Pattern-based OWL Ontology Debugging
Guidelines

Oscar Corcho', Catherine Roussey?3, Luis Manuel Vilches Blazquez', and
Ivan Pérez*

! Ontology Engineering Group, Departamento de Inteligencia Artificial, Universidad
Politécnica de Madrid, Spain
2 Université de Lyon, CNRS, Université Lyon 1, LIRIS UMR5205,
Villeurbanne, France
3 Cemagref, 24 Av. des Landais, BP 50085, 63172 Aubiére, France
4 IMDEA Software, Madrid, Spain

Abstract. Debugging inconsistent OWL ontologies is a tedious and
time-consuming task where a combination of ontology engineers and do-
main experts is often required to understand whether the changes to be
performed are actually dealing with formalisation errors or changing the
intended meaning of the original knowledge model. Debugging services
from existing ontology engineering tools and debugging strategies avail-
able in the literature aid in this task. However, in complex cases they are
still far from providing adequate support to ontology developers, due to
their lack of efficiency or precision when explaining the main causes for
unsatisfiable classes, together with little support for proposing solutions
for them. We claim that it is possible to provide additional support to
ontology developers, based on the identification of common antipatterns
and a debugging strategy, which can be combined with the use of existing
tools in order to make this task more effective.

1 Introduction

Ontology engineering methodologies describe the sets of activities to be carried
out for ontology building, together with methods and techniques that can be
applied to them. Among these activities, those of ontology formalisation and
implementation appear in most methodologies, since the final objective is to ob-
tain one or several ontologies that describe the domain according to the ontology
requirement specifications provided in the early stages of development.

Formalisation and implementation activities have different degrees of diffi-
culty, considering the knowledge representation formalism and ontology language
selected, and the ontology requirements, among others. For example, implement-
ing an RDF(S) ontology is less difficult than implementing an OWL ontology;
and developing a small ontology where only primitive concepts are needed is
much simpler than developing a network of ontologies where defined concepts
are extensively used and complex inferences have to be drawn upon.

68

Similarly, there are different degrees of difficulty in ontology debugging. How-
ever, these are not deeply characterised in existing ontology engineering method-
ologies and methods (not even in effort estimation approaches like ONTOCOM
[12]). Only some works (e.g., [18]) evaluate existing ontology debugging tools,
showing the major issues in this task: run-time performance and robustness of
the debugging tool result.

If we focus on DL formalisation and OWL implementation, several debug-
ging tools exist (OWLDebugger [5] [4], SWOOP [8], [7], RepairTab [10]), which
have proven their effectiveness in different domains, isolating the minimal set of
axioms containing a conflict that leads to the unsatisfiability of a class (MUPS).
Tools like RepairTab [10] also propose alternatives to resolve the identified con-
flicts, showing those entailments that would be lost if the proposed solution was
applied. Nevertheless solutions are always limited to two choices: removing part
of the existing axioms or replacing a class by one of its superclasses. And on-
tologies used in the experiments (e.g., the mad cow one) have been written by
DL experts with the purpose of showing those conflicts.

Our focus is on real ontologies that have been developed by domain experts,
who are not necessarily too familiar with DL, and hence can misuse DL con-
structors and misunderstand the semantics of some OWL expressions, leading
to unwanted unsatisfiable classes. To illustrate this, we will use throughout the
paper examples taken from a medium-sized OWL ontology (165 classes) devel-
oped by a domain expert in the area of hydrology [19]. The first version of this
ontology had a total of 114 unsatisfiable classes. The information provided by
the debugging systems used ([5], [8]) on (root) unsatisfiable classes was not easily
understandable by domain experts to find the reasons for their unsatisfiability.
And in several occasions during the debugging process the generation of justi-
fications for unsatisfiability took several hours, what made these tools hard to
use, confirming the results described in [18]. As a result, we found out that in
several occasions domain experts were just changing axioms from the original
ontology in a somehow random manner, even changing the intended meaning of
the definitions instead of correcting errors in their formalisations.

Using this and several other real ontologies we have made an effort to iden-
tify common unsatisfiability-leading patterns used by domain experts when im-
plementing OWL ontologies, together with common alternatives for providing
solutions to them, so that they can be used by domain experts to debug their
ontologies. Then we provide some hints about how to organise the iterative on-
tology debugging process using a combination of debugging tools and patterns.

2 Patterns and AntiPatterns

In software engineering, a design pattern can be defined as a general, proven
and beneficial solution to a common re-occurring problem in software design [2].
Built upon similar experiences, design patterns represent best practices about
how to build software. On the contrary, antipatterns are defined as patterns that

69

appear obvious but are ineffective or far from optimal in practice, representing
worst practice about how to structure and build software [9].

In knowledge (and more specifically in ontology) engineering the concept
of knowledge modelling (ontology design) pattern is used to refer to modelling
solutions that allow solving recurrent knowledge modelling or ontology design
problems [1][14][13][15]. A similar definition is given for knowledge modelling (or
ontology design) antipatterns.

Different types of ontology design patterns are defined [14]:

- Logical Ontology Design Patterns (LP). They are independent from a specific
domain of interest, but dependent on the expressivity of the logical formalism
used for representation. For example, the n-ary relation pattern enables to
model n-ary relations in OWL DL ontologies.

- Architectural Ontology Design Patterns (AP). They provide recommenda-
tions about the structure of an ontology. They are defined in terms of LPs
or compositions of them. Examples are: taxonomy or lightweight ontology.

- Content Ontology Design Patterns (CP). They propose domain-dependent
conceptual models to solve content design problems for the domain classes
and properties that populate an ontology. They usually exemplify LPs, and
they represent most of the work done on ontology design patterns.

In contrast to ontology design patterns, the work on antipatterns is less detailed
([11],][16],[17].[3])- [3] define a set of class metaproperties and associated patterns
in order to check subsumption links and correct them. [17] proposed four pat-
terns based on class names in order to detect possible errors in the taxonomic
structure. Four logical antipatterns are presented in [11], all of them focused on
property domains and ranges. [16] describes common difficulties for newcomers
to DL in understanding the logical meaning of expressions. However, none of
these contributions groups antipatterns in a common classification, nor provide
a comprehensive set of hints to debug them.

2.1 A Classification of Ontology Design AntiPatterns

We have identified a set of patterns that are commonly used by domain experts
in their DL formalisations and OWL implementations, and that normally result
in unsatisfiable classes or modelling errors. As aforementioned all these antipat-
terns come from a misuse and misunderstanding of DL expressions by ontology
developers. Thus they are all Logical AntiPatterns (LAP): they are independent
from a specific domain of interest, but dependent on the expressivity of the log-
ical formalism used for the representation. We have categorized them into three
groups:

- Detectable Logical AntiPatterns (DLAP). They represent errors that DL
reasoners and debugging tools normally detect.

- Cognitive Logical AntiPatterns (CLAP). They represent possible modelling
errors that may be due to a misunderstanding of the logical consequences of
the used expression.

70

- Guidelines (G). They represent complex expressions used in an ontology
component definition that are correct from the logical and cognitive points
of view, but for which the ontology developer could have used other simpler
alternatives or more accurate ones for encoding the same knowledge.

In the rest of this section we describe the antipatterns identified in each group,
providing their name and acronym, their template logical expressions and a brief
explanation of why this antipattern can appear and how it should be checked
by the ontology developer. It is important to note that DLAPSs generate unsatis-
fiable classes that are normally identified by existing ontology debugging tools,
although the information that is provided back to the user is not described ac-
cording to such a pattern, what makes it difficult for ontology developers to find
a good solution according to their domain formalisation. With respect to CLAP
and G, they are not detected by these tools as such, although in some cases their
combination may lead to unsatisfiable classes that are detected (although not
appropriately explained) by tools. As we mention in our future work section, we
think that tool support for them could be a major step forward in this task.

Finally, all these antipatterns should be seen as elementary units that cause
ontology incoherence. That is, they can be combined into more complex ones.
However, providing a solution for the individual ones is already a good advance
to the current state of the art, and our future work will be also devoted to finding
the most common combinations and providing recommendations for them.

2.2 Detectable Logical AntiPatterns (DLAP)

As aforementioned, these antipatterns represent errors that DL reasoners can
detect. They can be classified into four main groups: those related to the mis-
understanding of the logical conjunction, those related to the incorrect use of
universal restrictions, those related to the incorrect use of the combination of
universal /existential restrictions and those related to the incorrect representa-
tion of disjoint and equivalent knowledge. We now describe them in detail, with
examples taken from earlier versions of HydrOntology [19] °, and with proposed
solutions for them, which should be always validated with the domain expert to
make sure that the intended meaning of the represented knowledge model does
not change.

AntiPattern AndIsOr (AIO) C; C 3R.(Cy M C3); Disj(Co, C3); ©

5 All original examples presented in this paper are in Spanish, and we also provide their
approximate translation in English for ease of understanding (given the specificity
of the domain, not all terms can be translated directly into English). This ontology
and several versions obtained throughout the debugging process are available at
http://www.dia.fi.upm.es/ ocorcho/OWLDebugging/

5 This does not mean that the ontology developer has explicitly expressed that Cy and
Cs are disjoint, but that these two concepts are determined as disjoint from each
other by a reasoner. We use this notation as a shorthand for Co M Cs5 C L.

71

This is a common modelling error that appears due to the fact that in com-
mon linguistic usage, “and” and “or” do not correspond consistently to logical
conjunction and disjunction respectively [16]. For example, “I like cake with al-
mond and with chocolate” is ambiguous. Does the cake contain?

- Some chocolate plus some almond? Cake C Jecontain.Chocolate M
deontain. Almond,

- Chocolate-flavoured almond? Cake C Jeontain.(Chocolate M Almond);

- Some chocolate or some almond? Cake C 3contain.(Chocolate) Almond);

In the original version of HydrOntology this antipattern appeared twice. We
present one instance of this antipattern with its approximate translation into
English 7 .

CarioC Jeomunica.(Albufera N Mar M Marisma);
Pipe C Jcommunicate.(Lagoon M Sea M Salt Marsh);

In order to solve this antipattern we propose replacing the logical conjunction
by the logical disjunction, or by the conjunction of two existential restrictions.

€y EFRAC7-C3); Disj(Ca, C3); = Cy C IR.(C U Cy); or

Cl E E'RCQ and E'R.Cg;

AntiPattern OnlynessIsLoneliness (OIL) Cy C VR.(Cs); C1 C VR.(Cs);
Disj(Ca, C3); B

The ontology developer created a universal restriction to say that C} in-
stances can only be linked with property R to Cs instances. Next, a new univer-
sal restriction is added saying that C7 instances can only be linked with R to
Cj3 instances, with Cy and Cj disjoint. In general, this is because the ontology
developer forgot the previous axiom in the same class or in any of the parent
classes.

The following is one of the two definitions of HydrOntology class where this
antipattern can be found :

Aguas de_ Transicion T Vestd préozima.Aguas Marinas M
Vestd prozima.Desembocadurall = lestd_proxima.T;
Transitional Water C Vis_nearby.Sea_ Water M
Vis_nearby.River Mouthl = lis_nearby.T;

If it makes sense, we propose to the domain expert to transform the two
universal restrictions into only one that refers to the logical disjunction of Cs
and 03.

O EVR.Cy; € EVRC3; Disj(Cy, C3); = C1 EVR.(Co U C3);

AntiPatterns UniversalExistence (UE) C; C 3R.C;C; C VR.Cs;

Disj(Ca, Cs);

" For better readability, we do not specify in these examples that the used classes are
disjoint.

& To be detectable, R property must have at least a value, normally specified as a
(minimum) cardinality restriction for that class, or with existential restrictions.

72

The ontology developer adds an existential /universal restriction to a class
without remembering that there was already an inconsistency-leading univer-
sal/existential restriction in the same class or in a parent class, respectively.

The following is one of 3 examples of this antipattern in HydrOntology:
Gola € Canal _Aguas _Marinas; Gola C Icomunica. Ria;
Canal _Aguas _Marinas C Yecomunica.Aguas M arinas;
Inlets C Sea_Waters _Canal; Inlets C Jcommunicate. Rivers;
Sea_Waters Canals T Vcommunicate.Sea W aters;

These antipatterns are difficult to debug because ontology developers some-
times do not distinguish clearly between existential and universal restrictions.
Our proposal is aimed at resolving the unsatisfiability of a class, but as usual it
should be clearly analysed by the ontology developer.

C; C ElR.OQ; C; C VR03, DiSj(CQ, 03) =(C, C VR(CQ] 03);

AntiPattern UniversalExistenceWithInverseProperty (UEWIP)
Cy C ERil.Cl; Cy CVR.Cs; DiSj(CQ, 03);

The ontology developer added restrictions about Cs and C; using a property
R but he didn’t remember that he had already used its inverse property R~'.
The following is an example of this antipattern in HydrOntology:
Aguas_Marinas C Jes__alimentada.Aguas _Quietas N aturales;
Aguas _Quietas Naturales C Valimentada.Aguas _Corrientes Naturales;
Sea_Water C Fis_ fed by.Naturalstandingy ater;
Natural _Standing Water C Vfeed.Natural Watercourse;

We propose to add the reverse axiom of the Cs definition Cy C 3R.Cs and if
it makes sense to add a class disjunction in the universal restriction.

Cy C 3R 1.Cy; 6+ EVRCs; Disj(Cy, Cs); = C1 CVR.(Co U Cs);

AntiPattern EquivalencelsDifference (EID) C; = Cs; Disj(C1, Co);

This pattern, which is only common for ontology developers with no previous
training in OWL modelling, comes from the fact that the ontology developer
wants to say that C7 is a subclass of Cs, or viceversa, but at the same time
it is different from C5 since he has more information. After a short training
session the developer would discover that he really wants to express C7; C Cy
The following is an example of this antipattern in HydrOntology:

Cascada = Catarata; Disj(Cascada, Catarata);
Cascade = Water fall; Disj(Cascade, Water fall);

We propose to ask the ontology developer whether he really wants to define a
synonym or a subclass-of relation. Depending on the ontology developer§ answer,
the equivalent axiom should be transformed into a subclass-of one or the less
used concept should be suppressed according to the SOE recommendations.

Er=-65; Disj(Cq,C2) = Cy E Cq or Cy is a label of Cy;

73

2.3 Cognitive Logical AntiPatterns (CLAP)

As aforementioned, these antipatterns are not necessarily errors, but describe
common templates that ontology developers use erroneously trying to represent
a different piece of knowledge.

AntiPattern SynonymOrEquivalence (SOE) C; = Cy;

The ontology developer wants to express that two classes C7 and Cs are iden-
tical. This is not very useful in a single ontology that does not import others.
Indeed, what the ontology developer generally wants to represent is a termino-
logical synonymy relation: the class C; has two labels: C; and C5. Usually one
of the classes is not used anywhere else in the axioms defined in the ontology.

The following is an example of this antipattern in HydrOntology:
Corriente_ Subterrdnea= Rio_ Subterrdneo;

Subterranean _Watercourse = Subterranean__ River;

The proposal for avoiding this antipattern is the following (if Cs is the less
used term in the ontology) add all the comments and labels of C5 into C; and
remove Cy.

E1=65 = C1.[RDFS : label|comment] = C2.[RDFS : label|comment];

2.4 Guidelines

In contrast to the antipatterns already described, guidelines represent complex
expressions used in an ontology component definition that are correct from a
logical point of view, but in which the ontology developer could have used other
simpler alternatives for encoding the same knowledge. The recommendations
provided for Guidelines mainly focus on making the ontology easier to under-
stand by ontology developers, and do not make any change with respect to the
semantics or intended meaning of the ontology. We have determined that the pro-
posed changes make the ontology easier to understand by asking a good range
of ontology developers about their preferences when analysing ontologies that
were not developed by them.

Guideline DisjointnessOfComplement (DOC) C; = not Cy;

During the development process of a new ontology, it is hard to know that
(' is the logical negation of C3. Maybe the ontology developper will define later
Cj3 as a sister class of C; and Cy. Thus we recommend to say that C; and Cy
cannot share instances first, and change the definition of C'; as a negation of Cy
if necessary at the end of the development. The following is an example of this
antipattern in HydrOntology:
Laguna__Salada = not Aguas_Dulces;
Salt_Lagoon = not Fresh _Water;

We propose: €r=-nrot-C = Disj(Cy,Cs);

74

Guideline Domain& Cardinality Constraints (DCC) C; C 3R.Cy;
C1 C (> 2R.T); (for example)

Ontology developers with little background in formal logic find difficult to
understand that “only” does not imply “some” [16]. This antipattern is a coun-
terpart of that fact. Developers may forget that existential restrictions contain
a cardinality constraint: Cy C 3R.Cy E C; C (> 1R.Cs). Thus, when they com-
bine existential and cardinality restrictions, they may be actually thinking about
universal restrictions with those cardinality constraints.

The following is an example of this antipattern in HydrOntology:
Aguas_de_ TransicionC Jsometida__a__influencia.Aguas _Dulces T
dsometida _a_influencia.Aguas Saladas M
Vsometida _a_influencia.(Aguas Dulces U Aguas _Saladas) M
= lsometida _a_influencia.T;

Transitional _Water C Jis_in fluenced by.Fresh Water M
dis_influenced by.Salt Water M

Vis_influenced by.(Fresh Water U Salt_ Water) N

= lis_influenced by.T;

We propose to transform the existential restriction into a universal one when
a cardinality restriction exists.

EE3RE,;C1 C (> 2R.T);= C1 CVR.Cy;

Guideline GroupAxioms (GA) C; CVR.Cy;Cy C (> 2R.T); (for example)

For visualisation purposes, we recommend grouping all the restrictions of a
class that use the same property R in a single restriction. This recommendation
is to facilitate the visualisation of complex class definitions.

€ EVR.CyiCrE(>2R-T);= €y CYR.Co U (> 2R.T):;

Guideline MinIsZero (MIZ) C; C (> 0R.T); = 6+ E{>06RT);

The ontology developer wants to remember that C; is the domain of the
R property. This restriction has no impact on the logical model being defined
and can be removed at the end of the development process. This antipattern
appeared once in the HydrOntology debugging process. Laguna_Salada C (>
Oes _alimentada.T);
Salted Lagoon C (> 0fedBy.T);

3 Ontology Debugging Strategy

As mentioned in the introduction, OWL ontology debugging features have been
proposed in the literature with different degrees of formality ([5], [8], [20]). They
allow identifying the main root for unsatisfiable classes and superfluous axioms
and restrictions, and in some cases they explain them with different degrees
of detail, so that the debugging process can be guided by them and can be
made more efficient. However, in general these features are mainly focused on
the explanations of logical entailments and are not so focused on the ontology

75

engineering side. Hence explanations are still difficult to understand for ontology
developers. Furthermore, there are no clear strategies about how an ontology
developer should debug incoherent ontologies, in terms of steps to be followed
in this process. Consequently, we think that there is a need to complement
both types of suggestions in order to make the ontology debugging process more
efficient.

Figure 1 shows graphically a usual ontology debugging lifecycle, with the
roles of knowledge engineer and domain expert identified. As it happens in other
disciplines (e.g., software development), the first step is to locate where the prob-
lems are, using a reasoner directly or an ontology debugging tool, which may also
identify root unsatisfiable classes, one of which can be chosen. Otherwise any of
the unsatisfiable classes that are in the top of the class hierarchy can be selected.
Then antipatterns have to be identified for the selected class. Based on the an-
tipattern identification, the knowledge engineer proposes recommendations for
corrections, such as the ones presented in the section 2. Recommendations can-
not always be automated, since they may change the intended meaning of the
ontology, and should be documented. Once a change is done, new unsatisfiabil-
ity checks should be performed. This is an iterative process to be followed until
there are no more unsatisfiable classes in the ontology.

Compute justification

or inspect class definition

/ Knowledge
Choose a root g Engineer =
unsatisfiable class % -.,____':KF—} ot

AntiPattern Identification

Recommendation

AntiPattern Correction
Documentation

Domain ; - Validation
Expert
—— Agreement?

Check for
unsatisfiable

classes
YES

Creationof a new

: Solution
version of the ontology

Fig. 1. Global strategy for ontology debugging.

Identifying antipatterns at each step in the process may be a hard task, even
for experienced ontology developers. Thus we also propose a more detailed strat-
egy, based on the catalogue of antipatterns described in section 2. We propose
to follow a specific order, based on our experience, as summarised in Figure 2.

76

First, we recommend solving terminological problems (SOE), checking the
use of equivalence and disjoint constructors between classes (EID, DOC) and
applying the guideline GA in order to make formal definitions easier to under-
stand, grouping in the same definition all the axioms dealing with the same role.
These are the easiest antipatterns to detect and they are useful to clean other
ontology definitions.

Then we propose checking the root unsatisfiable classes in the ontology, using
any debugging tool. At that point we can check the use of conjunction (AIQ), the
use of universal restrictions (OIL), and combinations of universal and existential
restrictions (UE, DCC). Sometimes, unsatisfiability arises from a combination
of several antipatterns, so that is the reason why there are loops in the figure.

After solving problems in root unsatisfiable classes, the branch of the class
hierarchy should be checked manually from the leaf to the root to detect if the
same antipattern is present in any class of the branch.

Finally, we recommend removing superfluous axioms (MIZ) to improve the
clarity of the ontology. However, this could be really done at any point in time
throughout the ontology debugging process.

Resolve Terminological Problem SOE J

Check the use of =

\

-

2. Check Inverse Role]

3. Check Role Inheritance

4. Check Class Hierarchy] /

Fig. 2. Detailed debugging strategy based on antipatterns.

.

C,ﬁ,ﬁ

4 Evaluation

In order to evaluate our debugging strategy, we conducted a user study with
two groups of subjects, using Protégé OWL v4 and its associated explanation

77

workbench [5]. The ontology tested was the first version of HydrOntology, which
has been used to provide examples in the previous sections. Table 1 summarises
some of its characteristics.

Number of| Number of [Number of|Number of Number of|Average number
classes |unsatisfiable| object datatype class of axioms
classes properties | properties | axioms per class
165 114 47 64 625 4

Table 1. The characteristics of Hydrontology

4.1 User Study

Fourteen volunteer subjects, who where postgraduate students in the Comput-
ing Science Department at the Universidad Politécnica de Madrid, were chosen
for the evaluation. Most of these subjects had the same profile: they were ex-
perienced in software debugging, they had basic knowledge in description logics
and OWL, and they had no knowledge about the Hydrology field.

Our initial hypotheses, which we wanted to test with this study, were:

Hypothesis 1: The subjects using our debugging strategy and our set of an-
tipatterns will take less time to debug the ontology.

Hypothesis 2: The subjects using our set of antipatterns will take less time to
find the problematic parts of axioms.

Hypothesis 3: The subjects using our set of antipatterns and their associate
recommendations will provide a better solution according to the domain expert
than just remove the problematic part of the azioms.

The study was conducted as follows. Each subject was given a tutorial on
the debugging of DL axioms and another tutorial on using Protégé v4 with the
explanation workbench [4]. None of the subjects had seen the ontology before.
They were divided into two similar groups, with similar profiles and similar size.
Group 2 was given an additional third tutorial about all the antipatterns, with
general examples, and about our proposed debugging strategy.

The subjects in the two groups were asked to answer two surveys , where
they were provided with a set of fixed questions to answer (dealing with specific
classes), and in all cases they had to specify the time needed to answer each
query.

The first survey was about the perceived quality of the ontology. For this
survey both groups could only use Protégé to browse the ontology, without the
use of any reasoner or the Protégé explanation workbench. Besides, subjects in
Group 2 could also use the documentation on antipatterns that we had provided
them. The questions were about which parts of the axioms of specific classes
would not be taken in account by a reasoner when checking satisfiability, about
existing discrepancies between the formal and the natural language definitions
of classes, about how to rewrite axioms to make them more understandable, and

78

about the existence of duplicate classes. The second survey was focused on how
they would be able to solve existing unsatisfiable classes in the original ontology.
They were asked to find the problematic axioms that lead to unsatisfiability in
specific classes and provide some solutions. They could use reasoners Fact++ or
Pellet1.5 and the Protégé explanation workbench, plus the set of antipatterns in
the case of Group 2.

4.2 Analysis of the results

Survey|Number| Number of |Number of subjects| Average time (in
1D of |classes involved| who completed |minutes) to complete
queries | in the survey the survey the survey
S1 44 36 Gl1: 6 G1: 167 (+31)
G2: 8 G2: 136
52 18 25 Gl1: 4 G1: 187
G2: 8 G2: 225 (+38)

Table 2. Survey results and characteristics

Hypothesis 1: Concerning the first hypothesis about time, our debugging
strategy doesn’t seem to reduce the time needed for debugging. As shown in
Table 2 the subjects using our strategy (Group 2) completed the first survey in
less time than Group 1, but needed more time to complete survey 2. In any case,
the differences in time were not very relevant.

However, it is important to notice that most of the subjects complained
about the fact that the reasoner crashed regularly while performing debugging
activities, and in those cases they found out that the availability of a catalogue
of antipatterns was useful to go on working in the meantime.

Hypothesis 2: Concerning the hypothesis related to finding more quickly the
errors, the results are mixed. It seems that it depends on the complexity of the
antipatterns. The subjects using our set of antipatterns found more quickly the
errors related to the SOE, EID, DOC and MIZ antipatterns. The explanation
is that these antipatterns are easier to find in an ontology development tool
user interface. However, when an unsatisfiable class contains an error which is
the concatenation of several antipatterns, subjects in group 2 were not able
to perform better than those in group 1. Finally, when an unsatisfiable class
contained too many axioms almost none of the subjects managed to find the
error. For example the class Rio contains 15 axioms and only one subject per
group found the error.

Hypothesis 3: Concerning the solution of errors, our recommendations helped
in the debugging process. The quality of a solution is evaluated by comparing the
result axiom with the one belonging to the final Hydrontology version debugged
by a knowledge engineer and the domain expert. When they manage to identify
an antipattern, the subjects in group 2 provided a more accurate and precise

79

solution than those in group 1, who were mainly removing axioms randomly in
order to make the class satisfiable. That is, without our recommendations the
main resolution strategy is still to remove completely the problematic axioms.

5 Conclusions and future work

In this paper we have described a strategy for OWL ontology debugging that can
be used in combination with existing OWL ontology debugging services in order
to improve the efficiency of the debugging process by having a predefined set
of suggested actions to be performed by ontology developers. We have obtained
this strategy taking into account our experience in the development of DL-based
ontologies and a careful analysis about how ontology developers and ontology
engineers debug their ontologies nowadays.

As part of the work that we had to do in order to come up with this strategy,
we have collected a list of common antipatterns that can be found in domain-
expert-developed ontologies and that cause a large percentage of the unsatisfia-
bility of classes. Besides, we have listed some antipatterns that do not have an
impact on the logical consequences of the ontology being developed, but that are
of importance in order to reduce the number of errors in the intended meaning
of ontologies or to improve their understandability.

For the time being, our strategy is mainly manual, where debugging tools
are used to detect some unsatisfiable classes or propose sets of axioms contain-
ing antipatterns, although it remains to the user to find out exactly where the
antipattern is and which antipattern is applied.

We have evaluated our strategy and compared it with current practice in
ontology debugging by using two groups of volunteers that have worked with an
incoherent ontology in the geographical domain. As a result, we can confirm that
our strategy does not reduce the debugging time but it improves the quality of
debugging, that is, our proposed recommendations help finding a more appro-
priate solution to an error. The other conclusion of our evaluation is that users
have some difficulty to find the antipatterns among all the axioms defining an
unsatisfiable class.

Hence as part of our future work we are aiming at implementing additional
tools that can be used in combination with existing debugging tools (e.g., the
Protégé explanation workbench) to help in the identification of antipatterns. For
the time being we have started applying the OPPL language [6] for this task,
with promising results.

Another part of future work will be related to applying this strategy for the
debugging of well-known inconsistent ontologies (e.g., TAMBIS). In this case
we would be extending our work to that of experts debugging ontologies that
have not been written by them. And we will also focus on how anti-patterns are
usually combined together and how more complex ones can be found that can
speed up even more the debugging process.

Finally, some of the explanations that we have provided for the appearance of
antipatterns are related to the order in which some of the restrictions and axioms

80

have been added to the ontology. Hence keeping a record of the changes that have
been made to the ontology following well-known ontology change management

phases and providing possible ranked solutions to them.

Acknowledgements This work is a result of collaboration between OEG,
LIRIS lab and IMDEA Software. It has been done under the context of the
project GeoBuddies, funded by the Spanish Ministry of Science and Technology
and it was also partially funded by the COST Action C21 sponsored by the
European Commission under the grant number STSM-C21-04241. The work of
IMDEA Software on this paper has been partially funded by the Spanish Min-
istry of Industry, Tourism and Trade under the grant FIT-340503-2007-2, as part
of the Morfeo EzWeb strategic singular project.

References

1. Clark P, Thompson J, Porter B.: Knowledge patterns. In Proceedings of 7th Inter-
national Conference Principles of Knowledge Representation and Reasoning (KR),
Breckenridge, Colorado, USA: 591-600. (2000)

2. Gamma E, Helm R, Johnson R, Vlissides J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-2. (1995)

3. Guarino N and Welty C: Evaluating Ontological Decisions with OntoClean. Com-
munications of the ACM. 45(2):61-65. New York:ACM Press, (2002).

4. Horridge M.: Understanding and Repairing Inferences. Tutorial in the 11th Intl.
Protégé Conference - June 23-26, 2009 - Amsterdam, Netherlands.

5. Horridge M, Parsia B, Sattler U.: Laconic and Precise Justifications in OWL. In
Proceedings of the 7th International Semantic Web Conference (ISWC), Karlsruhe,
Germany; LNCS 5318: 323-338. (2008).

6. Tannone L, Rector A, Stevens R.: Embedding Knowledge Patterns into OWL. In
proceedings of the 6th European Semantic Web Conference (ESWC2009), Crete,
Greece. The Semantic Web: Research and Applications (2009), pp. 218-232

7. Kalyanpur A, Parsia B, Cuenca-Grau B.: Beyond Asserted Axioms: Fine-Grain
Justifications for OWL-DL Entailments. Description Logics 2006

8. Kalyanpur A, Parsia B, Sirin E, Cuenca-Grau B.: Repairing Unsatisfiable Classes
in OWL Ontologies. In Proceedings of the 3rd European Semantic Web Conference
(ESWC), Budva, Montenegro; LNCS 4011: 170-184 (2006)

9. Koenig A.: Patterns and Antipatterns. Journal of Object-Oriented Programming
8(1):46-48. (1995)

10. Lam J, Pan JZ, Sleeman D, Vasconcelos W. A Fine-Grained Approach to Resolving
Unsatisfiable Ontologies. Journal of Data Semantics (JoDS) 10:62-95. 2008

11. Laboratory of Applied Ontology: Collection of antipatterns from http://wiki.loa-
cor.it/index.php/LoaWiki:MixedDomains

12. Paslaru E, Simperl B, Popov I O, Biirger T.: ONTOCOM Revisited: Towards
Accurate Cost Predictions for Ontology Development Projects. In Procs. of the 6th
European Semantic Web Conference, ESWC 2009, Heraklion, Greece, June 2009,
LNCS 5554: 248-262 (2009)

81

13. Presutti V., Gangemi A.: Content Ontology Design Patterns as practical building
blocks for web ontologies. In Proceedings of the 27th International Conference on
Conceptual Modeling (ER), Barcelona, Spain, LNCS 5231: 128-141(2008).

14. Presutti V, Gangemi A, David S, Aguado G, Suarez-Figueroa MC, Montiel E,
Poveda M.: Neon Deliverable D2.5.1: A Library of Ontology Design Patterns avail-
able at <http://www.neon-project.org>

15. Rech J, Feldmann R L, Ras E.: Knowledge Patterns. In M. E. Jennex (Ed.), En-
cyclopedia of Knowledge Management (2nd Edition), IGI Global, USA, (2009).

16. Rector AL, Drummond N, Horridge M, Rogers L, Knublauch H, Stevens R, Wang
H, Wroe C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common
Errors & Common Patterns. In Proceedings of the 14th International Conference
Knowledge Acquisition, Modeling and Management (EKAW), Whittlebury Hall,
UK. LNCS 3257: 63-81 (2004)

17. Svab-Zamazal O, Svatek V: Analysing Ontological Structures through Name Pat-
tern Tracking. In Proceedings of the 16th International Conference, EKAW 2008,
Acitrezza, Italy, September 29 - October 2, 2008. Lecture Notes in Computer Science
5268 Springer 2008, ISBN 978-3-540-87695-3: 213-228 (2008)

18. Stuckenschmidt H.: Debugging OWL Ontologies - a Reality Check. In Proceedings
of the 6th International Workshop on Evaluation of Ontology-based Tools and the
Semantic Web Service Challenge (EON-SWSC-2008), Tenerife, Spain. (2008).

19. Vilches-Blazquez LM, Bernabé-Poveda M A, Suarez-Figueroa MC, Gémez-Pérez A,
Rodriguez-Pascual AF: Towntology & hydrOntology: Relationship between Urban
and Hydrographic Features in the Geographic Information Domain. In Ontologies
for Urban Development. Studies in Computational Intelligence, vol. 61, Springer:
73-84. (2007)

20. Wang, H., Horridge M, Rector A, Drummond N, Seidenberg J.: Debugging OWL-
DL Ontologies: A heuristic approach. In Proceedings of the 4th International Se-
mantic Web Conference (ISWC), Galway, Ireland; LNCS 3729: 745-757(2005)

82

