
A User-Centered Experiment and Logging Framework for
Interactive Information Retrieval ∗ †

Ralf Bierig
SC&I Rutgers University

4 Huntington St.,
New Brunswick
NJ 08901, USA

bierig@rci.rutgers.edu

Jacek Gwizdka
SC&I Rutgers University

4 Huntington St.,
New Brunswick
NJ 08901, USA

jgwizdka@scils.rutgers.edu

Michael Cole
SC&I Rutgers University

4 Huntington St.,
New Brunswick
NJ 08901, USA

mcole@scils.rutgers.edu

ABSTRACT
This paper describes an experiment system framework that
enables researchers to design and conduct task-based ex-
periments for Interactive Information Retrieval (IIR). The
primary focus is on multidimensional logging to obtain rich
behavioral data from participants. We summarize initial
experiences and highlight the benefits of multidimensional
data logging within the system framework.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
User logging, Interactive Information Retrieval, Evaluation

1. INTRODUCTION
Over the last two decades, Interactive Information Retrieval
(IIR) has established a new direction within the tradition of
IR. Evaluation in traditional IR is often performed in labo-
ratory settings where controlled collections and queries are
evaluated against static information needs. IIR introduces
the user at the center of a more naturalistic search environ-
ment. Belkin and colleagues [3, 2] suggested the concept of
an information seeking episode composed of a sequence of a
person’s interactions with information objects, determined
by a specific goal, conditioned by an initial task, the general
context and the more specific situation in which the episode
takes place, and the application of a particular information
seeking strategy.

∗Copyright is held by the author/owner(s).
SIGIR’09, July 19-23, 2009,Boston, USA.
†This work is supported, in part, by the Institute of Museum
and Library Services (IMLS grant LG-06-07-0105-07)

.

This poses new challenges for the evaluation of information
retrieval systems. An enriched set of possible user behaviors
needs to be addressed and included as part of the evalu-
ation process. Systems need to address information about
the entire interactive process with which users’ accomplish a
task. This problem has so far only been initially explored [4].

This paper describes an experiment system framework that
enables researchers to design and conduct task-based IIR
experiments. The paper is focused on the logging features
of the system designed to obtain rich behavioral data from
participants. The following section describes the overall ar-
chitecture of the system. Section 3 provides more details
about its specific logging features. Section 4 summarizes ini-
tial experiences with multidimensional data logging within
the system framework based on initial data analysis from
three user studies. Future work is proposed in section 5.

2. THE POODLE IIR EXPERIMENT SYS-
TEM FRAMEWORK

The PooDLE IIR Experiment System Framework is part of
an the ongoing research project. The goal of PooDLE1 to
investigate ways to improve information seeking in digital
libraries; the analysis concentrates on an array of interact-
ing factors involved in such online search activities. The
overall aim of the framework is to reduce the complexity
of designing and conducting IIR experiments using multidi-
mensional logging of users’ interactive search behavior. Such
experiments usually require a complex arrangement of sys-
tem components (e.g. GUI, user management and persis-
tent data storage) including logging facilities that monitor
implicit user behavior. Our framework enables researchers
to focus on the design of the experiment including ques-
tionnaire and task design and the selection of appropriate
logging tools. This can help to reduce the overall time and
effort that is needed to design and conduct experiments that
support the needs for IIR. As shown in figure 1, the experi-
ment system framework consists of two sides – a server that
operates in an Apache webserver environment and a client
that resides on the machine where the experiment is con-
ducted. We distinguish the following components:

• Login and Authentication manages participants, allows
them to authenticate with the system, and enables the
system to direct individuals to particular experiment

1http://www.scils.rutgers.edu/imls/poodle/index.html



Figure 1: System components of the PooDLE IIR Experiment System Framework. Logging features high-
lighted in grey.

setups; multiple experiments may exist and users can
be registered for multiple or multi-part experiments at
any time.

• The Graphical UI allows participants to authenticate
with the framework and activate their experiment. Each
experiment consists of a number of rotated tasks that
are provided with a generic menu that presents the
predefined task order to the user. After every com-
pleted task, the UI guides the participant back to the
menu that now highlights the completed tasks. This
allows participants to navigate between tasks and gain
feedback that helps them to track their progress. In
addition, the interface presents participants with ad-
ditional information, instructions and warnings when
progressing through the tasks of an experiment.

• The Experimenter controls and coordinates the core
components of the system – these are:

– An Extensible Task Framework that provides a
range of standard tasks for IIR experiments that
are part of the framework (e.g. questionnaires
for acquiring background information and gen-
eral feedback from participants, search tasks with

a bookmarking feature and an evaluation pro-
cedure, and cognitive tasks to obtain informa-
tion about individual differences between partici-
pants). Tasks are easily added to this basic collec-
tion and can be reused as part of the framework
in different experiments.

– The Task Progress and Control Management pro-
vides participants with (rotated) task sequences,
monitors their state within the experiment, and
allows them to continue interrupted experiments
at a later point in time.

– The Interaction Logger allows tasks to register
and trigger logging messages at strategic points
within the task. The system automatically logs
the beginning and end of each task at task bound-
aries.

– Remote Logging Application Invocation calls log-
ging applications that reside on the client. This
allows for rich client-sided logging of low level user
behavior obtained from specific hardware (e.g. mouse
movements or eye-tracking information).

• The Database interface manages all access to one or
more databases that store users’ interaction logs as



well as the basic experiment design for other system
components (e.g. participants, tasks and experiment
blocks in the form of task rotations for individual users).

3. USER INTERACTION LOGGING
This section focuses on the logging features of the Experi-
ment System Framework as highlighted in grey in figure 1.
The logging features and the arrangement of logging tools
within the framework have been informed by the following
requirements:

• Hybridity: All logging functionality is divided between
a more general server architecture and a more specific
client; this integrates server-based as well as client-
based logging features into a hybrid system framework.
Whereas the server logs user interactions uniformly
across experiments, client logging is targeted to the
capabilities of the particular client machine used for
the experiment. Researchers can select from a range
of logging tools or integrate their own tools to record
user behavior. This enables the system to use low level
input devices, normally inaccessible by the server, to
be controlled by logging tools residing on the client.

• Flexibility: Client logging tools can be combined through
a loosely coupled XML-based configuration that is pro-
vided at task granularity. The system framework uses
these task configurations to start logging tools on the
client when the participant enters a task and stops
them when the participant completes a task. This
gives researchers the flexibility to compose logging tools
as part of the experiment design and attach them to
the configuration of the task. Such configurations can
later be reused as design templates which promotes
uniformly across experiments and ensures important
types of user interaction data are being logged.

• Scalability: Experiments can be configured to apply a
number of different client machines as part of the data
collection. A researcher can, for example, trigger an-
other client computer to record video from a second
web camera or simultaneously activate several clients
for experiments that involve more than one partici-
pant. Redundant instances of the same logging tools
can be instantiated to produce multiple data streams
to overcome potential measurement errors and insta-
bilities on a data stream due to load or general failure
of hard and software.

The client is configured to work with the following selection
of open-source and commercial logging tools that record dif-
ferent behavioral aspects of participants:

• RUIConsole is an adapted command line version of
the RUI tools developed at Pennsylvania State Univer-
sity [5]. RUI logs low level mouse movements, mouse
clicks, and keystrokes. Our extension additionally pro-
vides full control over its logging features through a
command line interface to allow for more efficient au-
tomated use within our experiment framework.

• UsaProxy is a javascript based HTTP proxy devel-
oped at the University of Munich [1] that logs inter-
active user behavior unobtrusively through injected

javascript. It monitors page loads as well as resize and
focus events. It identifies mouse hover events over page
elements, mouse movements, mouse clicks, keystrokes,
and scrolling. Our version of UsaProxy is slightly mod-
ified as we don’t log mouse movements with this tool.
UsaProxy can run directly on the client, but can also
be activated on a separate computer to balance load.

• The URL Tracker is a command line tool that extracts
and logs the users current web location directly from
the Internet Explorer (IE) address bar and makes it
available to the system framework. This allows any
task to determine participants’ current position on the
web and to monitor their browsing history within a
task.

• Tobii Eyetracker: We use the Tobii T60 eyetracking
hardware which is packaged with Tobii Studio2, a com-
mercial eyetracking recording and analysis software.
The software records eye movements, eye fixations, as
well as webpage access, mouse events and keystrokes.

• Morae is a commercial software package for usability
testing and user experience developed and distributed
by TechSmith3. It records participants’ webcam and
computer screen as video, captures audio, and logs
screen text, mouse clicks and keystrokes occurring within
Internet Explorer.

This extensible list of logging tools are loosely coupled to
the Interaction Logger and the Remote Logging Application
Framework components through task configurations for in-
dividual tasks. The task configuration describes which log-
ging tools are used during a task and the software framework
activates them as soon as participants enter a task and de-
activates them as soon as they complete a task.

The researcher can create a selection of relevant tools for
each task of a particular IIR experiment from the available
logging tools supported by the system framework. First, one
should select all user behavior the researcher is interested in.
Second, the observable data types that provide evidence for
the existence and the structure of these user behaviors is
identified. Finally, these data types are linked with relevant
logging tools. In the next section we summarize experiences
from three distinct experiments that were designed and per-
formed with our experiment system framework. We do not
describe these experiments in this paper. Instead, we focus
on key points and issues that should be addressed when col-
lecting multidimensional logging data from hybrid logging
tools.

4. EXPERIENCES FROM MULTIDIMEN-
SIONAL DATA LOGGING

Data logging with an array of hybrid tools, as described
in the previous section, has a number of benefits and chal-
lenges. This section summarizes our initial experiences from
conducting three IIR user experiments with the system frame-
work and some initial processing and integration of its data
logs.

2http://www.tobii.com
3http://www.techsmith.com



• Accuracy and Reliability: Using data streams from
multiple logging tools limits the risk of measurement
errors to enter data analysis. This is especially rel-
evant to IIR due to its need to conduct experiments
in naturalistic settings where people perform tasks in
conditions that are not fully controlled and therefore
less predictable. Such settings allow participants to
solve tasks with great degrees of freedom. As a re-
sult of this, user actions in such settings tend to be
highly variable. Measurement errors or missing data,
for example based on varying system performance and
network latencies, have a larger impact because the
entire interaction is studied. Multiple data streams
from different sources improve the overall accuracy of
recorded sessions and increase the reliability of detect-
ing features in individual logs. Furthermore, the use of
multiple data logs limits of chances that artifacts cre-
ated by individual logging tools and their assumptions
will affect downstream analysis.

• Disambiguation: The use of multiple data logs allows
to contextualize each log with the logs produced by
other tools and disambiguate uncertainties in the in-
terpretation of logging event sequences. We found that
the most common cases are timestamp disambiguation
and the synchronization of event accuracies.

– Timestamp disambiguation: The timestamp gran-
ularity of recorded events usually varies between
logging tools. For example, Tobii Studio records
eye tracking data with a constant frequency deter-
mined by the eye tracking hardware (e.g. 60 logs
per second (17 ms) for the T60 model) whereas
UsaProxy records events only every full second
and RUIConsole records events dynamically only
when they occur. The combination of logging
data from different tools helps to better deter-
mine the real timing of events by providing differ-
ent viewpoints for the same sequence of actions a
user has performed. Low granularity timestamps
might collapse a number of user events to a sin-
gle point of time and, based on that, change the
natural order in which these events are recorded.
Alternative secondary logging data can help to de-
tect such event sequences and help disambiguat-
ing and correcting them.

– Detail of event structure: Every logging tool im-
poses a number of assumptions on the data pro-
duced by a user – which events to log, which
events to differentiate and how to label them.
Two logging tools recording the same events can
therefore produce different event structures with
varying detail. For example, RUIConsole differ-
entiates a mouse click into a press and a release
event whereas Tobii Studio considers a mouse click
as a single event. Different logging tools recording
the same user actions produce events with a struc-
ture of different detail that can be used to con-
textualise conflicting recordings of user actions.

• Scalability: Concurrent use of logging tools may cre-
ate performance issues on the client machine especially
with tools that produce large amounts of data. Es-
pecially the combined use of Morae and Tobii Studio

can be demanding when using high quality web cam-
era and screen capture recording. Limited hardware
resources may have a direct effect on the recording ac-
curacy of other logging tools. More importantly, how-
ever, a overloaded client may have an effect on par-
ticipants and their ability to accomplish tasks realis-
tically. This can be avoided by choosing a sufficiently
equipped client machine and a fast network. As men-
tioned in section 4, the software framework supports
the distribution of logging tools over several machines,
while these tools are activated centrally by the server
architecture, which can help to better balance the load.

• Stability: Concurrent use of multiple logging applica-
tions can destabilize the client computer. Individual
applications can affect each other especially when log-
ging from the same resources (e.g. from the same in-
stance of Internet Explorer). Currently, our system
framework does not monitor running logging tools and
there is no mechanism to recover tools that hang or
break during a task. This is a feature we will incorpo-
rate into a future version of the system framework.

5. FUTURE WORK
Future work on the experiment system framework will fo-
cus on further improvement of logging tool integration and
monitoring. We are currently developing a graphical user
interface for researchers to more easily design IIR experi-
ments with the system and monitor progress of running ex-
periments and the accuracy of its data logs. An extension
to the experiment system framework presented in this paper
is a data analysis system that allows us to fully integrate,
analyse and develop models from the recorded data. In par-
ticular, we are interested in creating higher level constructs
from integrated low-level logging data that can be used to
personalise interactive search for users. The experiment sys-
tem framework will be released as open source to the wider
research community.

6. REFERENCES
[1] R. Atterer, M. Wnuk, and A. Schmidt:. Knowing the

User’s Every Move - User Activity Tracking for Website
Usability Evaluation and Implicit Interaction. In 15th
International World Wide Web Conference
(WWW2006), Edinburgh, Scotland, 2006.

[2] N. Belkin. Intelligent Information Retrieval: Whose
Intelligence? In Fifth International Symposium for
Information Science (ISI), pages 25–31, Konstanz,
Germany, 1996. Universtaetsverlag Konstanz.

[3] N. Belkin, C. Cool, A. Stein, and U. Thiel. Cases,
Scripts, and Information-Seeking Strategies: On the
Design of Interactive Information Retrieval Systems.
Expert Systems with Applications, 9(3):379–395, 1995.

[4] A. Edmonds, K. Hawkey, M. Kellar, and D. Turnbull.
Workshop on logging traces of web activity: The
mechanics of data collection. In 15th International
World Wide Web Conference (WWW 2006),
Edinburgh Scotland, 2006.

[5] U. Kukreja, W. E. Stevenson, and F. E. Ritter. RUI –
Recording User Input from interfaces under Windows
and Mac OS X. Behavior Research Methods,
38(4):656–659, 2006.


