applications 4

1 create slicing property customerOrdersByID
2 queue customerOrders value //customerID require count(history ()) eq 10;
3
4 create rule checkCustomerImportance for customerCare
5 let $customerID := //customerID
6 let $ordersForCustomer := s l ice ($customerID, ”customerOrdersByID”)
7 let $orderedItems := count($ordersForCustomer//item)
8 return

9 i f ($orderedItems gt 20)
10 then enqueue message . into importantCustomers
11 else . . . (: handle locally :) ;

3 Implementing EAI Patterns

Our rule-based programming model aims at simplifying the development of com-
plex, distributed applications by describing their business logic by means of mes-
sage queues and declarative application rules. To verify the practical feasibility
and benefits of such a programming model, Enterprise Application Integration
(EAI) applications are of particular interest.

The goal of Enterprise Application Integration (EAI) is to integrate several
applications and computer systems, which may be of heterogeneous architectures
and distributed across multiple sites, into a single, combined processing system.
Typically, the involved components are integrated using messaging. In practice,
the task of application integration may become arbitrarily complex, depending
on the kinds, numbers and peculiarities of the systems involved.

The various characteristic messaging patterns that evolve in EAI architec-
tures have been identified in the reference work of Hohpe and Woolf [12]. The
resulting library of patterns can be categorized into six distinct classes that refer
to the use of various messaging protocols, encodings and transport endpoints,
message construction, transformation as well as message routing and analysis.

In the following sections, we briefly review these patterns and discuss whether
and how they can be implemented using our rule language. We use italics (pat-
tern) to refer to the individual patterns [12]. Due to space constraints, we omit a
discussion of the system management patterns and refer the interested reader to
an extended version of this paper [4], where they are described in detail. In our
rule execution engine, most of these system management patterns are provided
by an integrated, interactive debugger. This saves developers from manually
incorporating system management patterns into their applications.

3.1 Messaging Endpoints

Typically, EAI involves accessing and interacting with a multitude of hetero-
geneous systems. The way in which messages are exchanged heavily depends
on the individual systems involved. Interaction styles include polling consumers

that actively pull messages from remote systems, or event-driven consumers that
are triggered by external event sources.

In our model, these different styles of messaging gateways are implemented
using gateway queues. Incoming gateway queues allow to receive notification

3rd East European Workshop on Rule-Based Applications 5

messages from external systems, while outgoing gateways allow to send data to
other systems, and to actively poll them for new data.

Once a message has been received, it is handled by message dispatchers that
forward messages to the appropriate destination, or by selective consumers that
only react to particular types of messages. In our model, these patterns can be re-
alized using corresponding path expressions. In the example below, the consumer
rule implements a selective consumer that only reacts to order messages.

Some patterns do not need to be manually implemented by developers, but
are instead automatically provided by our processing model [5]. It includes strong
transactional guarantees for rule processing (which subsume the transactional

client pattern) and allows multiple concurrent execution threads (competing con-

sumers) for a single message queue.
The durable subscriber pattern, which avoids losing messages while not ac-

tively processing messages for a particular queue can be implemented by using
a persistent queue mode (as in line 3 of the example below).

1 (: gateway queue − messaging gateway :)
2 create queue incomingMessages kind incoming interface ”smtp” port ”25”
3 mode persistent ; (: − transactional client :)
4 create rule consumer on incomingMessages
5 i f (//order) (: − selective consumer :)
6 then . . .
7 else () ;

3.2 Different Message Types and Message Construction

Depending on the involved systems, there are various types of messages that
have to be handled by an EAI application. This includes command messages

that reflect remote procedure calls (RPC), document messages, which are used
for data transfer, or event messages, that inform an application of the occurrence
of a particular event. As our rule language is based on XML as the underlying
message format, these various message styles can be easily created by choosing
an appropriate XML schema. Moreover, messages can be easily annotated with
a format indicator, identifying the XML schema a message conforms to.

Apart from the message payload, messages are associated with additional,
transport-related metadata. This includes return addresses for asynchronous
transports and auxiliary transport protocol information for the request-reply pat-
tern reflecting synchronous protocols that require resulting messages to be sent
over the same connection (e.g. socket) as the initial request. Moreover, correla-

tion identifiers can be used to associate messages with other, related ones (e.g.
all messages belonging to the same transaction). In our programming model,
all these patterns are conveniently handled using (system-provided) message
properties. This includes the return address (line 11 in the example below) and
system-provided correlation identifiers for synchronous transports (line 13).

In our model, advanced message properties such as message expiration, that
requires that a message is only valid as long as a particular condition holds, can
be modeled using declarative message retention facilities. In the example below,
the require expression is used to indicate that only the last message in the
notifications queue should be retained (line 3).

3rd East European Workshop on Rule-Based Applications 6

1 (: only preserve last notification received − message expiration :)
2 create slicing property lastNotification
3 queue notifications require count(history ()) eq 1;
4
5 (: synchronous gateway queue − request reply :)
6 create queue incomingMessages kind incoming interface ”http” port ”80”
7 response outgoingMessages mode persistent ;
8
9 create rule sendReply for incomingMessages

10 (: retrieving sender address using property − return address :)
11 let $sender := property(”comm:From”) (:not used any further :)
12 (: retrieving system−managed correlation identif ier :)
13 let $correlationID := property(”comm:CorrelationID”) (:not used any further :)
14 (: invoking an external service as a reply − command message:)
15 let $result := <rpc :updateQuantity xmlns: rpc=”http://www.example .com”>
16 <rpc :Arguments count=”2”>
17 <rpc :argument name=”itemID” type=”integer”>{//itemID/text()}</rpc :argument>
18 <rpc :argument name=”quantity” type=”float”>{//quantity/text()}</rpc :argument>
19 <rpc :Arguments>
20 </rpc :updateQuantity>
21 enqueue message $result into outgoingMessages;

3.3 Message Routing

Message routing patterns describe the various styles of message flow between
the components of an application. The most basic form of message routing is
to sequentially forward a message from one processing step to the next, thus
forming a processing chain. In our rule language, this pipes and filters pattern
corresponds to a message being forwarded from one queue to another, with
individual rules implementing the processing steps as in the example below.

Instead of simply forwarding messages, content-based routers can be used to
send messages to an appropriate processing step based on their payload. The
rule in lines 7-10 of the example below implements this pattern. It forwards all
order messages to the ordersQueue and enqueues all other messages to another
queue for further analysis.

Other basic message routing patterns include message filters, which filter out
unnecessary messages from a message stream, or splitters, which split a message
into individual parts and forward them to separate consumers (line 14ff in the
example below). Aggregators can be used to combine multiple messages to a
single, large one. Line 17 in the example below implements a message aggregator
that combines several messages from the message history into a single message.
Here, the implementation of the aggregator pattern is greatly simplified by the
sequence-oriented data model of XQuery underlying our application rules.

In contrast to the basic message routing patterns discussed above, the process

manager is a general-purpose pattern that represents complex message routing
operations. Process managers are e.g. required when multiple messages should
be created in a particular sequence or when performing other, context-dependent
operations that cannot be expressed with basic patterns. Line 20ff of the example
below shows the implementation of a simple process manager that routes three
messages to destination queues in a particular sequence.

1 (: add timestamp and forward to next processing step − pipes and f i l t e r s :)
2 create rule addTimeStamp for incomingMessages
3 let $result := <result><timestamp>{fn : current−dateTime()}</timestamp>{.}</result>

3rd East European Workshop on Rule-Based Applications 7

4 return enqueue message $result into nextStep;
5
6 (: forward message to appropriate rule − content based router :)
7 create rule contentBasedRouter for nextStep
8 i f (//orderMessage)
9 then enqueue message . into ordersQueue

10 else enqueue message . into anotherQueue ;
11
12 create rule simplePM for anotherQueue
13 (: split input message into two parts − splitter :)
14 let $firstMessage := //part1
15 let $secondMessage := //part2
16 (: combine al l order messages into a large one − aggregator :)
17 let $thirdMessage := <orders>{s l ice (//customerID, ”ordersByCustomerID)}</orders>
18 return (
19 (: generating sequence of messages − simple process manager :)
20 enqueue message $firstMessage into someQueue,
21 enqueue message $secondMessage into anotherQueue ,
22 enqueue message $thirdMessage into anotherQueue);

3.4 Message Transformation

Message transformation patterns describe how both structure and content of
messages may be modified and adapted by EAI applications. This includes mes-

sage translators that transcode messages from one format to another, for example
by converting a list of comma-separated values into XML format. As XML is
the only data format in our rule language, message translators are limited to
performing schema-to-schema transformations (i.e. translating from one XML
schema to another).

Normalizers are used to unify several different incoming messages to a canoni-
cal format. In our model, they can be easily implemented by defining correspond-
ing message translators and incoming gateway queues, that convert the incoming
messages into the expected schema and enqueue them to the same queue for fur-
ther processing. The purpose of an envelope wrapper is to wrap a message into
a metadata-carrying envelope. In the example below (line 14ff), we implement a
simple envelope wrapper that encloses a message into a SOAP envelope. Content

enrichers are used to imbue a message with additional information that cannot
be found in the input message. In our example, the slice history access function
is used to retrieve the address for a customer from the master data stored in the
queues of the system (line 7). In contrast to the content enricher, the content

filter is used to strip unnecessary content from a message. In the example rule,
this is done by using a path expression that excludes anything but the item

elements from the initial message. By combining the content enricher and filter
patterns with message history access functions, the claim check pattern, which
temporarily removes (e.g. sensitive) message parts, can be easily implemented.

1 create rule prepareMessage for prepareOutgoing
2 let $initialMessage := .
3 (: translate customer info − message translator :)
4 let $message := <result>
5 <custName>{concat(//customer/fName/text() , //customer/lName/text())}</custName>
6 <!−− enrich with master data − content enricher / claim check −−>

7 <address>{s l ice (//customerID/text() , ”customersByID”)/address/∗}</address>
8 <!−− f i l t e r out unnecessary information − content f i l ter−−>

9 <orderedItems>{$initialMessage//item}</orderedItems>
10 </result>

3rd East European Workshop on Rule-Based Applications 8

11 (:add SOAP envelope − envelope wrapper:)
12 let $env := <soap:Envelope xmlns:soap=”http://schemas .xmlsoap. org/soap/envelope/”>
13 <soap:Header/>
14 <soap:Body>{$message}</soap:Body>
15 </soap:Envelope>
16 return enqueue message $env into outgoingMessages;

3.5 Messaging Channels

Messaging channel patterns describe various message transports that can be used
to disseminate the messages in an EAI application. In our model, these various
message channels are provided by corresponding gateway queues. This includes
point-to-point messaging, which is implemented by using synchronous or asyn-
chronous gateway queues or publish-subscribe channels which are implemented
by gateway queues and message history access to retrieve the list of subscribers
(as in lines 12-15 of the example below). Similar to the publish-subscribe chan-

nels, a message bus can be implemented with a combination of gateway queues
and history access to identify the systems connected to the message bus.

In our model, special purpose channels such as the dead-letter channel con-
taining messages that could not be sent to remote systems or the invalid mes-

sage channel for messages that could not be handled (e.g. due to an unexpected
schema) are reflected by corresponding queues. Whenever message processing or
validation fails, a corresponding error notification message is sent to these error

queues, allowing developers to react to the error by means of compensating appli-
cation rules. In the example below (line 8), such an error queue is assigned to an
application rule. Thus, all messaging errors that are encountered when processing
this rule will be reflected by error notifications sent to the transportFailures

error queue, where they can be handled by corresponding rules.
Finally, guaranteed message delivery (as required for the guaranteed delivery

channel pattern) that persists messages to guarantee delivery even in case of
system failures, can be provided by requesting a persistent queue mode (as in
line 1 of the example below).

1 create queue sendToSubscribers kind basic mode persistent ;
2
3 (: guaranteed delivery using persistent queue mode:)
4 create queue outgoingMessages kind outgoing interface ”smtp” port ”25”
5 mode persistent ;
6
7 (:errorqueue − dead−letter channel and invalid message channel :)
8 create rule pubsub for sendToSubscribers errorqueue transportFailures
9 let $payload := //payload

10 let $topic := //topic
11 let $subscribers := s l ice ($topic , ”subscribersByTopic”)
12 (: forward message to al l subscribers − pub/sub :)
13 for $address in $subscribers/address/email
14 return enqueue message $payload into outgoingMessages
15 with comm:To value $address (: set SMTP parameters :)
16 with comm:Subject value ”Subscription notification”;

4 Conclusion

We have discussed a novel programming model that allows to implement the
business logic of complex, distributed applications using message queues and
declarative application rules.

3rd East European Workshop on Rule-Based Applications 9

Using the typical, complex application patterns from Enterprise Application
Integration (EAI) as an example domain, we have illustrated the practical feasi-
bility of using exclusively a rule-based language for the development of complex
messaging applications. We have demonstrated how various patterns can be im-
plemented in our rule language. Surprisingly, even complex messaging patterns
that require sophisticated development in today’s EAI solutions [12] could often
be implemented with only a few lines of code.

The focus of this paper was to systematically evaluate our rule-based ap-
proach in the light of typical patterns occurring in the context of EAI applica-
tions. Apart from investigating these patterns in isolation, we have also verified
the applicability of our language to implement complete, distributed applications
from various domains, including several distributed and workflow applications.
These applications and the Demaq rule execution engine are freely available at
[9] under an open-source license.

References

1. Serge Abiteboul, Bernd Amann, Sophie Cluet, Adi Eyal, Laurent Mignet, and Tova
Milo. Active views for electronic commerce. In VLDB, pages 138–149, 1999.

2. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:

Concepts, Architectures and Applictions. Springer-Verlag, 2004.
3. Scott Boag, Don Chamberlin, Mary F. Fernández, et al. XQuery 1.0: An XML

query language. Technical report, W3C, January 2007.
4. Alexander Böhm and Carl-Christian Kanne. Messaging rules as a program-

ming model for enterprise application integration. Technical report, University of
Mannheim, 2009. http://db.informatik.uni-mannheim.de/publications/TR-2009-
006.pdf.

5. Alexander Böhm and Carl-Christian Kanne. Processes are data: A programming
model for distributed applications. In Web Information Systems Engineering, 2009.

6. Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Pushing reactive services
to XML repositories using active rules. Computer Networks, 39(5):645–660, 2002.

7. François Bry and Paula-Lavinia Patranjan. Reactivity on the web: Paradigms and
applications of the language XChange. In SAC, pages 1645–1649, 2005.

8. Don Chamberlin, Daniela Florescu, Jim Melton, Jonathan Robie, and Jérôme
Siméon. XQuery Update Facility 1.0. Technical report, W3C, August 2007.

9. Demaq project homepage, June 2009. http://www.demaq.net/.
10. Jens Dietrich. A rule-based system for ecommerce applications. In KES, 2004.
11. Craig B. Foch. Oracle streams advanced queuing user’s guide and reference, 10g

release 2 (10.2), 2005.
12. Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. Pearson Edu-

cation, Inc., 2004.
13. Norman W. Paton and Oscar Dı́az. Active database systems. ACM Computing

Surveys, 31(1):63–103, 1999.
14. Mark Proctor. Relational declarative programming with JBoss Drools. In

SYNASC, page 5, 2007.
15. Michael Stonebraker. Too much middleware. SIGMOD Record, 31(1):97–106, 2002.
16. Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A note on

distributed computing. In Mobile Object Systems, pages 49–64, 1996.

3rd East European Workshop on Rule-Based Applications 10

The Declarative Approach for Anomaly
Detection in Production Rule Bases with

Semantic Constraints

Sergey Lukichev

Institute of Informatics, Brandenburg University of Technology at Cottbus
slukichev@canto.de

Abstract. In this paper we present a rule-based (declarative) approach
for rule verification. We focus on anomalies, which may appear in rule
bases, containing production rules and semantic constraints. The pre-
sented approach defines special rules, called verifier rules, which look for
anomalies in business rules. The approach is flexible and easy to main-
tain in the sense that verifier rules can easily be added or modified if
new anomalies are found and have to be detected. Examples of verifier
rules in Drools syntax are given at the end of the paper.
Keywords: Verification, integrity constraints, Jena, Drools.

1 Introduction

It is widely recognized that the process of verification is an important part of
quality assurance for rule systems. The common definition of the term “verifica-
tion” is given in [10]: verification of rules includes checking the knowledge base
for logical anomalies such as redundant rules, contradictory rules, and missing
rules. Such verification is called anomaly detection. It is important to note that
mentioned anomalies are not necessarily errors, but rather potential errors, also
known as “attention points ... that might give hints for incorrect rules or wrongly
expressed knowledge”[13]. Anomalies may appear in rule bases, for instance, as
a result of rules refactoring or due to various communication problems when
the knowledge is incorrectly transferred from the business expert to the knowl-
edge engineer. In this paper we focus on two cases of the ambivalence anomaly
[10]: The ambivalent rule pair anomaly and the semantic constraint violation by
condition and postcondition.

We choose these anomalies because they may appear in rule bases, which
contain semantic constraints: special rules, which define an inconsistent state
of the knowledge. The main novelty of the work is the use of the declarative
approach for anomaly detection. The core of the presented approach are verifier
rules, which we introduce in Section 2.2. These verifier rules detect anomalies in
production rules, expressed in terms of the production rule metamodel, which
is defined in Section 2.3. In Section 3 we define anomalies in production rule
bases by means of the model theory. We provide verifier rules, which detect
previously defined anomalies in Section 4. In Section 5 we discuss soundness and

3rd East European Workshop on Rule-Based Applications 11

completeness of the presented approach. Section 6 references related works on
rule verification and concludes the paper.

2 Production Rules and Verifier Rules

Before we start introducing the declarative rule verification approach, we explain
what is a knowledge base with production rules and semantic constraints. We
define a production rule metamodel (Section 2.3), which is used later in Section
4 on verification as the vocabulary for verifier rules. We introduce the concept
of verifier rules and their advantages in Section 2.2.

2.1 Production Rule

According to the OMG Production Rules Representation [3], a production rule
is “a statement of programming logic that specifies the execution of one or more
actions in the case that its conditions are satisfied” of the form:

if [condition] then [action-list]

We define the condition part of the production rule as a literal conjunction
(a conjunction of atoms or negation of atoms) and denote it as cond(r), here r
is a production rule. The rule action part defines an ordered list of actions. The
OMG PRR [3] defines three state changing actions: Update action, assert action,
and retract action. In our approach we consider only two types of actions: Assert
and retract. An update action is implemented by a sequence of retract action
(remove old facts) and assert action (assert new facts). This consideration with
two types of action is common for some rule languages, for instance, Jena 2. The
action part of the production rule is also called a postcondition and denoted as
pcond(r) where r is a production rule. In this paper a postcondition is a literal
conjunction, where a positive atom means the assert action and a negative atom
means the retract action.

Definition 1 (Knowledge Base). A production rule base R together with a
vocabulary V of R, semantic constraints C, and a fact set X forms a knowledge
base KB = 〈X, V,C,R〉.

The fact set X consists of a set of ground facts (variable-free atoms). It is
important to note that in our verification approach anomalies are detected by
examining the syntax of a rule base and the content of the fact set is not taken
into account.

2.2 Verifier Rules for Anomaly Detection

We distinguish between business rules, which have to be verified, and verifier
rules, which are used for business rules verification.

A verifier rule is a production rule, which is executed when a business rule
base contains an anomaly and generates a report about it.

3rd East European Workshop on Rule-Based Applications 12

A rule-based verification approach employs verifier rules for detecting anoma-
lies in business rules.

The declarative verification approach has a number of advantages such as: i).
Simplicity of implementation. Anomalies are described by means of special rules,
called verifier rules, which are executed by a rule engine. It means that rule-based
verification is about writing verifier rules, which is easier than developing and
implementing algorithms; ii). Easiness of maintenance. When new anomalies
are discovered, new verifier rules can be added easily in order to detect them.
No additional anomaly-detection programming and algorithm development is
required; iii). Support for various rule languages. Verifier rules are expressed in
terms of a generic rule metamodel, which, if general and flexible enough, can be
used for various rule languages.

An example of a verifier rule, expressed informally is ”If the body of a rule
contains a conjunction of an atom and its negation then this rule contains un-
satisfied condition anomaly”. In contrast to business rules, which are based on
terms from a business vocabulary, the vocabulary of verifier rules is based on
the rule metamodel. In our example terms “atom”, “negation”, and “rule body”
are from the rule metamodel and not from a business domain.

We express verifier rules using Drools syntax and execute them in the Drools
rule engine, however, any other rule language and an engine can be used.

We assume that business rules are verified at the design/development stage
[6] and verifier rules are not placed into the system with business rules.

2.3 Production Rule Metamodel

Business rules can be formalized as production rules. Verifier rules, which we
present in this paper, are used to find anomalies in production rule bases. In
this work we consider a sample metamodel for production rules(Figure 1), which
describes the structure of a production rule base with semantic constraints. The
metamodel is very close to the metamodel of Jena rules [2], where a rule condition
is a conjunction of either triple atoms or built-in atoms. Semantic constraints in
Jena can be expressed by means of OWL DL. Therefore, verifier rules, expressed
in terms of the metamodel, depicted in Figure 1, can verify Jena rules. Produc-
tion rule conditions have the expressive power of RDF: to represent the binary
existential-conjunctive fragment of predicate calculus.

A rule set consists of rules. A rule has a name and a unique identifier. It has
a list of atoms, interpreted as conjunction, as a head and a list of atoms as a
body. An abstract class Atom has an identifier and refers to the rule it belongs
to.

We distinguish two types of atoms: The BuiltinAtom, which represents vari-
ous built-ins and TripleAtom. The TripleAtom class has the attribute isNegated
and refers to the abstract class Term, which represents subject, predicate and
object of the triple atom. Class TripleAtom can represent Jena triples. We in-
terpret a negation as an absence of a fact in the working memory, which is the
common interpretation of negation in production rule systems, for instance, in
Jena and JBoss Rules.

3rd East European Workshop on Rule-Based Applications 13

RuleSet name

id

Rule

1 *

id

Atom

1

body*

1
head

*

BuiltinAtom

id

Term

*
object*isNegated

TripleAtom

*

subject *

ArithmeticAtom

arg1

arg2

ComparisonAtom

*
predicate

*

id

SemanticConstraint

1

*

id

ConjunctiveClause

*

1

Fig. 1. The generic rule metamodel

A BuiltinAtom is either an ArithemticAtom, which represents various built-
ins for arithmetic functions, or a ComparisonAtom, which represents comparison
built-ins such as, for instance, greaterThan or lessThan. A SemanticConstraint is
a list of ConjunctiveClause’s with meaning of disjunction of clauses.

The idea of such structure is to represent constraints in the disjunctive nor-
mal form. It allows relatively simple verifier rules for anomaly detection. The
practical goal is to verify business rules, expressed in Jena against semantic
constraints, expressed in some Description Logic language, for instance, OWL
DL. In this paper we consider semantic constraints in the disjunctive normal
form and do not explain in details how OWL DL axioms are transformed into
logical formulae in DNF. Issues of translating from Description Logic into pred-
icate logic are described in various books and articles ([4], [14]). For instance,
in [4] the expressive power of DL is compared against the expressive power of
predicate calculus. In particular, it describes the translation from descriptions
to predicate calculus, which introduces new variables whenever a new quantifier
appears. Here we only give an example of an OWL axiom and corresponding
formula in DNF. Let us consider a constraint: Every eligible driver must have a
training certificate. It is formalized by means of the following OWL DL axiom:

Class(EligibleDriver, restriction(hasCert, someValuesFrom(TrainingCert)))

This DL axiom corresponds to the following predicate logic formula:

∀x(EligibleDriver(x) → ∃y|hasCert(x, y) ∧ TrainingCert(y))

This implication is equivalent to the following formula in the disjunctive normal
form:

∀x∃y(¬EligibleDriver(x) ∨ ¬hasCert(x, y) ∨ ¬TrainingCert(y))

3rd East European Workshop on Rule-Based Applications 14

A translation of an OWL axiom to the disjunctive normal form is always possible.
Existentially quantified variables in the resulting formula in DNF are replaced
using skolemization: an existentially quantified variable x is replaced by a func-
tion, which takes as parameters all universally quantified variables that precedes
x in the formula’s quantified variables list.

3 Ambivalence Anomaly

In this section we define the ambivalence anomaly [10], using the model theory.
Verifier rules for ambivalence detection are more complex in the sense that they
have more atoms in conditions than verifier rules for anomalies, where semantic
constraints are not involved (for instance, subsumption, contradictions).

3.1 Semantic Constraint Violation

First, we define a violation of a semantic constraint by a general logical formula.
In the following |= denotes the satisfaction relation. IV denotes an interpretation
over some valuation.

Definition 2 (Semantic constraint violation by a logical formula). A
formula F violates semantic constraint c if the following holds for all interpre-
tations I:

IV |=t F then IV |=f c

In words, if the formula holds then the constraint does not hold. As an
example, let us consider a production rule PR and a constraint Constr:

PR: Eligible(?driver) ∧¬hasTrainingCertification(?driver, ’true’)⇒High-
RiskDriver(?driver)
Constr: Eligible(?driver) ∧ hasTrainingCertification(?driver, ’true’)

It is obvious that if the condition of PR holds, then Constr does not hold. The
business problem, caused by this anomaly is that the rule with such condition
is meaningless since existence of facts, on which it holds, is prohibited by the
constraint. Or, in other words, the condition of such rule is never satisfied. It is
important to note, that in the example above such variable as ?driver is local
at the rule level. The condition of the rule violates the constraint only when the
variable is unified with the same value in both the rule and the constraint.

Ambivalent Rule Pair. A rule pair is ambivalent if the condition of one rule
subsumes the condition of the other and the conjunction of their postconditions
violates the semantic constraint.

Definition 3. A rule pair r1, r2 ∈ R is ambivalent if cond(r1) subsumes cond(r2)
and there is a semantic constraint c ∈ C such that the conjunction of postcondi-
tions pcond(r1) ∧ pcond(r2) violates c.

3rd East European Workshop on Rule-Based Applications 15

The more general case of this anomaly is when conditions of two rules have
a non empty intersection, which may lead to firing of both rules for some state.

Let us consider production rules PR1 and PR2 and the semantic constraint
Constr1:

PR1 age(?driver, ?x) ∧ ?x> 26 ⇒NormalDriver(?driver)
PR2 age(?driver, ?x) ∧ ?x> 70 ⇒SeniorDriver(?driver)
Constr1 ¬(SeniorDriver(?driver) ∧ NormalDriver(?driver))

The condition of PR1 subsumes the condition of PR2, however, their right-
hand sides are different. It means that if these rules are executed, the fact base
will contain two facts: “The driver is a normal driver” and “the driver is a senior
driver”, which is prohibited by the semantic constraint.

Semantic Constraint Violation by Condition and Postcondition A pro-
duction rule has a semantic constraint violation by condition and postcondition
if the state of the fact base after execution of the rule violates a semantic con-
straint.

Definition 4. A production rule r has a semantic constraint violation by con-
dition and postcondition if exists c ∈ C|cond(r) ∧ pcond(r) violates c.

Let us consider the production rule PR3 and the constraint Constr2:

PR3 Provisional(?car) ∧ age(?car, ?x) ∧ ?x> 3 ⇒NotEligible(?car)
Constr2 ¬(NotEligible(?car) ∧ Provisional(?car))

If PR3 is executed then the fact base contains two facts: “a car is provisional”
and “a car is not eligible”, which is prohibited by the semantic constraint.

4 Verifier Rules for Ambivalence Detection

In this section we define verifier rules in two ways: We give a semi-formal defini-
tion of a verifier rule in English, and then express the rule using Drools syntax.
Drools syntax ([1]) is technical, but readers, who are familiar with Java pro-
gramming language and predicate logic can easily understand it. In addition, we
give explanations and comment every verifier rule, expressed in Drools syntax.
We remind, that semantic constraints are in DNF, i.e. consist of disjunction of
conjunctive clauses.

Verifier Rule 1 (Ambivalent rule pair). A rule pair r1, r2 is ambivalent if
there is a semantic constraint c such that:

1. cond(r1) subsumes cond(r2);
2. Every conjunctive clause of c contains an atom, which is oppositely negated

to some atom a either from pcond(r1) or from pcond(r2);
3. In pcond(r1) exists an atom, which is in c;
4. In pcond(r2) exists an atom, which is in c.

3rd East European Workshop on Rule-Based Applications 16

Condition 1 is important in order to make sure that rules can be executed on
the same facts (See [10] for definition of subsumption). Condition 2 in this rule
checks whether constraint c is violated by either atoms from the head of rule 1
or from the head of rule 1. However, this does not guaranty that the conjunction
of rule heads violates c, since it is possible that the constraint is violated by the
head of just one rule. For instance, if the head of the rule is A∧B and constraint
is ¬A ∧ ¬B then the constraint is violated no matter of the head of the second
rule. Additional conditions 3 and 4 guarantee that each rule head contains at
least one oppositely negated atom from c and, therefore, a conjunction of rule
heads violates the constraint.

rule "Ambivalent rule pair"
when

$sc :SemanticConstraint()

$r1 :Rule()
$r2 :Rule(id != r1.id)

Check that the body of r1 subsumes the body of r2
forall(

$atom: Atom(ruleId == $r1.id, body == true)
DuplicateAtom(

left == $atom,
right memberOf $r2.body

)
)

Check that every conjunctive clause is violated
by conjunction of pcond(r1) and pcond(r2)
forall(

$clause:ConjunctiveClause(constrId == $sc.id)

exists(
$triple:TripleAtom(clauseId == $clause.id)
or(

OppositelyNegatedAtoms(
left == $triple,
right memberOf $r1.head

)

OppositelyNegatedAtoms(
left == $triple,
right memberOf $r2.head

)
)

)
)

At least one atom from the head of r1 and r2
must be in some conjunctive clause of sc
exists(

$a1:Atom(ruleId == $r1.id, body == false)

OppositelyNegatedAtoms(
left memberOf $sc,
right == $a1

)
)
exists(

$a1:Atom(ruleId == $r2.id, body == false)

OppositelyNegatedAtoms(
left memberOf $sc,
right == $a1

)
)

3rd East European Workshop on Rule-Based Applications 17

then insert(new AmbivalentRulePair($r1, $r2, $sc));
end

We have to explain some predicates, used in the rule above. DuplicateAtom
checks for atoms with the same subject, predicate and object. Technically, such
atoms can be derived by additional rules of the verifier rule base before the
verifier rule is executed. We call such rules “supplementary rules” since they do
not detect anomalies, but derive intermediate facts, needed by verifier rules. The
predicate OppositelyNegatedAtoms checks for conjunctions of an atom and its
negation (for instance, p(s, o) ∧ ¬p(s, o)). The subsumption check in the rule
above works for triple atoms and for built-ins it is different.

Verifier Rule 2 (Semantic constraint violation by condition and post-
condition). A rule r violates semantic constraint c by condition and postcon-
dition if

1. Each atom of every conjunctive clause of c has an oppositely negated atom
either in cond(r) or in pcond(r);

2. At least one atom of pcond(r) is in c;
3. At least one atom of cond(r) is in c.

First condition checks whether condition or postcondition of the rule violates
every conjunctive clause of the constraint, and therefore, violates the constraint.
Conditions 2 and 3 check that the conjunction of condition and postcondition
violates the constraint. This verifier rule in Drools syntax:

rule "semantic constraint violation by condition and postcondition"
when

$sc :SemanticConstraint()

$r :Rule()

forall(
$clause:ConjunctiveClause(constrId == $sc.id)
exists(

$triple:TripleAtom(clauseId == $clause.id)
or(

OppositelyNegatedAtoms(
left == $triple,
right memberOf $r.body

)

OppositelyNegatedAtoms(
left == $triple,
right memberOf $r.head

)
)

)
)

At least one atom from the the body of r and the head of r2
must be in some conjunctive clause of sc
exists(

$a:Atom(ruleId == $r.id, body == false)

OppositelyNegatedAtoms(
left memberOf $sc,
right == $a

)
)

3rd East European Workshop on Rule-Based Applications 18

exists(
$a1:Atom(ruleId == $r.id, body == true)

OppositelyNegatedAtoms(
left memberOf $sc,
right == $a

)
)

then insert(new SemcCVByCondPcond($r, $sc));
end

5 Soundness and Completeness

The discussion concerning soundness and completeness of the proposed verifica-
tion solution is about relations between model-theoretic definitions of anomalies
(Section 3) and verifier rules, which detect defined anomalies (Section 4). In-
formally, a solution is sound if it solves the problem for which it is developed.
In our case, the solution is a set of verifier rules for the detection of different
anomalies. The converse of the soundness property is the completeness property.
A solution is complete if its set of verifier rules detects all possible anomalies.

As an example, let us check the soundness of the Verifier Rule 1. Let A(r1, r2, c)
be an anomaly, detected by Verifier Rule 1 and r1, r2 are rules and c is the se-
mantic constraint. We say that this verifier rule is sound if the following two
conditions hold:

1. r1 subsumes r2;
2. pcond(r1) ∧ pcond(r2) violates c (as it is defined in Definition 3).

The first condition is based on the definition of rule subsumption. Here we as-
sume that the subsumption of rules is sound. The second condition follows from
conditions 2,3,4 of Verifier Rule 1 since these conditions check that pcond(r1) ∧
pcond(r2) violates every conjunctive clause of c and, therefore, violates c.

The presented verification approach does not guarantee completeness: As
it is stated in [8] and further supported in the tutorial and survey on rule verifi-
cation by O’Keefe [9], “verification, based upon anomaly detection is a heuristic
approach, rather than deterministic, for two reasons. First, detected anomalies
may not be errors, and errors may exist that are not related to known anomalies.
Second, some of the methods for detecting anomalies are themselves heuristic,
and thus do not guarantee detection of all identifiable anomalies”.

6 Related Works and Conclusions

In this paper we have presented the rule-based approach for production rule ver-
ification. The approach is based on verifier rules, which, been expressed in terms
of the rule metamodel, analyze the business rule base and derive certain facts if
anomalies are detected. We have also demonstrated two verifier rules, which de-
tect two particular types of the ambivalence anomaly: The ambivalent rule pairs
anomaly and the semantic constraint violation by condition and postcondition.

3rd East European Workshop on Rule-Based Applications 19

There are a lot of works on rule verification, for instance, [5], [11] and others.
However, the most related work is the Drools verifier from JBoss [12]. This ver-
ifier employs similar declarative approach for anomaly detection. It uses Drools
syntax for expressing both verifier rules and production rules. The main dif-
ference with the presented approach is that JBoss verifier does not check for
anomalies, which include semantic constraints. This is mainly because Drools
does not support constraints yet.

The presented verification approach is implemented in the Jena Rule Verifier
[7]. The verifier already checks for a number of anomalies and the upcoming
further work is towards extensions of its functionality for detection of various
anomalies, which include semantic constraints.

References

1. Business Rules Management System Drools. Project homepage.
http://www.jboss.org/drools.

2. Jena - A Semantic Web Framework for Java. Project homepage.
http://jena.sourceforge.net.

3. Production Rule Representation (PRR). OMG Adopted Specification.
http://www.omg.org/spec/PRR/1.0/.

4. Alex Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82:353–367, 1996.

5. G. Castore. Validation and verification for knowledge based control systems. In
Proceedings of the First Annual Workshop on Space Operations, Automation and
Robotics, NASA,, pages 197–202, 1987.

6. Antoni Ligeza. Logical Foundations for Rule-Based Systems (Studies in Computa-
tional Intelligence) (Studies in Computational Intelligence). Springer-Verlag New
York, Inc., 2006.

7. Sergey Lukichev. The jena rule verifier project, 2009.
https://sourceforge.net/projects/jenaruleverifie.

8. L. A. Miller. Dynamic testing of knowledge bases using the heuristic testing ap-
proach. Expert Systems with Applications, 1(3):249–269, 1990.

9. Robert M. O’Keefe and Daniel E. O’Leary. Expert system verification and valida-
tion: a survey and tutorial. Artificial Intelligence Review, 7(1):3–42, 1993.

10. A. D. Preece. Foundation and application of knowledge base verification. Interna-
tional Journal of Intelligent Systems, 9(8):683–701, 1994.

11. A. D. Preece, R. Shinghal, and A. Bakarekh. Verifying expert systems: a logical
framework and a practical tool. Exp. Stst. Appl., 5:421–436, 1992.

12. Toni Rikkola. Rule analytics module, 2008.
http://www.jboss.org/community/docs/DOC-11890.

13. Silvie Spreewenberg. Using verification and validation techniques for high-quality
business rules. Business Rules Journal, 4(2), 2003.

14. Pascal Hitzler Rudi Studer and York Sure. Description logic programs: A practical
choice for the modelling of ontologies. In 1st WS on Formal Ontologies meet
Industry, 2005.

3rd East European Workshop on Rule-Based Applications 20

HeKatE Rule Runtime and Design Framework?

Grzegorz J. Nalepa, Antoni Lig¦za,
Krzysztof Kaczor, Weronika T. Furma«ska

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

{gjn,ligeza,kk,wtf}@agh.edu.pl

Abstract. The HeKatE Project aims at providing a complete hierar-
chical design and implementation framework for rules. Principal ideas
of the project include an integrated hierarchical design process covering
stages from conceptual, through logical to physical design. These stages
are supported by speci�c knowledge representation methods: ARD+,
XTT2, and HMR. Practical design and implementation support using
these methods is provided by the HeKatE design environment called
HaDEs. A complete custom rule runtime environment HeaRT is pro-
vided to run XTT2 rule bases. The engine o�ers a number of rule-base
quality analysis plugins.

1 Introduction

Rule-based systems [1] constitute one of the most powerful and most popu-
lar class of intelligent systems. They o�er a relatively easy way of knowledge
encoding and interpretation. Formalization of knowledge within a rule-based
system can be based on mathematical logic or performed on the basis of engi-
neering intuition. Practical design methodologies for intelligent systems remain
a �eld of active development. Developing such a methodology requires an in-
tegration of accurate knowledge representation and processing methods [2], as
well as practical tools supporting them. Some of the important features of such
approaches are: scalable visual design, automatic code generation, support for
existing programming frameworks. At the same time quality issues, as well as a
formalized description of the designed systems should be considered.

In this paper a new rule runtime and design framework is presented. The
HeKatE project (see hekate.ia.agh.edu.pl) aims at providing an integrated
methodology for the design, implementation, and analysis of rule-based sys-
tems [1,3]. An important goal of the project is to allow for an easy integration of
knowledge and software engineering methods, thus providing a Hybrid Knowl-

edge Engineering methodology. The project delivers new knowledge representa-
tion methods and practical tools supporting the design process.

? The paper is supported by the HeKatE Project funded from 2007�2009 resources for
science as a research project.

3rd East European Workshop on Rule-Based Applications 21

The main paradigm for rule representation, namely the eXtended Tabular
Trees (XTT) [4], ensures high density and transparency of visual knowledge rep-
resentation. Contrary to traditional, �at rule-based systems, the XTT approach
is focused on groups of similar rules rather than single rules. Such groups form
decision tables which are connected into a network for inference.

A top-down design methodology based on successive re�nement of the project
is introduced. It starts with development of an Attribute Relationship Diagram
(ARD) which describes relationships among process variables. Based on the ARD
model, a scheme of particular XTT tables and links between them are generated.
The tables are �lled with expert-provided de�nitions of constraints over the
values of attributes; they are in fact the rule preconditions. The code for rules
representation is generated and interpreted with provided inference engine. A set
of tools supporting the design and development stages is described.

This paper provides an overview of the project, its objectives and tools in
Sec. 2. The rule formulation with XTT is shortly described in Sec. 3. Then
in Sec. 4 HeKatE design toolchain called HaDEs is introduced. The HeaRT
inference engine described in Sec. 5. Then a short comparison to selected existing
solutions is given in Sec. 6. Concluding remarks are given in the �nal section.

2 HeKatE Project Overview

The main principles of the HeKatE project are based on a critical analysis of
the state-of-the art of the rule-based systems design (see [5]). They are:

� Formal Language for Knowledge Representation. It should have a precise
de�nition of syntax, properties and inference rules. This is crucial for deter-
mining its expressive power, and solving formal analysis issues.

� Internal Knowledge Base Structure. Rules working within a speci�c context,
are grouped together and form the extended decision tables. These tables
are linked together forming a structure which encodes the �ow of inference.

� Systematic Hierarchical Design Procedure. A complete, well-founded design
process that covers the main phases of the system lifecycle, from the initial
conceptual design, through the logical formulation, all the way to the physical
implementation, is proposed. Veri�cation of the system model w.r.t. critical
formal properties, such as determinism and completeness is provided.

In the HeKatE approach the control logic is expressed using forward-chaining
decision rules. They form an intelligent rule-based controller or simply a business
logic core. The controller logic is decomposed into multiple modules represented
by attributive decision tables. The emphasis of the methodology is its possible
application to a wide range of intelligent controllers. In this context two main
areas have been identi�ed in the project: control systems, in the �eld of intelligent
control, and business rules [6] and in the �eld of software engineering.

HeKatE introduces a formalized language for rule representation [5]. Instead
of simple propositional formulas, the language uses expressions in the so-called

3rd East European Workshop on Rule-Based Applications 22

attributive logic [3]. This calculus has stronger expressiveness than the proposi-
tional logic, while providing tractable inference procedures for extended decision
tables [7]. The current version of the rule language is called XTT2 [8]. The cur-
rent version of the logic, adopted for the XTT2 language, is called ALSV(FD)
(Attributive Logic with Set Values over Finite Domains).

HeKatE also provides a complete hierarchical design process for the creation
of the XTT-based rules.

� The main phase of the XTT rule design is called the logical design. This
phase is supported by a CASE tool called HQed.

� The logical rule design process may be supported by a preceding conceptual

design phase. In this phase the rule prototypes are built with the use of
ARD. The principal idea is to build a graph, modelling functional depen-
dencies between attributes on which the XTT rules are built. The version
used in HeKatE is called ARD+ as discussed in [9,10]. The ARD+ design is
supported by two visual tools, VARDA and HJed.

� The practical implementation on the XTT rule base is performed in the
physical design phase. In this stage the visual XTT model is transformed into
an algebraic presentation syntax called HMR. A custom inference engine,
HeaRT, runs the XTT model.

Let us now shortly describe the main aspects of the XTT rule formalization.

3 Main Aspects of the XTT Rule Language Formalization

The so-called ALSV(FD) attributive logic [3,5] has been introduced with prac-
tical applications for rule languages in mind. In fact, the primary aim of the
presented language is to extend the notational possibilities and expressive power
of the XTT-based tabular rule-based systems [8,5]. Some main concepts of the
logic are: attribute, atomic formulae, state representation and rule formulation.

After [3] it is assumed that an attribute Ai is a function (or partial function)
of the form Ai : O → 2Di . Here O is a set of objects and Di is the domain
of attribute Ai. As we consider dynamic systems, the values of attributes can
change over time (or state of the system). We consider both simple attributes
of the form Ai : T → Di (i.e. taking a single value at any instant of time) and
generalized ones of the form Ai : T → 2Di (i.e. taking a set of values at a time);
here T denotes the time domain of discourse.

The atomic formulae can have the following four forms: Ai = d, Ai = t,
Ai ∈ t, and Ai ⊆ t, where d ∈ D is an atomic value from the domain D of the
attribute and t ⊆ D, t = {d1, d2, . . . , dk}, is a (�nite) set of such values. The
semantics of Ai = d is straightforward � the attribute takes a single value. The
semantics of Ai = t is that the attribute takes all the values of t (see [5]).

An important extension in ALSV(FD) over previous versions of the logic [3]
consists in allowing for explicit speci�cation of one of the relational symbols
=,6=,∈, 6∈, ⊆, ⊇, ∼ and 6∼ with an argument in the table.

3rd East European Workshop on Rule-Based Applications 23

From the logical point of view the state is represented by the current values of
all attributes speci�ed within the contents of the knowledge-base, as a formula:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn) (1)

where Ai are the attributes and Si are their current values; note that Si = di

(di ∈ Di) for simple attributes and Si = Vi, (Vi ⊆ Di) for generalised ones,
where Di is the domain for attribute Ai, i = 1, 2, . . . , n.

Now, consider a set of n attributes A = {A1, A2, . . . , An}. Any XTT rule is
assumed to be of the form:

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . . (An ∝n Vn) −→ RHS

where ∝i is one of the admissible relational symbols in ALSV(FD), and RHS is
the right-hand side of the rule covering conclusions. In practise the conclusions
are restricted to assigning new attribute values, thus changing the system state.
State changes trigger external callbacks that allow for communication with the
environment. The values that are no longer valid are removed from the state.

Based on the ALSV(FD) logic the XTT rule language is provided [4,8,5]. The
language is focused not only on providing an extended syntax for single rules, but
also allows for an explicit structurization of the rule base. XTT introduces ex-
plicit inference control solutions, allowing for a �ne grained and more optimized
rule inference than in the classic Rete-like [11] solutions. The representation has
a compact and transparent visual representation suitable for visual editors.

Knowledge representation with XTT incorporates extended attributive table
format. Similar rules are grouped within separated tables, and the whole sys-
tem is split into such tables linked by arrows representing the control strategy.
Consider a set of m rules incorporating the same attributes A1, A2, . . . , An: the
preconditions can be grouped together and form a regular matrix, as in Table 1.

Table 1. A general scheme of an XTT table

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1

2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2

...
...

...
. . .

...
...

m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

In Table 1 the symbol ∝ij∈ {=, 6=,∈, 6∈} for simple attributes and ∝ij∈ {=
, 6=,⊆,⊇,∼, 6∼} for the generalized ones. In practical applications, however, the
most frequent relations are =, ∈, and ⊆, i.e. the current values of attributes are
restricted to belong to some speci�c subsets of the domain.

E�cient inference is assured thanks to �ring only rules necessary for achieving
the goal. It is achieved by selecting the desired output tables and identifying the

3rd East European Workshop on Rule-Based Applications 24

tables necessary to be �red �rst. The links representing the partial order assure
that when passing from a table to another one, the latter can be �red since the
former one prepares an appropriate context knowledge. Hence, only rules working
in the current context of inference are explored. The partial order between tables
allows to avoid examining rules which should be �red later. The details of the
complete inference solution for XTT are given in [5].

Let us now move to practical issues concerning both the design and the
implementation of XTT-based systems.

4 HaDEs Design Framework

The HeKatE design process is supported by a number of tools. They help
with the visual design and the automated implementation of rule-based systems
(see https://ai.ia.agh.edu.pl/wiki/hekate:hades). The complete frame-
work including the previously discussed methods and tools is depicted in Fig. 1.

HML

HMR

ARD+

XTT2

Implementation Process

Visual Design Logical Model Automated Implementation

HeaRT

HaThoR

jvm/C++

V1 V2 V3HJEd/Varda

MODEL

CONTROLLER

VIEWS

Drools

SWRL

RIF

Analysis

HQEd

Logical

D
e
s
ig

n
 P

ro
c
e
s
s

Human readable

Machine readable

XML serialization

Physical

Conceptual

Fig. 1. The complete design and runtime framework

The ARD+ design process is supported by the HJEd visual editor. It is a
cross-platform tool implemented in Java. Its main features include the ARD+
diagram creation with on-line design history available through the TPH diagram.
An example of a design capturing functional dependencies between system at-
tributes is shown in Fig. 2. Once created, the ARD+ model can be saved in
a XML-based HML (HeKatE Markup Language) �le. The �le can be then im-
ported by the HQEd design tools supporting the logical design.

VARDA is a prototype semivisual editor for the ARD+ diagrams imple-
mented in Prolog, with an on-line model visualization with Graphviz. The tool
also supports prototyping of the XTT model, where table headers including a de-

3rd East European Workshop on Rule-Based Applications 25

Fig. 2. ARD+ design in HJEd

fault inference structure are created, see Fig. 3. The ARD+ design is described
in Prolog, and the resulting model can be stored in HML.

HealthCare

Medication

[[creatinineLevel], [medication], [creatinineClearance], [age]] [[dose]]

[[diagnosis], [age], [allergic]] [[medication]]

[[weight], [creatinineLevel], [age]] [[creatinineClearance]]

Fig. 3. XTT model generation in VARDA

HQEd provides support for the logical design with XTT, see Fig. 4. It is able
to import a HML �le with the ARD+ model and generate the XTT prototype.
It is also possible to import the prototype generated by VARDA. HQEd allows
to edit the XTT structure with on-line support for syntax checking on the table
level. Attribute values entered are checked against domains and some possible
anomalies are eliminated.

The editor is integrated with a custom inference engine for XTT2 called
HeaRT. The role of the engine is twofold: run the rule logic designed with the

3rd East European Workshop on Rule-Based Applications 26

use of the editor, as well as provide on-line formal analysis of the rulebase. The
communication uses a custom TCP-based protocol.

Fig. 4. XTT model edition in HQEd with anomalies detected

HaThoR is the HeKatE rule translation framework. Its goal is to provide
rule import and export modules for other languages including RDF and OWL
for ARD and RIF and SWRL (possibly R2ML) for XTT. It is mainly imple-
mented in XSLT with some extra plugins integrated with HeaRT implemented
in Prolog. An experimental module allows to translate visual XTT representa-
tion to a dedicated UML representation using an XMI-based serialization.

5 HeaRT Rule Runtime

HeKatE RunTime (HeaRT) is a dedicated inference engine for the XTT2 rule
bases, (see https://ai.ia.agh.edu.pl/wiki/hekate:heart). It is implemented
in Prolog in order to directly interpret the HMR representation which is gener-
ated by HQEd. HMR (HeKatE Meta Representation) is a textual representation
of the XTT2 logic designed by HQEd. It is a human readable form, as opposed
to the machine readable HML format. HeaRT allows to: store and export models
in HMR �les, and verify HMR syntax and logic. An example excerpt of HMR is:

3rd East European Workshop on Rule-Based Applications 27

xschm th: [today,hour] ==> [operation].

xrule th/1:

[today eq workday, hour gt 17] ==> [operation set not_bizhours].

xrule th/4:

[today eq workday, hour in [9 to 17]] ==> [operation set bizhours].

The �rst line de�nes an XTT table scheme, or header, de�ning all of the
attributes used in the table. Its semantics is as follows: �the XTT table th has
two conditional attributes: today and hour and one decision attribute: operation�.
Then two examples of rules are given. The second rule can be read as: �Rule with
ID 4 in the XTT table called th: if value of the attribute today equals (=) value
workday and the value of the attribute hour belongs to the range (∈) < 9, 17 >
then set the value of the attribute operation to the value bizhours�.

The engine implements the inference based on ALSV(FD). It supports four
types of inference process, Data and Goal Driven, Fixed Order, and Token
Driven [5]. Inference is based on assumption, that the system is deterministic.
Con�icts should be handled during design process or detected by veri�cation.

HeaRT also provides a modularized veri�cation framework, also known as
HalVA (HeKatE Veri�cation and Analysis). Veri�cation and analysis module
implements: simple debugging mechanism that allows tracking system's work,
logical veri�cation of models (several plugins are available, including complete-
ness, determinism and redundancy checks), and syntactic analysis of HMR �les
using a DCG grammar of HMR. The veri�cation plugins can be run from the
interpreter or indirectly from HQEd using the communication protocol.

The engine has communication and integration facilities. HeaRT supports
Java integration based on callbacks mechanism and Prolog JPL library. It allows
for a direct interaction via Prolog console based on callbacks mechanism. HeaRT
can operate in two modes, stand-alone and as TCP/IP server, o�ering TCP/IP
integration mechanism with other applications. It is possible to create console
or graphical user interface build on Model-View-Controler design pattern.

There are two types of callbacks related to attributes in HMR �les. 1) input
used to get attribute value from user. This can be done by console or graphical
user interface. 2) output used to present an attribute value to user. Callbacks
can be use to create GUI with JPL and SWING in Java.

To make HeaRT integration easier, there are three integration libraries, JHeroic,
PHeroic or YHeroic. JHeroic library was written in Java. Based on JHeroic one
can build applets, desktop application or even JSP services. It is also possible to
integrate HeaRT with database using ODBC, or Hibernate. YHeroic is a library
created in Python. It has the same functionality as JHeroic but is easier to use
because of Python language nature. PHeroic is the same library but created in
PHP5. It can be used in a dynamic web page based on PHP.

6 Related Solutions

Here, the focus is on two important solutions: CLIPS and its Java-based incar-
nation � Jess, as well as Drools, which inherits some of the important CLIPS

3rd East European Workshop on Rule-Based Applications 28

features, while providing a number of high-level integration features. Other en-
vironments include LPA VisiRule.

XTT provides an expressive, formally de�ned language to describe rules.
The language allows for formally described inference, property analysis, and
code generation. Additional callbacks in rule decision provide means to invoke
external functions or methods in any language. This feature is superior to those
found in both CLIPS/Jess and Drools. On the other hand, the main limitation
of the HeKatE approach is the state-base description of the system, where the
state is understood as the set of attribute values.

The implicit rule base structure is another feature of XTT. Rules are grouped
into decision tables during the design, and the inference control is designed dur-
ing the conceptual design, and later on re�ned during the logical design. There-
fore, the XTT representation is highly optimized towards rulebase structuriza-
tion. This feature makes the visual design much more transparent and scalable.

In fact all the Rete-based solutions seek some kind of structurization. In the
case of CLIPS it is possible to modularize the rulebase (see chapter 9 in [1]).
It is possible to group rules in modules operating in given contexts, and then
provide a context switching logic. Drools 5 o�ers Drools Flow that allows to
de�ne rule set and simple control structure determining their execution. In fact
this is similar to the XTT-based solution. However, it is a weaker mechanism
that does not correspond to table-based solution.

A complete design process seems to be in practice the most important issue.
Both CLIPS and Jess are classic expert system shells, providing rule languages,
and runtimes. They are not directly connected to any design methodology. The
rule language does not have any visual representation, so no complete visual
editors are available. Implementation for these systems can be supported by a
number of external environments (e.g. Eclipse). However, it is worth emphasiz-
ing, that these tools do not visualize the knowledge contained in the rule base.

Drools 5 is decomposed into four main parts: Guvnor, Expert, Flow, Fusion.
It o�ers several support tools, including an Eclipse-based environment. A �design
support� feature, is the ability to read Excel �les with simple decision tables.
While this is a valuable feature, it does not provide constant syntax checking.

It is crucial to emphasize, that there is a fundamental di�erence between a
graphical user interface like the one provided by generic Eclipse-based solutions,
and visual design support and speci�cation provided by languages such as XTT
for rules, and in software engineering by UML. Other dedicated visual rule design
languages include URML [12] that provides a UML-based representation for
rules. Here focus is on single rules, not on decision tables, like in XTT.

7 Conclusions

The primary area of interest of this paper is to introduce the main concepts
of the HeKatE project, its methods and tools. The main motivation behind
the project is to speed up and simplify the rule-based systems design process,
while assuring the formal quality of the model. The HeKatE design process

3rd East European Workshop on Rule-Based Applications 29

is practically supported by a number of tools presented in the paper. These
include the HeKatE design environment called HaDEs and the rule runtime
called HeaRT. The up-to-date results of the project, as well all the relevant
papers are available at the project website see http://hekate.ia.agh.edu.pl.

HeKatE project ends in November 2009. Therefore, future work includes a
tighter tool integration, as well as modeling complex cases in order to identify
possible limitations of the methodology. Providing a comparative studies mod-
elling the same cases in XTT, CLIPS and Drools is planned.

References

1. Giarratano, J.C., Riley, G.D.: Expert Systems. Thomson (2005)
2. van Harmelen, F., Lifschitz, V., Porter, B., eds.: Handbook of Knowledge Repre-

sentation. Elsevier Science (2007)
3. Lig¦za, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,

Heidelberg (2006)
4. Nalepa, G.J., Lig¦za, A.: A graphical tabular model for rule-based logic program-

ming and veri�cation. Systems Science 31(2) (2005) 89�95
5. Nalepa, G.J., Lig¦za, A.: Hekate methodology, hybrid engineering of intelligent

systems. International Journal of Applied Mathematics and Computer Science
(2009) accepted for publication.

6. Ross, R.G.: Principles of the Business Rule Approach. 1 edn. Addison-Wesley
Professional (2003)

7. Lig¦za, A., Nalepa, G.J.: Knowledge representation with granular attributive logic
for XTT-based expert systems. In Wilson, D.C., Sutcli�e, G.C.J., FLAIRS, eds.:
FLAIRS-20 : Proceedings of the 20th International Florida Arti�cial Intelligence
Research Society Conference : Key West, Florida, May 7-9, 2007, Menlo Park,
California, Florida Arti�cial Intelligence Research Society, AAAI Press (may 2007)
530�535

8. Nalepa, G.J., Lig¦za, A.: Xtt+ rule design using the alsv(fd). In Giurca, A., Ana-
lyti, A., Wagner, G., eds.: ECAI 2008: 18th European Conference on Arti�cial Intel-
ligence: 2nd East European Workshop on Rule-based applications, RuleApps2008:
Patras, 22 July 2008, Patras, University of Patras (2008) 11�15

9. Nalepa, G.J., Lig¦za, A.: Conceptual modelling and automated implementation of
rule-based systems. In: Software engineering : evolution and emerging technologies.
Volume 130 of Frontiers in Arti�cial Intelligence and Applications. IOS Press,
Amsterdam (2005) 330�340

10. Nalepa, G.J., Wojnicki, I.: Towards formalization of ARD+ conceptual design and
re�nement method. In Wilson, D.C., Lane, H.C., eds.: FLAIRS-21: Proceedings
of the twenty-�rst international Florida Arti�cial Intelligence Research Society
conference: 15�17 may 2008, Coconut Grove, Florida, USA, Menlo Park, California,
AAAI Press (2008) 353�358

11. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell. 19(1) (1982) 17�37

12. Lukichev, S., Wagner, G.: Visual rules modeling. In: Sixth International Andrei
Ershov Memorial Conference Perspectives of System Informatics, Novosibirsk, Rus-
sia, June 2006. LNCS, Springer (2005)

3rd East European Workshop on Rule-Based Applications 30

i-footman: A Knowledge-Based Framework for
Football Managers

Vassilis Papataxiarhis, Vassileios Tsetsos, Isambo Karali, Panagiotis
Stamatopoulos, Stathes Hadjiefthymiades

Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, Panepistimiopolis, Ilissia, GR-15784, Athens, Greece,

{vpap, b.tsetsos, izambo, takis, shadj}@di.uoa.gr

Abstract. i-footman constitutes a knowledge-based framework aiming to
provide assistive services to football managers. More precisely, the system
accommodates a number of managing processes (e.g., selection of team
composition) in the context of football by adopting a declarative approach. It
also takes advantage of Semantic Web technologies in order to represent and
manage the required application models. i-footman is based on a flexible
architecture that facilitates possible extensions in the functionality and the
quality of the provided services. The paper presents the overall architecture as
well as certain implementation details of the system.

Keywords: knowledge-based system, reasoning methods, ontology, rules

1 Introduction

This work presents an extensible knowledge-based framework aiming to provide team
management services in the context of football. The system allows the development
of services that can be used by football managers. Specifically, i-footman (intelligent
football manager) supports some pre- and in-game decisions needed to be taken by the
user. The basic functionality of i-footman consists of proposing a “good” tactical
formation, an effective composition of players and certain tactical instructions.

Football does not constitute a scientific field or a domain with explicitly expressed
and commonly accepted knowledge. This is due to the fact that knowledge about
football does not stem only from expertise but also from experience. Moreover, there
are times when domain experts (i.e. football managers) act differently to each other in
order to face a certain situation (e.g., suspension of a player) making the knowledge
about football subjective. Hence, i-footman does not aim to capture the complete
knowledge about the application domain of football, but to provide effective means of
adapting and extending the required knowledge according to the user needs.

The suggestions of the system are based on domain-specific knowledge such as the
opponent’s team tactic and the features of the available players. Such kind of
knowledge had to be modeled through appropriate application models. However, no
such model was identified in the relevant literature. Additionally, i-footman is a

3rd East European Workshop on Rule-Based Applications 31

decision support system and it calls for effective modeling of human knowledge and
expertise. Hence, the system had to exploit proper knowledge technologies and
representation formalisms that would facilitate the extensibility of the knowledge
base. Consequently, modern techniques (e.g. Semantic Web technologies) were
adopted in the context of i-footman in order to represent knowledge through
expressive languages. The adoption of rules and ontologies take advantage of the
declarative programming paradigm by exploiting natural forms of knowledge.

The rest of this paper is organized as follows. Section 2 discusses the architecture
of i-footman and some modeling issues, as well. A functionality and performance
evaluation that has been performed in a simulated environment is presented in Section
3. Finally, some concluding remarks are provided in the last section of the paper.

2 System Architecture and Application Models

Two ontological models have been developed in the context of i-footman for
modeling football players and teams, accordingly. Furthermore, a large set of rules
was composed in order to express more complex concepts and relations. Two domain
experts were interviewed in order to acquire the domain knowledge captured by
models and rules1. The Pellet reasoner (v. 1.5.1) [6] that is based on Description
Logics (DLs) [1] is responsible for reasoning over the ontologies while the rule
engine Jess [4] performs the execution of rules. The selection of the reasoning
modules is based on the performance evaluation presented in [5]. The integration of
ontologies and rules is not a straightforward task, since there is no single reasoning
module that can seamlessly handle both formalisms. Hence, i-footman performs
reasoning tasks in a sequential manner and the results of the ontological reasoning are
provided as input to the rules execution process. A generic view of the framework
architecture is depicted in Fig. 1.

i-footman

Rule
Engine

Football Players
Ontology

IdentificationFormation

DL-Reasoner

Football Teams
Ontology

Rules

Player Selection Tactical Instructions

user

reuses

reusesreuses

Fig. 1. i-footman Architecture

1 All the application models and rules developed in the context of i-footman are provided online

in http://www.di.uoa.gr/~vpap/i-footman/

3rd East European Workshop on Rule-Based Applications 32

Football Players Ontology

The Football Player Ontology (FPO) has been developed in Ontology Web Language
(OWL) [2] and, in particular, the OWL-DL version. It is the first ontology, according
to our knowledge, that focuses on the description of football players. FPO provides an
extensive vocabulary referring to the various player characteristics, focusing on the
features used by a manager in order to make a tactical decision, and the tactical
instructions that a football player could follow. Some key concepts of the ontology
concern the football players (“Football_Player”), the positions they can hold during a
football match (“Position”) and the abilities of the footballers (“Ability”). Each ability
that describes a certain player is assigned a value denoting its respective quality. This
fact facilitates the definition of complex concepts through conditions of equivalence.
For instance, the following statement defines the concept of “creative” middlefielders:

fpo:CreativeMiddlefielder ≡ (fpo:hasPassing.GoodAbility �

fpo:hasPassing.VeryGoodAbility) � fpo:playsInPosition.Middlefielder
(1)

Football Teams Ontology

The Football Teams Ontology (FTO) provides the terms for describing the main
features of football teams and the tactical guidelines they could follow. This
vocabulary is also expressed in terms of OWL-DL and is strongly related to the FPO.
Specifically, the FTO reuses the FPO vocabulary extending it properly.

The FTO terms could be distinguished to three parts. Firstly, the ontology defines
some generic team features (e.g., the players of a team). Secondly, the ontology takes
advantage of DLs in order to classify the various team instances into certain
categories (e.g., teams that attack from the wings). Finally, the FTO models the
various tactical instructions allowing the execution of rules that will follow.

Rules

The rules constitute the declarative part of the knowledge base and are expressed in
terms of the Semantic Web Rule Language (SWRL) [3]. The basic idea behind the
adoption of SWRL was the combination of ontologies and rules in the same logical
language. The rules reuse the vocabulary provided by the FPO and FTO in order to
define more complex relationships and their structure was based on the knowledge
acquired by the experts. They can also be distinguished in four main categories2:

1. Identification Rules. These rules aim to identify the weaknesses and the
advantages of the opponent. They are mainly based on the opponent’s team formation
and the features of players in order to deduce the capabilities of the opponent. For
instance, the following SWRL rule expresses the knowledge that a team plays well
the counter attack when two or more of its offensive players are quick3:

2 For space limitation reasons, a simplified version of the rules is presented here. The complete

form of rules can be found online in http://www.di.uoa.gr/~vpap/i-footman/rules.owl.
3 QuickOffensivePlayer is an FPO concept defined through necessary and sufficient conditions.

3rd East European Workshop on Rule-Based Applications 33

fto:hasStartingPlayer (?t1,?p1) ∧ fto:hasStartingPlayer (?t1,?p2) ∧

fpo:QuickOffensivePlayer (?p1) ∧ fpo:QuickOffensivePlayer (?p2) →
fto:dangerousAtCounterAttack (?t1,true).

(2)

2. Formation Rules. They are responsible for specifying the tactical formation that
the team will follow during a match. In particular, the number of defenders,
middlefielders and attackers is determined as well as the positions that they should
cover. The following rule describes a case where three central defenders are used:

fto:myTeamPlaysAgainst(?t1,?t2) ∧ fto:TeamWith3CentralDefenders(?t2) ∧

fto:TeamWith3CentralPlayers(?t2) ∧ fto:TeamWithSideMFs(?t2) ∧
fto:TeamWith2Attackers(?t2) → fto:playsWith3CentralDefenders(?t1, true).

(3)

3. Player Selection Rules. They make use of players’ features and tactical
formation of the teams. i-footman proposes the appropriate players to form the team’s
composition according to the classification that has been already completed through
the ontology reasoning processes. A typical player selection rule follows:

fto:myTeamPlaysAgainst(?t1,?t2) ∧ fpo:playsWith1Striker(?t1) ∧

fpo:GoodStriker (?p1) ∧ fpo:isMemberOf(?p1,?t1) →
fpo:isSuggestedTo(?p1,?t1).

(4)

4. Tactical Instructions Rules. They specify the tactical instructions suggested by
the system. These rules take advantage of the opponent weaknesses and strengths
specified by the identification rules and information coming from formation rules.
The following rule denotes that if a team does not use side defenders then the
opponent should identify this weakness and attack from the wings.

fto:myTeamPlaysAgainst(?t1,?t2) ∧ fto:TeamWithNoBacks(?t2) ∧
fto:TeamWithWingers(?t1) → fto:shouldAttackFromTheWings(?t1, true).

(5)

3 Evaluation

Since no actual data and statistics were available during the development of i-
footman, the evaluation was accomplished through simulations. Specifically, the
simulation is based on two scenarios and takes advantage of two computer games that
focus on the tactical management of football teams: the Championship Manager 2008
(Eidos) and Football Manager 2008 (Sports Interactive). Such computer software
simulate a football match according to the tactical instructions that have been given as
input to both teams and generates a final result for that game. Moreover, the platforms
provided some players’ and teams’ statistics that have been inserted to the ontologies.

Regarding the first evaluation scenario, two teams with similar ratings (according
to the evaluation provided by each platform) were selected. Specifically, Barcelona
FC (Spain) was guided by i-footman while the computer handled the team of Real
Madrid FC (Spain). 40 games were simulated in each platform (80 in total). The
computer handled both teams in the first 20 games (in each platform) with no external
interference while i-footman managed the team of Barcelona in the next 20 games.

The match results of the first scenario are presented in Fig. 2. In a total of 40
matches without the intervention of i-footman, Barcelona won 14 times, Real Madrid

3rd East European Workshop on Rule-Based Applications 34

won 16 times and 10 games came to draw. Furthermore, Barcelona scored 45 goals
while Real Madrid scored 61 goals. Afterwards, the same number of matches was
executed with i-footman controlling Barcelona and the results seemed to be in favour
of Barcelona. Although the number of Barcelona’s wins did not increased
substantially (only by 1), the number of losses decreased by 50% (8 instead of 16).
Furthermore, Barcelona scored 51 times (instead of 45) while opponent scored 36
(instead of 61). This means that the recommendations of i-footman lead to significant
improvement of the team performance.

Barcelona FC vs. Real Madrid FC (match results)

14

10

16
15

17

8

0

2

4

6

8

10

12

14

16

18

Wins Draws Losses

CPU

i-footman

Fig. 2. Match results of the first scenario

The second scenario concerned the evaluation of i-footman when playing against
an opponent with better ratings than the one managed by the system. Specifically,
Olympiacos FC (Greece) was handled by the system and played against Real Madrid.
The results of this scenario were very similar to the former with a minor improvement
of the total number of wins accomplished by i-footman.

Generally, i-footman seems to perform well in such simulation environments.
Although the performance of the user’s team does not improve substantially, the
adoption of i-footman seems to tackle the opponent’s performance successfully. This
stems from the fact that both goals and wins of the opponent’s team are obviously
decreased. The large number of rules that refer to the defending strategy of the team
may lead to that. Specifically, the tactical formation and composition of the team are
mainly adapted to the advantages and less to the weaknesses of the opponent’s team.
This could be improved by extending and modifying the rules of the knowledge base
(possibly through interviews of more domain experts).

Regarding the time performance of the framework, the expected response time was
7741ms (as measured on a typical Desktop PC). Such time seems reasonable since it
includes all the reasoning processes (i.e. hierarchy classification, instance checking of
FPO and FTO ontologies and rules execution) that were performed.

4 Conclusions and Future Work

We have presented a knowledge-based framework able to support decision making in
the context of football. More precisely, the paper focuses on the architecture of i-
footman, its application models and the simulation results derived during the
evaluation process. The main issue that has been identified during development was

3rd East European Workshop on Rule-Based Applications 35

the lack of an integrated reasoning framework capable of handling ontologies and
rules. Today, there is no efficient reasoning module that can reason over both
formalisms seamlessly. Hence, the developer has to perform ontological reasoning
and provide the results as input to the rule engine and vice versa in order to achieve
effective knowledge management.

As described, i-footman was designed to facilitate the addition of possible
extensions regarding its functionality by modifying the knowledge used to describe
the application domain of football. This process would be facilitated by the
exploitation of learning techniques that target to automate the generation of the
declarative part of the knowledge base (i.e. the rules). This could be achieved either
by accessing actual statistical data about players and teams or by taking the results
that arise from the simulation platforms as real. Since no real data are available, the
exploitation of learning algorithms over virtual data seems to be more feasible.
Finally, more expressive knowledge representation languages that support fuzziness
could be adopted in order to deal with knowledge uncertainty issues.

Acknowledgements

This work is supported by the Special Research Grants Account of the University of
Athens through the Kapodistrias Programme (Research Grant Number: 70/4/7819).

The authors would also like to thank the football managers Panagiotis Lemonis
(Olympiacos FC, 2007/08) and Nikolaos Nioplias (Greece Under 21’s National Team,
2007/08) who provided basic knowledge for understanding the domain of football and
valuable comments towards the improvement of this work.

References

1. Baader, F., Calvanese, D., McGiuness, D., Nardi, D., Patel-Schneider, P.F.: The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge: Cambridge
University Press (2003)

2. Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language
Reference. W3C Recommendation 10 February 2004. Retrieved April 22, 2008, from
http://www.w3.org/TR/owl-ref/ (2004)

3. Horrocks, I., Patel-Schneider, P., Harold, B., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. World Wide Web
Consortium Member Submission, http://www.w3.org/Submission/SWRL/ (2004)

4. Jess, The Rule Engine For the Java Platform. Retrieved April 22, 2008, from
http://www.jessrules.com/jess/index.shtml (2008)

5. Papataxiarhis, V., Tsetsos, V., Karali, I., Stamatopoulos, P., Hadjiefthymiades, S.:
"Developing rule-based applications for the Web: Methodologies and Tools", chapter in
"Handbook of Research on Emerging Rule-Based Languages and Technologies: Open
Solutions and Approaches" (Eds. Adrian Giurca, Dragan Gasevic and Kuldar Taveter),
Information Science Reference (2009)

6. Sirin, E., Parsia, B., Grau, B., C., Kalyanpur A., & Katz, Y. Pellet: A practical OWL-DL
reasoner, Journal of Web Semantics, 5(2) (2007)

3rd East European Workshop on Rule-Based Applications 36

http://www.w3.org/TR/owl-ref/
http://www.w3.org/Submission/SWRL/
http://www.jessrules.com/jess/index.shtml

Built-ins for JSON Rules

Emilian Pascalau1

Hasso Plattner Institute, Germany
emilian.pascalau@hpi.uni-potsdam.de

Abstract. JSON Rules is a declarative rule language for the World
Wide Web. It has been created to satisfy at least the following list of
requirements: (1) create and execute rules in browser; (2) support for
ECA and PR rules; (3) the Working Memory contains event-facts. Here
we extend the language with the concept of built-ins (predicates and
actions). We focus on the relation with RIF-DTB, however with a strong
emphasis on the environment where the rules are going to be executed:
the web browser. As such we introduce here an initial set of built-ins, as
well as the architectural aspects that should be taken into consideration
for an engine implementing the JSON Rules language.

1 Introduction

There is a multitude of rule languages out there (i.e. Drools [1], F-Logic [2])
each of them with their specificities. However interoperability in a world that
moves at high speeds and where business are interconnected is a must. RIF is
the W3C Rule Interchange Format1 and also the name of the W3C group that
it is in charge of this standard. Although the main goal of RIF is to provide a
rule interchange language, it is more than that. RIF provides different versions,
called dialects in order to tackle the serious trade-offs in nowadays rule languages.
Almost a mandatory request for any rule language it is to provide at least the
guidelines for translating to and from RIF.

JSON Rules introduced initially in [3] and later extended in [4] is a rule
language designed to be run in a web browser and to model web based scenarios.
The main goals of the language are: to move the reasoning process to the client-
side; to offer support for intelligent user interfaces; to handle business workflows;
to allow rule-based reasoning with semantic data inside HTML pages (reasoning
with RDFa [5]); to create intelligent mashups - rule based mashups; to enable
users to collaborate and share information on the WWW (rule sharing and
interchange). JSON Rules fulfills the following requirements: rules run in the
browser; uses Event-Condition-Action rules; rules are defined on top of DOM
structure; uses DOM events plus user defined events; actions are defined by
users and can be any JavaScript function calls. JSON Rules language uses a
special type of Working Memory (WM) – the Document Object Model (DOM)
[6] of the page. As in any forward chaining engine, the main effect of JSON

1 http://www.w3.org/2005/rules/

3rd East European Workshop on Rule-Based Applications 37

http://www.w3.org/2005/rules/

rules execution is the update of the WM i.e. the DOM of the page. Therefore,
the language design is tailored to the environment where rules are going to be
executed.

With respect to its condition language, JSON Rules was influenced in its syn-
tax by other rule languages such as Drools [1]. Any valid JavaScript function call
is allowed as actions. This covers also the OMG Production Rule Representation
([7]) and RIF Production Rule Dialect [8].

Any JSON Rule is identified by an id. A rule may have a priority - if this
attribute is missing then its implicit value is 1. The rule engine executes the rules
in a down counting order (from greater priority to lower priority). However, the
execution order for rules with the same priority is irrelevant. One significant
property of a JSON Rule is the appliesTo property. This property stores an
array of URLs to which this rule refers to i.e. a list of URLs defining the context
in which this rule can be applied. Based on this property, rules are grouped in
rule sets.

An EventExpression is an expression capturing any DOM Event [9]. There-
fore, it has a type, target, timeStamp and phase properties, each of them
allowing a JSONTerm as a value. Inside the rule engine, EventExpression is
matched with DOM Events at their occurrence (we allow only atomic events
with no duration i.e. the events are consumed immediately when they occur)
time. Consuming events yields into event-facts creation in the WM and such
facts are immediately consumed. The engine itself is event-based i.e. all internal
processes and activities are event-driven. This is imposed by the environment
where the engine runs - the Web browser. Generally, the engine consumes events,
through its Working Memory, check conditions and execute actions.

A JSON Rule may contain a list of conditions, logically interpreted as a con-
junction of atoms. The language provides the following types of atoms:
Description, JavaScriptBooleanExpression, XPathCondition, NodeEquality
and Negation. The Description conditional is similar to Drools [1] pattern.
With such conditional property restrictions can be defined as well as prop-
erty bindings, in a Drools like fashion. JavaScriptBooleanCondition stands
for JavaScript boolean expression; any JavaScript boolean expression can be
used.
The XPathCondition is used to test that a DOM Node is found in the list of
nodes returned by evaluating an XPath expression. The last two NodeEquality
and Negation are pretty much obvious. They are used to test equality between
two terms, respectively to negate a conditional atom.

As usual, a rule has associated a list of actions that have to be performed,
if the rule conditions hold. An action is a call to any available JavaScript func-
tion. Actions are executed sequentially. The reader may notice that such kind
of actions can determine also side effects i.e. more than simple updates on the
Working Memory (communication with a server that has no effect on the WM).

As stated above since it is almost mandatory for any rule language to provide
means of translation to and from RIF this paper makes the first steps towards

3rd East European Workshop on Rule-Based Applications 38

translation from RIF to JSON Rules and vice versa by tackling the problem of
built-ins.

2 Built-ins

This section deals with built-ins for the JSON Rules language, along with the
architectural and technical aspects imposed by the context (web browsers) and
the programming language (JavaScript, ECMAScript [10]) in which the JSON
Rules [3] engine is running and has been implemented.

Built-in means constructed as a non-detachable part of a larger structure. In
case of rule systems built-ins encapsulate commonly used functionality, provided
as predicates or functions. Built-ins also help in maintaining the clean declarative
design of rules.

As described in the Conclusion of RIF-UCR [11] ”the goal of the RIF working
group is to provide representational interchange formats for processes based on
the use of rules and rule-based systems. These formats act as ”interlingua” to
interchange rules and integrate with other languages, in particular (Semantic)
Web mark-up languages.”

JSON Rules foresees compliance with Rule Interchange Format (RIF)2. As
such the JSON Rules aims to provide the built-ins defined in RIF-DTB [12],
beside others that refer to the mashup context.

2.1 RIF built-ins short intro

RIF-DTB [12] is the reference document concerning built-in datatypes, predi-
cates, functions supposed to be supported by RIF dialects such as: RIF Core
Dialect [13], RIF Basic Logic Dialect [14] and RIF Production Rules Dialect [8].
According to RIF-DTB document each dialect takes use of a superset or a subset
of datatypes, predicates or functions defined in RIF-DTB. The datatypes taken
into account by the RIF-DTB [12] are imported either from W3C XML Schema
Definition Language (XSD) [15] or from rdf:PlainLiteral: A Datatype for RDF
Plain Literals [16]. Predicates or functions have been ported from XQuery 1.0
and XPath 2.0 Functions and Operators [17] or from rdf:PlainLiteral: A Datatype
for RDF Plain Literals [16].

The list of predicates and function built-ins taken into consideration by RIF-
DTB comprises among others: predicates for literal comparison, numeric func-
tions and predicates, function and predicates on boolean values, on string, on
date/time and duration, on XMLLiterals, on rdf:PlainLiteral.

2.2 JSON Rules context prerequisites

The general technical guide line that governs the architectural aspects and any
other aspects is the compliance and conformity with the ECMAScript standard
[10].
2 http://www.w3.org/2005/rules/

3rd East European Workshop on Rule-Based Applications 39

http://www.w3.org/2005/rules/

Beside the built-ins (predicates and functions) classification introduced in
RIF-DTB [12] that span all the RIF dialects, we introduce here a set of built-in
actions that serve a different purpose, mainly actions needed in dealing with
mashups. As introduced in [4] one of the main purposes of JSON Rules is to be
an execution language for mashups.

Although we are not going to address here the problem of translating RIF
constants’ names, symbols, or namespaces, minimal introduction of ECMAScript
concepts are necessary.

One of the most important concept is the closure concept. The ECMAScript
[10] standard explains a closure as a ”function with some arguments already
bound to values”. Others define a closure3 as ”an expression (typically a func-
tion) that can have free variables together with an environment that binds those
variables (that ”closes” the expression)”.

As stated in [18] ”JavaScript’s extreme dynamism equips it with tremendous
flexibility, and one of the most interesting yet least understood facets of its dy-
namism involves context”.

On top of these two concepts (closure, context) the concept of namespace is
defined. We understand by the notion of namespace hierarchies of nested objects
as defined also in [18].

Another characteristic of JavaScript is that it is weakly typed.

2.3 Guidelines for defining JSON Rules built-ins

There are a couple of general guidelines that should be taken into account when
defining functions and predicates, either user defined or built-in:(1) in order to
avoid name clashing in JavaScript global context it is recommended to use proper
namespaces; (2) predicates should always return a default value, undefined value
should be avoided.

To simplify the process of creating namespaces JavaScript libraries such as
Dojo4 could be used.

Because the function word is reserved in JavaScript its usage should be
avoided in a different context other than defining a JavaScript function.

Another important issue that must be taken into account is that the JavaScript
code for a page runs in a common context, and as such any redefinition of the
same object will override the initial implementation.

2.4 From RIF-DTB to JSON Rules built-ins

This section explains how RIF built-in datatypes, predicates and functions are
translated into JSON Rules, respectively JavaScript.

In order to preserve the semantics type mapping is necessary. Table 1 defines
the mapping between RIF built-in datatypes and JavaScript datatypes. E4X [19]
datatype is also taken into account. Since JavaScript is weakly typed in most
3 http://www.jibbering.com/faq/faq_notes/closures.html
4 http://www.dojotoolkit.org/

3rd East European Workshop on Rule-Based Applications 40

http://www.jibbering.com/faq/faq_notes/closures.html
http://www.dojotoolkit.org/

of the cases a custom type must be built. In Table 1 this is emphasized by the
cust. type notation. The same table specifies for each custom type, the base
JavaScript type or types on which the custom type must be based.

Table 1. Mapping of RIF built-in Datatypes to JavaScript Datatypes

RIF datatype JavaScript
datatype

RIF datatype JavaScript
datatype

xs:string String xs:nonNegativeInteger Number, cust. type

xs:normalizedString String, cust. type xs:unsignedLong Number, cust. type

xs:token String, cust. type xs:unsignedInt Number, cust. type

xs:language String, cust. type xs:unsignedShort Number, cust. type

xs:Name String, cust. type xs:unsignedByte Number, cust. type

xs:NCName String, cust. type xs:positiveInteger Number, cust. type

xs:ID String, cust. type xs:decimal Number, cust. type

xs:IDREF String, cust. type xs:boolean Boolean

xs:NMTOKEN String, cust. type xs:dateTime Date

xs:ENTITY String, cust. type xs:date Date, cust. type

xs:NOTATION String, cust. type xs:time Date, cust. type

xs:anyURI String, cust. type xs:gYearMonth Date, cust. type

xs:hexBinary Array, cust. type xs:gMonthDay Date, cust. type

xs:base64Binary Array, cust. type xs:gYear Date, cust. type

xs:float Number, cust. type xs:gDay Date, cust. type

xs:double Number xs:gMonth Date, cust. type

xs:duration String+Date, cust.
type

xs:NMTOKENS String+Array, cust.
type

xs:integer Number, cust. type xs:IDREFS String+Array, cust.
type

xs:nonPositiveInteger Number, cust. type xs:ENTITIES String+Array, cust.
type

xs:negativeInteger Number, cust. type xs:QName String, cust. type

xs:long Number, cust. type xs:anyType E4X XML object

xs:int Number, cust. type rdf:PlainLiteral String

xs:short Number, cust. type rdf:XMLLiteral E4X XML object

xs:byte Number, cust. type

As previously stated datatypes as well as functions and predicates must be
grouped by means of proper namespaces. In the RIF-DTB case datatypes are
identified by the following namespace: http://www.w3.org/2001/XMLSchema#.
As convention this gets translated into org.w3c.xs. For example the xs:duration
datatype is identified with: http://www.w3.org/2001/XMLSchema#duration.
This one gets translated into org.w3c.xs.Duration. The namespace for RDF
datatypes is org.w3c.rdf.

In a similar way the namespaces for the RIF predicates and functions are:
org.w3c.rif.pred and respectively org.w3c.rif.func.

3rd East European Workshop on Rule-Based Applications 41

The implementation for custom datatypes is inspired from J2EE implementa-
tion (i.e. javax.xml.datatype.Duration). The Duration custom type provides
the following list of methods: add(org.w3c.xs.Duration rhs); addTo(Date
date); compare(org.w3c.xs.Duration duration); getDays(); getHours();
getMinutes(); getMonths(); getSeconds(); getSign(); getYears();
isLongerThan(org.w3c.xs.Duration duration);
isShorterThan(org.w3c.xs.Duration duration); negate().

In the RIF-DTB context built-in predicates and functions are defined with
the following artifacts: (1) name of the built-in; (2) external schema of the built-
in (the signature of the built-in); (3) for a RIF built-in function - how it maps its
arguments into a result - in RIF terms this means the mapping of Iexternal(σ)
in the formal semantics of [20] and [14]; (4) for a RIF built-in predicate - how
it gives the truth value when arguments are substituted with values from the
domain - this corresponds to the mapping Itruth ◦ Iexternal(σ) in the formal
semantics of [20] and [14]; (5) the domains for the built-ins’ arguments.

RIF-DTB explains that ”typically, built-in functions and predicates are de-
fined over the value spaces of appropriate datatypes, i.e. the domains of the
arguments. When an argument falls outside of its domain, it is understood as
an error.”

In RIF-DTB the predicate evaluating greater than is defined as follows:

name pred:numeric-greater-than
schema (?arg1?arg2; pred : numeric− greater − than(?arg1?arg2))
domains xs:integer, xs:double, xs:float, or xs:decimal for both arguments
mapping When both a1 and a2 belong to their domains

Itruth◦Iexternal(?arg1?arg2; pred : numeric−greater−than(?arg1?arg2))(a1a2) =
t if and only if op : numeric−greater− than(a1, a2) returns true, as defined
in [17], f otherwise. Also RIF-DTB specifies that ”if an argument value is
outside of its domain, the truth value of the function is left unspecified.”

The numeric-greater-than predicate could be implemented in JSON Rules as
depicted in Example 1.

Since the hyphen based notation used by RIF in the predicates and func-
tion names can not be used in JavaScript the camel hump notation should be
used instead. As such the name numeric-greater-than gets translated into
numericGreaterThan.

The mapping of the signature is obvious, with respect to the list of arguments.
Based on Table 1 xs:integer, xs:double, xs:float, or xs:decimal RIF-

DTB datatypes are translated into custom types but based on the JavaScript
number datatype.

With respect to RIF note that if the type of any of the arguments is outside of
the specified domain then no result should be given. This situation can be dealt
at least in three ways: (1) the value returned could be the JavaScript special
value undefined; (2) JavaScript isNaN() function could be used and in case of
true the Number.NaN should be returned; (3) an exception could be raised.

3rd East European Workshop on Rule-Based Applications 42

However since the RIF specification states that this predicate should behave
as defined in [17], in case of a NaN value, false is returned. As such this approach
can not be used here. In other cases any of the three approaches could be used.

Example 1 (Defining a built-in predicate).

org=new function(){};
org.w3c=new function(){};
org.w3c.rif=new function(){};
org.w3c.rif.pred=new function(){};
org.w3c.rif.pred.numericGreaterThan=function(arg1,arg2) {

try{
if (isNaN(arg1) || isNaN(arg2))

return false;
if (arg1>arg2)

return true;
else

return false;
}catch(e){

//log error
//console.log(e); i.e. if Firebug is used

}
return false;

}

This approach could be used in general to map all RIF built-in predicates
and functions.

In addition the approach could be used to define libraries of actions oriented
towards usage of well known services such Twitter5, Facebook6, Youtube7 and
so forth through their APIs.

2.5 JSON Rules built-ins for mashups

In mashups case there could be identified a set of operations that happen regu-
larly, such as loading of services, memory cleaning etc. These type of functional-
ity is provided under the org.jsonrules.builtin.mashups.system namespace.
Functionality such as load or memoryCleanUp is provided as built-in functions
the named namespace.

The existence of services is a prerequisite for the mashups, and as such they
have to be available for the mashup, when this is instantiated.

Recall that we have in mind mashups modeled with JSON Rules that run in
the browser [4]. All the involved services interact with each other in a common
context which is the choreographer page. The choreographer is accessible to the
user through a web browser.
5 http://twitter.com/
6 http://www.facebook.com/
7 http://www.youtube.com/

3rd East European Workshop on Rule-Based Applications 43

http://twitter.com/
http://www.facebook.com/
http://www.youtube.com/

However firstly they need to be made available to the choreographer. The
browser loads the content of the choreographer and a DOM Basic Event load
it is raised. These functions should be used in general in relation with a load
event, because its main purpose is to make available for the choreographer the
necessary services.

The term services here has a broader understanding and comprises at least
the following: web page, RPC service, AJAX object.

The signature of org.jsonrules.builtins.mashups.load function is:
org.jsonrules.builtins.mashups.load($what,$where). In RIF-DTB termi-
nology the signature of a function is the schema of a function.

The $what argument refers to what needs to be loaded. this could be an URI
(Uniform Resource Identifier) or it could be a reference to an AJAX object.

$where argument refers to the place where the service or the response of an
AJAX request will be stored. This could be for example an iframe, a div, both
of them identified by an id, a reference to a JavaScript object.

3 Conclusions

This paper touched the problem of built-ins for JSON Rules in relation with
RIF. This is a step towards translation JSON Rules to and from RIF. RIF built-
in datatypes, predicates and functions have been taken into consideration, as
well as other type of built-ins that in principal are useful in the mashups con-
text. To maintain similar behavior functionality grouped, namespaces have been
suggested for RIF-DTB and mashups environments. Beside all these technical
aspects necessary for built-ins definition in the context of JSON Rules has been
taken into account.

References

1. Proctor, M., Neale, M., Frandsen, M., Jr., S.G., Tirelli, E., Meyer, F., Verlaenen,
K.: Drools 4.0.7. http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/

html_single/index.html (May 2008)

2. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42 (1995) 741–843

3. Giurca, A., Pascalau, E.: JSON Rules. In: Proceedings of the Proceedings of
4th Knowledge Engineering and Software Engineering, KESE 2008. Volume 425.,
CEUR Workshop Proceedings (2008) 7–18

4. Pascalau, E., Giurca, A.: A Rule-Based Approach of Creating and Executing
Mashups. In: Proceedings of the 9th IFIP Conference on e-Business, e-Services,
and e-Society (I3E 2009). LNCS, Springer (2009) 82–95 forthcoming.

5. Adida, B., Birbeck, M.: RDFa Primer Bridging the Human and Data Webs. W3C
Working Draft (October 2008) http://www.w3.org/TR/xhtml-rdfa-primer/.

6. Hors, A.L., Hegaret, P.L., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne,
S.: Document Object Model (DOM) Level 3 Core Specification. W3C Recommen-
dation (April 2004) http://www.w3.org/TR/DOM-Level-3-Core/.

3rd East European Workshop on Rule-Based Applications 44

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/DOM-Level-3-Core/

7. OMG: Production Rule Representation (PRR), Beta 1. Technical report, OMG
(November 2007)

8. de Sainte Marie, C., Paschke, A., Hallmark, G.: RIF Production Rule Dialect.
W3C Working Draft (July 2009) http://www.w3.org/TR/rif-prd/.

9. Hohrmann, B., Hegaret, P.L., Pixley, T.: Document Object Model (DOM) Level
3 Events. Technical report, W3C (December 2007)

10. ECMA: ECMAScript Language Specification. http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf (December 1999)

11. Paschke, A., Hirtle, D., Ginsberg, A., Patranjan, P.L., McCabe, F.: RIF Use Cases
and Requirements. W3C Working Draft (December 2008) http://www.w3.org/

TR/rif-ucr/.
12. Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-Ins 1.0. W3C Working

Draft (July 2009) http://www.w3.org/TR/rif-dtb/.
13. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D.: RIF

Core Dialect. W3C Working Draft (July 2009) http://www.w3.org/TR/rif-core/.
14. Boley, H., Kifer, M.: RIF Basic Logic Dialect. W3C Working Draft (July 2009)

http://www.w3.org/TR/rif-bld/.
15. Peterson, D., Gao, S.S., Malhotra, A., Sperberg-McQueen, C.M., Thompson,

H.S., Biron, P.V.: W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes. W3C Candidate Recommendation (April 2009) http://www.w3.org/

TR/2009/CR-xmlschema11-2-20090430/.
16. Bao, J., Hawke, S., Motik, B., Patel-Schneider, P.F., Polleres, A.: rdf:PlainLiteral:

A Datatype for RDF Plain Literals. W3C Candidate Recommendation (June 2009)
http://www.w3.org/TR/rdf-plain-literal/.

17. Malhotra, A., Melton, J., Walsh, N.: XQuery 1.0 and XPath 2.0 Functions
and Operators. W3C Recommendation (January 2007) http://www.w3.org/TR/

xpath-functions/.
18. Russell, M.A.: Dojo The Definitive Guide. O’REILLY (2008)
19. ECMA: ECMAScript for XML (E4X) Specification. http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-357.pdf (December 2005)
20. Boley, H., Kifer, M.: RIF Framework for Logic Dialects. W3C Working Draft (July

2009) http://www.w3.org/TR/rif-fld/.

3rd East European Workshop on Rule-Based Applications 45

http://www.w3.org/TR/rif-prd/
http://www.w3.org/TR/rif-ucr/
http://www.w3.org/TR/rif-ucr/
http://www.w3.org/TR/rif-dtb/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/
http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/
http://www.w3.org/TR/rdf-plain-literal/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/rif-fld/

	Preface
	Program Committee
	Messaging Rules as a Programming Model for
	The Declarative Approach for Anomaly
	HeKatE Rule Runtime and Design Framework?
	i-footman: A Knowledge-Based Framework for
	Built-ins for JSON Rules

