
Using Lexico-Syntactic Ontology Design
Patterns for ontology creation and population

Diana Maynard and Adam Funk and Wim Peters

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello
S1 4DP, Sheffield, UK

Abstract. In this paper we discuss the use of information extraction
techniques involving lexico-syntactic patterns to generate ontological in-
formation from unstructured text and either create a new ontology from
scratch or augment an existing ontology with new entities. We refine
the patterns using a term extraction tool and some semantic restrictions
derived from WordNet and VerbNet, in order to prevent the overgener-
ation that occurs with the use of the Ontology Design Patterns for this
purpose. We present two applications developed in GATE and available
as plugins for the NeOn Toolkit: one for general use on all kinds of text,
and one for specific use in the fisheries domain.

Key words: natural language processing, relation extraction, ontology
generation, information extraction, Ontology Design Patterns

1 Introduction

Ontology population is a crucial part of knowledge base construction and main-
tenance that enables us to relate text to ontologies, providing on the one hand
a customised ontology related to the data and domain with which we are con-
cerned, and on the other hand a richer ontology which can be used for a variety
of semantic web-related tasks such as knowledge management, information re-
trieval, question answering, semantic desktop applications, and so on.

Automatic ontology population is generally performed by means of some kind
of ontology-based information extraction (OBIE) [1, 2]. This consists of identi-
fying the key terms in the text (such as named entities and technical terms) and
then relating them to concepts in the ontology. Typically, the core information
extraction is carried out by linguistic pre-processing (tokenisation, POS tagging,
etc.), followed by a named entity recognition component, such as a gazetteer and
rule-based grammar or machine learning techniques.

In this paper we discuss the use of information extraction techniques involving
lexico-syntactic patterns to generate ontological information from unstructured
text and either create a new ontology from scratch or augment an existing on-
tology with new entities. This application represents a typical situation where
NLP (natural language processing) techniques can assist in the development of

39

2 Diana Maynard and Adam Funk and Wim Peters

Semantic Web technology. While the use of such patterns is not new in itself (for
example the Hearst patterns [3]), most previous work in this area has focused
on using and extending or refining the set of Hearst patterns with additional
information, or has focused on patterns within a very specific domain. In this
work, we investigate the addition of lexico-syntactic patterns corresponding to
ontology design patterns (ODPs) [4]which, in contrast to the Hearst patterns,
are very general and thus cover a wide range of sentences but are also very
ambiguous. While Hearst patterns produce high precision but low recall, the
ontology design patterns produce high recall but low precision. We also include
some additional lexico-syntactic patterns and investigate the addition of seman-
tic restrictions to reduce the overgeneration problem. A detailed description of
all the patterns and of the semantic restrictions is given in Section 2.

The system is implemented in GATE, an architecture for natural language
processing which contains a number of pre-existing language processing compo-
nents and applications, and enables the user to develop their own applications
and integrate new plugins [5]. Two applications are available as plugins for the
NeOn toolkit1: one for general use on all kinds of text, and one for specific use
in the fisheries domain. These are described in more detail in Section 3.

2 Lexico-syntactic patterns

Traditional rule-based NE recognition applications usually rely on a fairly small
set of patterns which aim to identify the relevant entities in text. These make
extensive use of gazetteer lists which provide all or part of the entity in question,
in combination with linguistic patterns (see for example [6] for a discussion of
the importance of gazetteers in pattern-based NE recognition). A typical rule to
identify a person’s name consists of matching the first name of the person with
an entry in the gazetteer (e.g. “John” is listed as a possible first name), followed
by an unknown proper noun (e.g. “Smith”, which is recognised as a proper name
by the POS tagger). Most patterns include some combination of proper noun or
word with an initial capital letter (for English) and either some gazetteer entry
or linguistic feature.

However, identifying ontological concepts and/or relations requires a slightly
different strategy. For open relation extraction [7], we have no such lists to use as
a starting point. Even where we do have a seed ontology or known lists of terms
and can make use of this information, it is often still insufficient because the
concept may not be in the ontology yet, may be in the ontology but ambiguous,
or may exist there in a different form (e.g. as a synonym or as a linguistic
variant).

An alternative approach to traditional recognition techniques is to make use
of linguistic patterns and contextual clues. Lexico-syntactic pattern-based on-
tology population has proven to be reasonably successful for a variety of tasks
[8]. The idea of acquiring semantic information from texts dates back to the

1 http://www.neon-toolkit.org/

40

Title Suppressed Due to Excessive Length 3

early 1960s with Harris’ distributional hypothesis [9] and Hirschman and Sager’s
work in the 1970s [10], which focused on determining sets of sublanguage-specific
word classes using syntactic patterns from domain-specific corpora. A detailed
description and comparison of lexical and syntactic pattern matching can be
found in [11], In particular, research in this area has been used in specific do-
mains such as medicine, where a relatively small number of syntactic structures
is often found, for example in patient records. Here the structures are also quite
simple, with short and relatively unambiguous sentences typically found: this
makes syntactic pattern matching much easier.

We have identified three sets of patterns which can help us identify concepts,
instances and properties to extend the ontology: the well-known Hearst patterns
(Section 2.1), the Lexico-Syntactic Patterns developed in NeOn corresponding
to Ontology Design Patterns (Section 2.2), and some new contextual patterns
defined by us which take into account contextual information (Section 2.3). As
a first step, we identified patterns which generated basic ontology elements such
as instances, classes, subclasses and properties.

2.1 Hearst patterns

The Hearst patterns are a set of lexico-syntactic patterns that indicate hy-
ponymic relations [3], and have been widely used by other researchers, e.g. [12].
Typically they achieve a very high level of precision, but quite low recall: in
other words, they are very accurate but only cover a small subset of the possible
patterns for finding hyponyms and hypernyms. The patterns can be described
by the following rules, where NP stands for a Noun Phrase and the regular
expression symbols have their usual meanings2:

– such NP as (NP,)* (or|and) NP
Example: . . . works by such authors as Herrick, Goldsmith, and Shakespeare.

– NP (,NP)* (,)? (or|and) (other|another) NP
Example: Bruises, wounds, or other injuries. . .

– NP (,)? (including|especially) (NP,)* (or|and) NP
Example: All common-law countries, including Canada and England . . .

Hearst actually defined five different patterns, but we have condensed some
of them into a single rule. Also, where Hearst defines the relations as hyponym-
hypernym, we need to be more specific when translating this to an ontology, as
they could represent either instance-class or subclass-superclass relations. To
make this distinction, we tested various methods. In principle, POS-tagging
should be sufficient, since proper nouns generally indicate instances, but our
tagger mistags capitalised common nouns (at the beginning of sentences) as
proper nouns frequently enough that we cannot rely on it for this purpose.
We also looked at the presence or absence of a determiner preceding the noun
(since proper nouns in English rarely have determiners) and whether the noun
is singular or plural, but this still left the problem of the sentence-initial nouns.
2 () for grouping; | for disjunction; *, +, and ? for iteration.

41

4 Diana Maynard and Adam Funk and Wim Peters

Finally, we decided to pre-process the text with the named entity recognition
application ANNIE, and only consider certain types of named entities (Person,
Location, Organization, and potentially some unknown entity types) as candi-
dates for instances; all other NPs are considered to be classes. This gave much
better results, occasionally missing an instance but rarely overgenerating.

2.2 ODP Lexico-Syntactic Patterns

The second type of patterns investigated was the set of Lexico-Syntactic Patterns
(LSPs) corresponding to Ontology Design Patterns. We implemented a number
of these patterns in our application. Some patterns could not be implemented
because the GATE ontology API and the NEBONE plugin (which enables the
ontology editing) do not contain the functionality for all restrictions.

In the following rules, <sub> and <super> are like variable names for the
subclasses and superclasses to be generated; CN means class of, group of, etc.;
CATV is a classification verb3; PUNCT is punctuation; NPlist is a conjoined list
of NPs (“X, Y and Z”).

1. Subclass rules
– NP<sub> be NP<super>
– NPlist<sub> be CN NP<super>
– NPlist<sub> (group (in|into|as) | (fall into) | (belong to))

[CN] NP<super>
– NP<super> CATV CV? CN? PUNCT? NPlist<sub>

Example: Frogs and toads are kinds of amphibian.
Thyroid medicines belong to the general group of hormone medicines.

2. Equivalence rules
– NP<class> be (the same as|equivalent to|equal to|like) NP<class>
– NP<class> (call | denominate | (designate by|as) | name) NP<class>

(where the verb is passive)
Example: Poison dart frogs are also called poison arrow frogs.

3. Properties
– NP<class> have NP<property>
– NP<instance> have NP <property>

Example: Birds have feathers.
Sharks have 32 teeth.

It is important to note that these particular LSPs were designed to be used
as support for ontology modelling, rather than directly for automatic discovery
of ontological relations. The effect of this is that while these patterns are quite
productive (for example X is a Y), most of them are potentially ambiguous
and susceptible to overgeneration when applied to the automatic discovery pro-
cess. In particular, general patterns such as “NP have NP” and “NP be NP”
3 E.g., classify in/into, comprise, contain, compose (of), group in/into, divide in/into,

fall in/into, belong (to).

42

Title Suppressed Due to Excessive Length 5

are very problematic. For example, the former pattern also matches sentences
like “Writers have penguins based at the North Pole” and extracts the relation
“writers have penguins” which is clearly wrong. Similarly, the pattern “NP be
NP” would match sentences like “Sheep are a separate species” and extract the
concept “sheep” as a subclass of “separate species” which makes no sense. There
is also much ambiguity with this pattern: for example, in the sentence “Helicul-
ture is the farming of snails”, “heliculture” should be recognised as a synonym
of “farming of snails” and not as a subclass. Clearly, such patterns are far too
general to be used off the shelf. In Section 2.4 we discuss some restrictions we
have implemented which aim to counteract these and other problems.

2.3 Contextual patterns

We also defined a set of rules designed to make use of contextual information
in the text about known entities already existing in the ontology (unlike the
lexico-syntactic patterns which assume no previous ontological information is
present). These rules are used in conjunction with the OntoRootGazetteer plugin
in GATE, which enables any morphological variant of any class, instance or label
in the ontology to be matched with (any morphological variant of) any word or
words in the text. Which elements from the ontology are to be considered (e.g.,
whether to include properties, and if so which ones) is determined in advance
by the user when setting up the application. Note that because the generation
process is incremental, involving a pipeline of sequential processsing resources,
and because we use NEBOnE which generates the ontology on-the-fly, we do not
necessarily need a seed ontology from which to start, because we can make use
of the ontology entities already generated by the previous two sets of patterns.
More information about the application and about NEBOnE is given in Sections
3 and 3.3 respectively.

Below we describe the contextual patterns we have identified:

1. Add a new subclass: (Adj|N) NP<class> → NP<subclass>.
This matches a class name aready in the ontology preceded by an adjective or
noun, such as adjective preceding a known type of fish, which we assume is a
more specific type. For example, when we encounter the phrase . . . Japanese
flounder. . . in a text and flounder is already in the ontology, we add Japanese
flounder as a subclass of flounder.

2. Add a new class (a more generic version of the Hearst patterns). Here we
postulate that an unknown entity amidst a list of known entities is likely to
be also an entity of the same type. For example, if we have a list of classes
of fish, and there is an unknown noun phrase in amongst the list, we can
presume that this is also a class of fish. To decide where to add this new
class in the ontology, we can look for the Most Specific Common Abstraction
(MSCA) of all the other items in the list (i.e. the lowest common superclass
of all the classes in the list) and add the new entity as a subclass of this
class.
Example: Hornsharks, leopard sharks and catsharks can survive in aquar-
ium conditions for up to a year or more.

43

6 Diana Maynard and Adam Funk and Wim Peters

where hornshark and leopard shark are classes in the ontology and catshark
is unknown, so we can recognise catshark as a subclass with the same parent
as that of hornshark and leopard shark, in this case shark.

3. Add an alternative name as a synonym: a name followed by an alter-
native name in brackets is a very common pattern in some kinds of text.
For example in texts about flora and fauna we often get the common name
followed by the Latin name in brackets, as in the following sentence:
Example: Mummichogs (Fundulus heteroclitus) were the most common sin-
gle prey item.
If we know that one of the two NPs is a class or instance in the ontology, we
can predict fairly accurately that the other NP is a synonym.

2.4 Adding semantic restrictions

Due to the overgeneralisation of some of the patterns described above, in partic-
ular the ODP LSPs, we have incorporated some restrictions on them. First, we
restrict possible subclasses and classes to terms rather than to all NPs. For this,
we use TermRaider, a term selection algorithm (currently unpublished) we have
developed based on linguistic filtering and tf-idf scoring. This increases the preci-
sion dramatically, but lowers the recall a little; however, adjusting TermRaider’s
parameters to be a little more flexible with patterns should improve the recall.

The second restriction we imposed was to include lexical resources containing
semantic classes from WordNet [13] and VerbNet [14], which enable the incor-
poration of deeper semantic information. This allows us (i) to look for verbal
patterns connecting terms in a sentence, using the ANNIC plugin in GATE [15],
and (ii) to restrict the kinds of relation extracted. For example, we can restrict
the kinds of entities that have body parts associated with them to animals and
humans. We aim not only to reduce the number of errors, but also to eliminate
the kind of general relations which while not incorrect, are not very useful. For
example, knowing that a turtle is a local creature is not of much interest unless
more contextual information is provided (i.e. in which region it is local).

Restrictions on Subclass Patterns One example of a restriction we placed
was on the subclass rule (Adj|N) NP<class> → NP<subclass> from the set
of contextual patterns, which we modified so that either the superclass must
already exist in the ontology as a recognised class, or such that certain semantic
restrictions apply. One such restriction states that both the proposed subclass
and superclass must have the semantic category “animal”. For example, this
enables us to recognise “carrot weevil” as a subclass of “weevil”. This rule in
particular has very high accuracy (98%) and only seems to cause errors as a
result of incorrect semantic categories from WordNet.

Restrictions on Properties One of the most error-prone rules was the Prop-
erty rule X has Y from the Lexico-Syntactic Patterns set, which was clearly far
too general. We restricted this to again use semantic categories of WordNet. For

44

Title Suppressed Due to Excessive Length 7

patterns involving animals we can state that X must be an animal and Y must
be a body part. This gave much better results (approximately 75% accuracy, al-
though low recall). Another restriction is the type of thing that can be considered
a property. We experimented with restricting the range of the property to the
following semantic categories from WordNet: plant, shape, food, substance, ob-
ject, body, animal, possession, phenomenon, artifact, and found much improved
results.

3 SPRAT and SARDINE

We have developed two applications in GATE which make use of the lexico-
syntactic pattern matching techniques to create and/or populate ontologies.
Both applications are available as part of the GATE webservices (SAFE) plugin
for the NeOn toolkit.

First, we have developed a generic application, SPRAT (Semantic Pattern
Recognition and Annotation Tool) which can be used on any kind of text. This
recognises new concepts, instances and properties, as described above, and adds
these to a new or existing ontology. We have tested the application on wikipedia
texts about animals (See Section 4) with good results so far, and plan to test on
other domains and text types.

Second, we have developed a specific application, SARDINE (Species An-
notation and Recognition and Indexing of Named Entities) which is aimed at
the fisheries domain. The idea behind SARDINE is to identify mentions of fish
species from text. The main difference between SARDINE and SPRAT is that,
in addition to being developed for a specific domain, SARDINE also relies on a
pre-existing domain-specific ontology which acts as a seed. We use the species
ontology developed by the FAO4 for this purpose. The application recognises:

– existing fish names listed in the seed ontology
– potential new fish names not listed in the seed ontology
– potential relations between fish names

For the new fish, it attempts to classify them in the ontology, based on linguistic
information such as synonyms and hyponyms of existing fish. The application
can either generate the new items directly into the seed ontology, or create a
new ontology in the same way as SPRAT does. The latter is generally preferable
because the original seed ontology is quite large and cumbersome, so it is easier
to create a new smaller ontology which can then be easily verified by a human
expert and then merged with the original seed ontology.

3.1 Processing Resources

Both applications are composed of a number of GATE components: some linguis-
tic pre-processing followed by a set of gazetteer lists and the JAPE grammars
described above. The components are as follows:
4 Food and Agriculture Organization of the United Nations – http://www.fao.org/

45

8 Diana Maynard and Adam Funk and Wim Peters

– Tokeniser: divides the text into tokens
– Sentence Splitter: divides the text into sentences
– POS-Tagger: adds part-of-speech information to tokens
– Morphological Analyser: adds morphological information (root, lemma etc.)

to tokens
– NP chunker: divides the text into noun phrase chunks
– Gazetteers: looks up various items in lists
– OntoRootGazetteer (optional): looks up items from the ontology and

matches them with the text, based on root forms
– JAPE transducers: annotates text and adds new items to the ontology

The application can either create an ontology from scratch, or modify an
existing ontology. SARDINE also requires the presence of a seed ontology, which
could be the ontology to be modified, or a different one. The ontology used is
the same one for the whole corpus: this means that if a number of documents
are to be processed, the same ontology will be modified. If this is not the desired
behaviour, then there are two options:

1. A separate corpus is created for each document or group of documents corre-
sponding to a single output ontology. The application must be run separately
for each corpus.

2. A processing resource can be added to the application that clears the ontol-
ogy before re-running on the next document. This requires that the ontology
is saved at the end of the application, after processing each document.

3.2 Implementation of patterns

The patterns themselves are implemented as JAPE rules [16]. On the left hand
side (LHS) of the rule is the pattern to be annotated. This consists of a number
of pre-existing annotations which have been created as a result of pre-processing
components (such as POS tagging, gazetteer lookup and so on) and (potentially)
earlier JAPE rules. The example below shows a pattern for matching a subclass
relation, such as “Frogs are a kind of amphibian” where “frog” is annotated as
a subclass of “amphibian”.

Rule:Subclass1
(
({NP}):sub
({Lookup.minorType == be}
{Token.category == DT}{Lookup.majorType == kind})
({NP}):super
) --> ...

This pattern matches a noun phrase (identified by our NP Chunker), followed
by some morphological variant of the verb “to be” (identified via the gazetteer
lookup), a determiner (identified via the POS tagger), some word(s) indicating a
“kind of” relation (identified via the gazetteer lookup) followed by another noun

46

Title Suppressed Due to Excessive Length 9

phrase (identified by the NP Chunker). The two noun phrases (corresponding
ultimately to the subclass and superclass) are given labels (“sub” and “super”)
which will used in the second part of the rule.

The right hand side (RHS) of the rule invokes NEBOnE and creates the
new items in the ontology, as well as adding annotations to the document itself.
NEBOnE is responsible also for ensuring that the resulting changes to the ontol-
ogy are wellformed: this is described in more detail in Section 3.3. The RHS of
the rule first gets the relevant information from the annotations (using the labels
assigned on the LHS of the rule), then adds a new class below the root class for
the superconcept (labelled “amphibian” in our example), a new subclass of this
(labelled “frog” in our example), and finally adds annotations to the entities in
the document. Figure 1 shows a screenshot from GATE of an ontology created.

Fig. 1. Generated ontology in GATE

3.3 NEBOnE

Both applications use the specially developed NEBOnE plugin for GATE in order
to generate the changes to the ontology. NEBOnE (Named Entity Based ON-
tology Editing) is an implementation for processing natural language text and

47

10 Diana Maynard and Adam Funk and Wim Peters

manipulating an ontology, and is derived from the CLOnE plugin [17] for GATE.
The major difference between CLONE and NEBOnE is that while CLONE re-
lies on a restricted input text (generated by the user in a controlled language),
NEBOnE can be used with unrestricted free text, so it is a lot more flexible.
When the NEBOnE plugin is installed, actions concerning the ontology are
implemented on the RHS (right-hand side) of JAPE rules, such as adding or
deleting new classes, instances, subclasses, properties and so on.

Once the text has been pre-processed, a JAPE transducer processes each
sentence in the input text and manipulates the ontology appropriately. This
Processing Resource refers to the contents of the ontology in order to analyse
the input sentences and check for errors; some syntactically identical sentences
may have different results if they refer to existing classes, existing instances, or
non-existent names, for example.

4 Evaluation

We evaluated the accuracy of the lexical patterns using a corpus of 25 randomly
selected wikipedia articles about animals, such as the entries for rabbit, sheep
etc. We ran SPRAT and examined the results in some detail5. In total, SPRAT
generated 1058 classes, of which 83.6% were correct; 659 subclasses, of which
76.6% were correct, 23 instances, of which 52.2% were correct, and 55 proper-
ties, of which 74.5% were correct. Note that, unlike in traditional named entity
recognition evaluation, we use a strict method of scoring where a partially cor-
rect response, i.e. one where the span of the extracted entity is too short or
too long, is considered as incorrect. This is because for ontology population,
having an incorrect span is generally a more serious error than in named entity
recognition.

We should point out that in these type of texts (articles about animals)
the number of instances is quite small. The wrongly extracted instances were
largely the result of erroneous named entity recognition. For example, Barbados
Blackbelly was wrongly recognised by the system as a named entity, and was
therefore extracted as an instance rather than as a subclass of Sheep Breed.

While we find the initial results from SPRAT very encouraging, we can see
that the patterns implemented are far from foolproof, since unlike with a con-
trolled language such as CLOnE, we cannot rely on a one-to-one correspondence
between a simple syntactic structure and its semantics. First we have the prob-
lem of overgeneration. Already, we have discarded some potential patterns (such
as some of the ODP LSPs) that we consider to generate too many errors. Fur-
ther refinement is still necessary here, either to remove other patterns or to
reimplement them in a different way.

One of the main causes of overgeneration is caused by the span of the noun
phrase describing the concept to be added to the ontology. We have experimented
with different possibilities. A larger span provides finer distinctions and thus
5 We have not currently evaluated SARDINE formally, but informal tests show similar

results

48

Title Suppressed Due to Excessive Length 11

better classes, but overgenerates considerably, while a smaller span produces
more general classes but better accuracy (does not overgenerate so much). By
restricting the noun phrases to terms recognised by TermRaider, we solve this
problem somewhat, but this means that the results are only as good as the terms
recognised. It is also apparent that sometimes the restriction to terms risks losing
some important information. For example, in the sentence:

Mygalomorph and Mesothelae spiders have two pairs of book lungs filled
with haemolymph

we can correctly recognise the relation “Mesothelae spiders have book lungs”, but
a better relation might be “Mesothelae spiders have two pairs of book lungs”.
We might also want to capture the fact that the book lungs are filled with
haemolymph.

Second, as we discussed earlier, and as mentioned in [4],lexico-syntactic pat-
terns tend to be quite ambiguous as to which relations they indicate. For ex-
ample, NP have NP could indicate an object property or a datatype property
relationship. Also, English word order can lead to inverse relations. For exam-
ple, in the sentence “A traditional Cornish pilchard dish is the stargazy pie”,
stargazy pie is a kind of Cornish pilchard dish, but the sentence can equally be
written “The stargazy pie is a traditional Cornish pilchard dish”. Here, the use of
the definite and indefinite determiner helps to identify the correct relationship,
but this is not always the case. Often, further context is also crucial. For exam-
ple, in the sentence “Both African males and females have external tusks”, it is
not very useful to extract the concept females with the property have external
tusks unless you know that females actually refers to female African elephants.
To extract this information would require also coreference matching, which is
planned for the future.

Finally, complex and negative sentences can cause errors. From the phrase
“DAT is a legitimate therapy”, we could easily deduce that DAT could be clas-
sified as an instance of therapy. However, further inspection of the wider context
reveals that the opposite is true, as the sentence actually reads “...there is no
compelling scientific evidence that DAT is a legitimate therapy.” This is a com-
mon problem with shallow NLP systems.

Integration of a full parser has also been investigated, but discarded on the
grounds of speed (full parsing is extremely computationally expensive in this
situation). In particular, we found that the sentences in Wikipedia articles, which
we have used for training and testing, are quite hard to parse well, because
they frequently exhibit a long and complex sentence structure which is highly
ambiguous to a parser. This causes not only speed but also accuracy problems.

5 Related work

As already mentioned, the use of lexico-syntactic patterns in itself is far from
new and has already proved to be successful for a variety of tasks [8]. Various
attempts have been made to extend the Hearst patterns in a semi-automatic

49

12 Diana Maynard and Adam Funk and Wim Peters

way, for example using the web as evidence [12]. Other methods focus mainly
on a specific kind of pattern, such as part-of relations [18], or use clustering
approaches [19]. The disadvantage of the latter is that they require large corpora
to work well and generally fail to produce good clusters from fewer than 100
million words.

The closest approach to ours is probably Text2Onto [20], which performs
relation extraction on the basis of patterns. It combines machine learning ap-
proaches with basic linguistic processing such as tokenisation, lemmatisation
and shallow parsing. Our approach differs in that it has a greater number of
lexico-syntactic patterns, including the ODP ones, and it currently uses only a
rule-based approach rather than machine learning, with no statistical clustering
or parsing. This leads to much increased precision over Text2Onto, though fewer
relations are produced. It also enables a more flexible approach and fine-tuning
of the system.

We also took inspiration from some currently unpublished research carried
out at DFKI in the Musing project6, which aims to derive T-Box Relations from
unstructured texts in German. In this work, attention is focused primarily on
deriving relations between parts of German compound nouns, but we can make
use of similar restrictions.

Within the range of activities required for ontology learning, our approach
covers a number of intermediate stages in the process of ontology acquisition,
namely term recognition and relation extraction. In the initial acquisition stage,
it will recognise terms from the corpus only if they participate in any of the
patterns. This guarantees termhood only up to a certain extent. For relation
extraction, we do not make use of a parser. There are many applications that
make use of syntactic dependencies, e.g. [21, 22]. Our approach differs from this in
that our patterns are defined at low levels of syntactic constituency, such as noun
phrases, and by means of finite state transducers. Identifying and engineering
on the basis of the linguistic building blocks that are relevant for each ontology
editing task eliminates the need for a parser. This bottom-up approach is much
faster and less error-prone than a parser, and is more in line with the ontology
bootstrapping approach advocated in [23].

6 Conclusions and Further Work

In summary, the idea behind this work is to investigate the extent to which
such patterns can be used either on their own or in conjunction with the user
to generate or populate a more detailed ontology from text. Both SPRAT and
SARDINE applications assist the user in the generation and/or population of
ontologies from text. They are available to download for use as GATE Web-
service plugins for the NeOn toolkit 7. The lexico-syntactic patterns we have
implemented provide a good basis, but there is some work still to go in improv-

6 http://www.musing.eu/
7 http://www.neon-toolkit.org

50

Title Suppressed Due to Excessive Length 13

ing the rules, and we have put forward a number of suggestions for ways in which
this might be done.

One further possibility for improvement is to incorporate combinations of
Hearst patterns and statistically derived collocational information, because its
combination with lexico-syntactic patterns has proven to improve precision and
recall [24]. Integration of a full parser has also been investigated, but discarded
on the grounds of speed (full parsing is extremely computationally expensive in
this situation). In particular, we found that the sentences in Wikipedia articles,
which we have used for training and testing, are quite hard to parse well, because
they frequently exhibit a long and complex sentence structure which is highly
ambiguous to a parser. This causes not only speed but also accuracy problems.

Acknowledgements. This research was partially supported by the EU Sixth
Framework Program project NeOn (IST-2005-027595).

References

1. Maynard, D., Cunningham, H., Kourakis, A., Kokossis, A.: Ontology-Based Infor-
mation Extraction in hTechSight. In: First European Semantic Web Symposium
(ESWS 2004), Heraklion, Crete (2004)

2. Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-based information
extraction for business applications. In: Proceedings of the 6th International Se-
mantic Web Conference (ISWC 2007), Busan, Korea (November 2007)

3. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Con-
ference on Computational Linguistics (COLING’92), Nantes, France, Association
for Computational Linguistics (1992)

4. de Cea, G.A., Gómez-Pérez, A., Ponsoda, E.M., Suárez-Figueroa, M.C.: Natu-
ral language-based approach for helping in the reuse of ontology design patterns.
In: Proceedings of the 16th International Conference on Knowledge Engineering
and Knowledge Management Knowledge Patterns (EKAW 2008), Acitrezza, Italy
(September 2008)

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02). (2002)

6. Mikheev, A., Moens, M., Grover, C.: Named Entity recognition without gazetteers.
In: Proceedings of the Ninth Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL’99). (1999) 1–8

7. Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation ex-
traction. In: Proceedings of ACL-08. (2008)

8. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked,
T., Soderland, S., Weld, D.S., Yates, A.: Web-scale Information
Extraction in KnowItAll. In: Proceedings of WWW-2004. (2004)
http://www.cs.washington.edu/research/knowitall/papers/www-paper.pdf.

9. Harris, Z.: Mathematical Structures of Language. Wiley (Interscience), New York
(1968)

10. Hirschman, L., Grishman, R., Sager, N.: Grammatically based automatic word
class formation. Information Processing and Retrieval 11 (1975) 39–57

51

14 Diana Maynard and Adam Funk and Wim Peters

11. Maynard, D.G.: Term Recognition Using Combined Knowledge Sources. PhD
thesis, Manchester Metropolitan University, UK (2000)

12. Pantel, P., Pennacchioni, M.: Espresso: Leveraging generic patterns for automat-
ically harvesting semantic relations. In: Proceedings of Conference on Computa-
tional Linguistics / Association for Computational Linguistics (COLING/ACL-06),
Sydney, Australia (2006) 113–120

13. Fellbaum, C., ed.: WordNet - An Electronic Lexical Database. MIT Press (1998)
14. Schuler, K.K.: VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis,

University of Pennsylvania (2005)
15. Aswani, N., Tablan, V., Bontcheva, K., Cunningham, H.: Indexing and Querying

Linguistic Metadata and Document Content. In: Proceedings of Fifth International
Conference on Recent Advances in Natural Language Processing (RANLP2005),
Borovets, Bulgaria (2005)

16. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns
Engine (Second Edition). Research Memorandum CS–00–10, Department of Com-
puter Science, University of Sheffield (November 2000)

17. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
CLOnE: Controlled Language for Ontology Editing. In: Proceedings of the 6th
International Semantic Web Conference (ISWC 2007), Busan, Korea (November
2007)

18. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings
of ACL-99, College Park, MD (1999) 57–64

19. Pantel, P., Ravichandran, D.: Automatically labeling semantic classes. In: Pro-
ceedings of HLT/NAACL-04), Boston, MA (2004) 321–328

20. Cimiano, P., Voelker, J.: Text2Onto - A Framework for Ontology Learning and
Data-driven Change Discovery. In: Proceedings of the 10th International Con-
ference on Applications of Natural Language to Information Systems (NLDB),
Alicante, Spain (2005)

21. Cimiano, P., Hartung, M., Ratsch, E.: Learning the appropriate generalization
level for relations extracted from the Genia corpus. In: Proc. of the 5th Language
Resources and Evaluation Conference (LREC). (2006)

22. Gamallo, P., Gonzalez, M., Agustini, A., Lopes, G., de Lima, V.: Mapping syntactic
dependencies onto semantic relations. In: Proc. of the ECAI Workshop on Machine
Learning and Natural Language Processing for Ontology Engineering. (2006)

23. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Pub-
lishers, Amsterdam (2002)

24. Cederberg, S., Widdows, D.: Using LSA and noun coordination information to im-
prove the precision and recall of automatic hyponymy extraction. In: Proceedings
of the 7th conference on Natural language learning at HLT-NAACL, Morristown,
NJ (2003) 111–118

52

