
Ontology Construction for Web Services

Aviv Segev1 and Quan Z. Sheng2

1 Department of Knowledge Service Engineering, KAIST, Daejeon 305-701, Korea

aviv@kaist.edu
2 School of Computer Science, The University of Adelaide, SA 5005, Australia

qsheng@cs.adelaide.edu.au

Abstract. Ontologies have become the de-facto modeling tool of choice, em-

ployed in a variety of applications and prominently in the Semantic Web. Nev-

ertheless, ontology construction remains a daunting task. Ontological bootstrap-

ping, which aims at automatically generating concepts and their relations in a

given domain, is a promising technique for ontology construction. Bootstrapping

an ontology based on a set of predefined textual sources, such as Web services,

must address the problem of multiple concepts that are largely unrelated. This

paper exploits the advantage that Web services usually consist of both WSDL

and free text descriptors. The WSDL descriptor is evaluated using two methods,

namely Term Frequency/Inverse Document Frequency (TF/IDF) and Web con-

text generation. We propose an ontology bootstrapping process that integrates the

results of both methods and validates the concepts using the free text descriptors,

thereby offering a more accurate definition of ontologies.

1 Introduction
Ontologies are used in an increasing range of applications, notably the Semantic Web,

and essentially have become the preferred modeling tool. However, the design and

maintenance of ontologies is a formidable process [1]. Ontology bootstrapping, which

has recently emerged as an important technology for ontology construction, involves

automatic identification of concepts relevant to a domain and relations between the con-

cepts [2]. Previous work on ontology bootstrapping focused on either a limited domain

or expanding an existing ontology [3]. In the field of Web services, registries such as

the Universal Description, Discovery and Integration (UDDI) have been created to en-

courage interoperability and adoption of Web services. Unfortunately, UDDI registries

have some major flaws [4]. In particular, UDDI registries either are publicly available

and contain many obsolete entries or require registration which limits access. In either

case, a registry only stores a limited description of the available services. Ontologies

created for classifying and utilizing Web services can serve as an alternative solution.

However, the increasing number of available Web services makes it difficult to classify

Web services using a single domain ontology or a set of existing ontologies created

for other purposes. Furthermore, the constant increase in the number of Web services

requires continuous manual effort to evolve an ontology.

The Web service ontology bootstrapping process proposed in this paper is based

on the advantage that a Web service can be separated into two types of descriptions: i)

the Web Service Description Language (WSDL) describing “how” the service should

be used and ii) a free text description of the Web service describing “what” the service

does. This advantage allows bootstrapping the ontology based on WSDL and verifying

the process based on the Web service free text descriptor.

147

2

The ontology bootstrapping process is based on analyzing a Web service using three

different methods, where each method represents a different perspective of viewing the

Web service. In particular, the first method analyzes the Web service from an internal

point of view, i.e., what concept in the text best describes the document content. The

second method describes the document from an external point of view, i.e., what most

common concept represents the answers to the Web search queries based on the WSDL

content. Finally, the third method is used to resolve inconsistencies with the current

ontology. An ontology evolution is performed when all three analysis methods agree

on the identification of a new concept or a relation change between the ontology con-

cepts. The relation between two concepts is defined using the descriptors related to both

concepts. Our approach facilitates automatic building of an ontology that could assist

in expanding, classifying, and retrieving relevant services, without the prior training

required by previously developed approaches.

2 Related Work
The field of automatic annotation of syntactic Web services contains several works rel-

evant to our research. [5] presents a combined approach toward automatic semantic an-

notation of Web services. The approach relies on several matchers (e.g., string matcher,

structural matcher, and synonym finder), which are combined using a simple aggrega-

tion function. Machine learning is used in a tool called Assam [6], which uses exist-

ing annotation of semantic Web services to improve new annotations. [7] suggests a

context-based semantic approach to the problem of matching and ranking Web services

for possible service composition. Unfortunately, all these approaches require clear and

formal semantic annotations to ontologies.

Ontology evolution has been researched on domain specific Web sites [8]. Noy and

Klein [1] defined a set of ontology-change operations and their effects on instance data

used during the ontology evolution process. Unlike prior work which was heavily based

on existing ontology or domain specific, our work evolves an ontology for Web services

“from scratch”. A survey on the state of the art Web service repositories [9] suggests

that analyzing the Web service textual description in addition to the WSDL description

can be more useful than analyzing each descriptor separately. The survey mentions the

limitation of existing ontology evolution techniques which yield low recall. Our solution

overcomes the low recall using Web context recognition.

3 The Bootstrapping Ontology Model
The bootstrapping ontology model proposed in this paper is based on the continuous

analysis of WSDL documents and employs an ontology model based on concepts and

relationships [10]. The innovation of the proposed bootstrapping model is the combi-

nation of the use of two different extraction methods, TF/IDF and Web based, and the

verification of the results using a third method analyzing the external service descriptor.

We used these three methods to demonstrate the feasibility of our model. Other more

complex methods, from the field of Machine Learning (ML) and Information Retrieval

(IR), can also be used to implement the model. However, the straightforward use of the

methods emphasizes that many methods can be “plugged in” and that the results are

attributed to the model’s process of combination and verification.

148

3

WSDL
Ontology
Evolution

Token
Extraction

Web
Context

Retrieval

TF/IDF
Ranking

Concept

Evocation

Service
Description

Fig. 1. Web Service Ontology Bootstrapping Process

The overall bootstrapping ontology process is described in Figure 1. There are four

main steps in the process. The token extraction step extracts tokens representing rel-

evant information from a WSDL document. The second step analyzes in parallel the

extracted WSDL tokens using two methods. In particular, TF/IDF analyzes the most

common terms appearing in each Web service document and appearing less frequently

in other documents. Web context extraction uses the sets of tokens as a query to a search

engine, clusters the results according to descriptors, and classifies which set of descrip-

tors identifies the context of the Web service. The concept evocation step identifies the

descriptors appearing in both the TF/IDF method and the Web context method. These

descriptors identify possible concept names which could be utilized by the ontology

evolution. The context descriptors also assist in the convergence process of the rela-

tions between concepts. Finally, the ontology evolution step expands the ontology as

required according to the newly identified concepts and modifies the relations between

them. The external Web service textual descriptor serves as a moderator if there is a

conflict between the current ontology and a new concept. The relations are defined as

an ongoing process according to the most common context descriptors between the

concepts. After the ontology evolution, the process continues with the next WSDL. It

should be noted that the processing order of WSDL documents is arbitrary.

3.1 Token Extraction
The analysis starts with token extraction, representing each service, 𝒮, using a set of to-

kens called descriptors. Each token is a textual term, extracted by simply parsing the un-

derlying documentation of the service. The descriptor represents the WSDL document,

formally put as 𝒟𝒮
𝑤𝑠𝑑𝑙 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, where 𝑡𝑖 is a token. WSDL tokens require

special handling, since meaningful tokens (such as names of parameters and operations)

are usually composed of a sequence of words, with the first word lowercase, followed by

first letter of other words capitalized (e.g., getInstitutionNameFromDomain).

Therefore, the descriptors are divided into separate tokens. Figure 2 depicts a WSDL

document with the tokens bolded.

The extracted token list serves as a baseline. These tokens are extracted from the

WSDL document of a Web service that determines whether an email address or domain

name belongs to an academic institution. The service is used to illustrate the initial step

in building the ontology. All elements classified as name are extracted, including tokens

that might be less relevant.

3.2 TF/IDF Analysis
TF/IDF is a common mechanism in IR to generate a robust set of representative key-

words from a corpus of documents. The method is applied here to the WSDL de-

149

4

<definitions name="AcademicVerifier"
targetNamespace="http://www.capeclear.com/AcademicVerifier.wsdl" ...>
<message name="isAcademicEmailAddress"><part name="emailAddress">
 <message name="getInstitutionNameFromDomain">
 <message name="getInstitutionNameFromDomainResponse">
 <message name="getInstitutionNameFromEmailAddress">

Fig. 2. Initial Processing Example of the Academic Verifier

scriptors. By building an independent corpus for each document, irrelevant terms are

more distinct and can be thrown away with a higher confidence. To formally define

TF/IDF, we start by defining 𝑓𝑟𝑒𝑞(𝑡𝑖,𝒟𝑖) as the number of occurrences of the token

𝑡𝑖 within the document descriptor 𝒟𝑖. We define the term frequency of each token 𝑡𝑖
as: tf(𝑡𝑖) = 𝑓𝑟𝑒𝑞(𝑡𝑖,𝒟𝑖)

∣𝒟𝑖∣ . We define 𝒟𝑤𝑠𝑑𝑙 to be the corpus of WSDL descriptors. The

inverse document frequency is calculated as the ratio between the total number of docu-

ments and the number of documents which contain the term: idf(𝑡𝑖) = log ∣𝒟∣
∣{𝒟𝑖 : 𝑡𝑖∈𝒟𝑖}∣ .

Here, 𝒟 is defined generically, and its actual instantiation is chosen according to the ori-

gin of the descriptor. The TF/IDF weight of a token, annotated as 𝑤(𝑡𝑖), is calculated

as: 𝑤(𝑡𝑖) = tf(𝑡𝑖)× idf2(𝑡𝑖).
The token weight is used to induce ranking over the descriptor’s tokens. We define

the ranking using a precedence relation ⪯𝑡𝑓/𝑖𝑑𝑓 , which is a partial order over 𝒟, such

that 𝑡𝑙 ⪯𝑡𝑓/𝑖𝑑𝑓 𝑡𝑘 if 𝑤(𝑡𝑙) < 𝑤(𝑡𝑘). The ranking is used to filter the tokens according to

a threshold which filters out words with a frequency count higher than the second stan-

dard deviation from the average frequency. Figure 3 on the left circle of every concept

presents the list of tokens which received a higher weight than the threshold. Several to-

kens which appeared in the baseline list (see Figure 2) were removed due to the filtering

process. For instance, words such as “response” and “get” received below-the-threshold

TF/IDF weight, due to their high frequency.

3.3 Context Extraction

We define a context descriptor 𝑐𝑖 from domain 𝒟𝒪ℳ as an index term used to identify

a record of information, which in our case is a Web service. A weight 𝑤𝑖 ∈ ℜ identifies

the importance of descriptor 𝑐𝑖 in relation to the Web service. For example, we can have

a descriptor 𝑐1 = 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 and 𝑤1 = 42. A descriptor set {⟨𝑐𝑖, 𝑤𝑖⟩}𝑖 is defined by a set

of pairs, descriptors and weights. Each descriptor can define a different point of view of

the concept. The descriptor set defines all the different perspectives and their relevant

weights, which identify the importance of each perspective.

By collecting all the different view points delineated by the different descriptors we

obtain the context. A context 𝒞 =
{{⟨𝑐𝑖𝑗 , 𝑤𝑖𝑗⟩}𝑖}𝑗 is a set of finite sets of descriptors,

where 𝑖 represents each context descriptor and 𝑗 represents the index of each set. For

example, a context 𝒞 may be a set of words (hence 𝒟𝒪ℳ is a set of all possible char-

acter combinations) defining a Web service and the weights can represent the relevance

of a descriptor to the Web service. In classic IR, ⟨𝑐𝑖𝑗 , 𝑤𝑖𝑗⟩ may represent the fact that

the word 𝑐𝑖𝑗 is repeated 𝑤𝑖𝑗 times in the Web service descriptor document.

The context recognition algorithm was adapted from [11], which can be formally

defined as: Let 𝒟 = {𝒫1,𝒫2, ...,𝒫𝑚} be a set of textual propositions representing a Web

service, where for all 𝒫𝑖 there exists a collection of descriptor sets forming the context

𝒞𝑖 = {⟨𝑐𝑖1, 𝑤𝑖1⟩, ..., ⟨𝑐𝑖𝑛, 𝑤𝑖𝑛⟩} so that 𝑖𝑠𝑡(𝒞𝑖,𝒫𝑖) is satisfied. McCarthy [12] defines a

relation 𝑖𝑠𝑡(𝒞,𝒫), asserting that a proposition 𝒫 is true in a context 𝒞. In our case, the

adapted algorithm uses the corpus of WSDL descriptors, 𝒟𝑤𝑠𝑑𝑙, as propositions 𝒫𝑖 and

150

5

Software
Registration

Domain Name

Academic
Institute
From
Address
Verifier

TF / IDF Web Context

Web Service
AcademicVerifier

Domain

Registration
Hosting

Software
Search

Registrant
Name
Location

TF / IDF Web Context

Web Service
DomainSpy

Domain
Address

Database
IP

Code
Picture

Zip
City
Resolver

TF / IDF Web Context

Web Service
ZipCodeResolver

Address
XML

Address

Domain
Address

XML

?

?

?

?

Concept Evocation

?

Software
Registration

Domain Name

Academic
Institute
From
Address
Verifier

TF / IDF Web Context

Web Service
AcademicVerifier

Domain

Registration
Hosting

Software
Search

Registrant
Name
Location

TF / IDF Web Context

Web Service
DomainSpy

Domain
Address

Database
IP

Code
Picture

Zip
City
Resolver

TF / IDF Web Context

Web Service
ZipCodeResolver

Address

Ontology Evolution

XML

?

Con Concept

Subclass
Relation

?
Undefined
Relation

Key

Zip
City

Descriptor
Results

Fig. 3. Example of Web Service Ontology Bootstrapping

the contexts describing the WSDL as descriptors 𝑐𝑖𝑗 with their associated weight 𝑤𝑖𝑗 .
The context recognition algorithm identifies the outer context 𝑖𝑠𝑡(𝒞,∩𝑚𝑖=1 𝑖𝑠𝑡(𝒞𝑖,𝒫𝑖)).

The context recognition algorithm consists of three main phases: 1) selecting con-

texts for each text, 2) ranking the contexts, and 3) declaring the current contexts. The

result of the token extraction is a list of keywords obtained from the text. The selection

of the current context is based on searching the Web for relevant documents according

to these keywords and on clustering the results into possible contexts. The output of the

ranking stage is the current context or a set of highest ranking contexts. The set of pre-

liminary contexts that has the top number of references, both in number of Web pages

and in number of appearances in all the texts, is declared to be the current context and

the weight is defined by integrating the value of references and appearances. The input

to the algorithm is a stream of information in text format. Figure 3 shows the result

of the Web context extraction in the right circle of each concept. The figure shows the

context that includes only the highest ranking descriptors which pass the cutoff to be in-

cluded in the context. For example, Domain, Software, Registration, and Domain Name
are the context descriptors selected to describe the AcademicVerifier service.

3.4 Concept Evocation

Concept evocation identifies a possible concept definition which will be refined in the

ontology evolution. The concept evocation is based on context intersection. An ontology

concept is defined by the descriptors which appear in the intersection of both the Web

context results and the TF/IDF results. We defined one descriptor set from the TF/IDF

results, 𝑡𝑓/𝑖𝑑𝑓𝑟𝑒𝑠𝑢𝑙𝑡, based on extracted tokens from the WSDL text. The context, 𝒞,

is initially defined as a descriptor set extracted from the Web representing the same

document. As a result, the ontology concept is represented by a set of descriptors, 𝑐𝑖,
which belong to both sets: 𝐶𝑜𝑛𝑐𝑒𝑝𝑡 = {𝑐1, ..., 𝑐𝑛∣𝑐𝑖 ∈ 𝑡𝑓/𝑖𝑑𝑓𝑟𝑒𝑠𝑢𝑙𝑡 ∩ 𝑐𝑖 ∈ 𝒞}.

Figure 3 shows an example of the concept identified by the intersection. For the

AcademicVerifier Web service, the concept is based on the intersection of both

descriptor sets is identified as Domain. The concept can consist of more than one de-

scriptor (e.g., DomainSpy Web service is identified by the descriptors Domain and

Address). Concepts can be evoked as a result of partial overlapping concepts. This ex-

ample can be seen by Address and the set of Domain, Address, and XML.

151

6

A context can consist of multiple descriptor sets and can be viewed as a meta-

representation of the Web service. The added value of having such a meta-representation

is that each descriptor set can belong to several ontology concepts simultaneously. For

example, a descriptor set {⟨ 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 23⟩} can be shared by multiple ontology

concepts (Figure 3) that have interest in domain registration. The different concepts can

be related by verifying whether a specific domain exists, domain spying, etc., although

the descriptor may have differing relevance to the concept and hence different weights

are assigned to it. Such overlap of contexts in ontology concepts affects the task of Web

service ontology bootstrapping. The appropriate interpretation of a Web service context

that is part of several ontology concepts is that the service is relevant to all such con-

cepts. This leads to the possibility of the same service belonging to multiple concepts

based on different perspectives of the service use.

The concept relations can be deduced based on convergence of the context de-

scriptors. The ontology concept is described by a set of contexts, each of which in-

cludes descriptors. Each new Web service that relates to the concept adds new con-

text descriptor sets. As a result, the most common context descriptors which relate

to more than one concept can change after every iteration. The sets of descriptors

of each concept are defined by the union of the descriptors of both the Web context

and the TF/IDF results. The context is expanded to include the descriptors identified

by the Web context, the TF/IDF, and the concept descriptors: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 =
{𝑐1, ..., 𝑐𝑛∣𝑐𝑖 ∈ 𝑡𝑓/𝑖𝑑𝑓𝑟𝑒𝑠𝑢𝑙𝑡 ∪ 𝑐𝑖 ∈ 𝒞}. For example, in Figure 3, the context of ser-

vice AcademicVerifier includes the descriptors: Software, Registration, Domain
Name, Domain, Academic, Institute, From, Address, and Verifier.

The relation between two concepts, 𝐶𝑜𝑛𝑖 and 𝐶𝑜𝑛𝑗 , can be defined as the con-

text descriptors common to both concepts, for which weight 𝑤𝑘 is greater than a cut

off value of 𝑎: 𝑅𝑒(𝐶𝑜𝑛𝑖, 𝐶𝑜𝑛𝑗) = {𝑐𝑘∣𝑐𝑘 ∈ 𝐶𝑜𝑛𝑖 ∩ 𝐶𝑜𝑛𝑗 , 𝑤𝑘 > 𝑎}. However, since

multiple context descriptors can belong to two concepts, the value of 𝑎 for the relevant

descriptors needs to be predetermined. A possible cutoff can be defined by TF/IDF,

Web Context, or both. Alternatively, the cutoff can be defined by a minimum number

or percent of Web services belonging to both concepts based on shared context descrip-

tors. The relation between the two concepts Domain and Domain Address in Figure 3

can be based on Domain or Registration. The example takes a minimum number of

appearances in a document as the cutoff of both the TF/IDF and Web Context methods.

3.5 Ontology Evolution
The ontology evolution consists of four steps including: 1) building new concepts, 2)

determining the concept relations, 3) identifying relations types, and 4) re-setting the

process for the next WSDL document. Building a new concept is based on refining

the possible identified concepts. The evocation of a concept in the previous step does

not guarantee that it should be integrated with the current ontology. Instead, the new

possible concept should be analyzed in relation to the current ontology.

The descriptor is further validated using the textual service descriptor. The analysis

is based on the advantage that a Web service can be separated into two descriptions:

the WSDL description and a description of the Web service in free text. The WSDL

descriptor is analyzed to extract the context descriptors and possible concepts as de-

scribed previously. The second descriptor, 𝒟𝒮
𝑑𝑒𝑠𝑐 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, represents the text

152

7
1: For each Web service
2: Extract tokens from WSDL
3: 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 = Apply TF/IDF algorithm to 𝒟𝑤𝑠𝑑𝑙

4: 𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡 = Apply Web Context algorithm to 𝒟𝑤𝑠𝑑𝑙

5: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 = 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 ∩𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡

6: If(𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 ⊆ 𝒟𝑑𝑒𝑠𝑐)
7: 𝐶𝑜𝑛𝑖 = 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 ∩𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡

8: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 = 𝑇𝐹/𝐼𝐷𝐹𝑟𝑒𝑠𝑢𝑙𝑡 ∪𝑊𝑒𝑏𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑟𝑒𝑠𝑢𝑙𝑡

9: For each concept pair 𝐶𝑜𝑛𝑖, 𝐶𝑜𝑛𝑗

10: If(𝐶𝑜𝑛𝑖 ⊆ 𝐶𝑜𝑛𝑗)
11: 𝐶𝑜𝑛𝑖 subclass 𝐶𝑜𝑛𝑗

12: Else
13: 𝑅𝑒(𝐶𝑜𝑛𝑖, 𝐶𝑜𝑛𝑗) = 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 ∩ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑗

Fig. 4. Ontology Bootstrapping Algorithm

description of the service supplied by the service developer in free text. These descrip-

tions are relatively short and include a sentence or two to describe the Web service. The

verification process includes matching the concept descriptors in simple string match-

ing against all the descriptors of the textual service descriptor. We use a simple string-

matching function, 𝑚𝑎𝑡𝑐ℎ𝑠𝑡𝑟, which returns 1 if two strings match and 0 otherwise.

Continuing the example in Figure 3, analysis of the AcademicVerifier service

yields only one descriptor as a possible concept. The descriptor Domain was identified

by both the TF/IDF and the Web Context results and matched with a textual descriptor. It

is similar for the Domain and Address appearing in the DomainSpy service. However,

for the ZipCodeResolver service both Address and XML are possible concepts but

only Address passes the verification with the textual descriptor. As a result, the concept

is split into two separate concepts and the ZipCodeResolver service descriptors are

associated with both of them.

To evaluate the relation between concepts, we analyze the overlapping context de-

scriptors between different concepts. In this case, we use descriptors which were in-

cluded in the union of the descriptors extracted by both the TF/IDF and Web context

methods. Precedence is given to descriptors which appear in both concept definitions

over descriptors which appear in the context descriptors. In our example, the descrip-

tors related to both Domain and Domain Address are: Software, Registration, Domain,

Name, and Address. However, only the Domain descriptor belongs to both concepts

and receives the priority to serve as the relation. The result is the relation which can be

identified as a subclass, where Domain Address is a subclass of Domain.

The process of analyzing the relation between concepts is performed after the con-

cepts are identified. The identification of a concept prior to the relation allows in the

case of Domain Address and Address to again apply the subclass relation based on the

similar concept descriptor. However, the relation of Address and XML concepts remains

undefined at the current iteration of the process since it would include all the descrip-

tors that relate to ZipCodeResolver service. The relation described in the example

is based on descriptors which are the intersection of the concepts. Basing the relations

on a minimum number of Web services belonging to both concepts will result in a less

rigid classification of relations. The process is performed iteratively for each additional

service which is related to the ontology. The iterations stop once all the services are

analyzed. Alternatively, an ontology administrator can decide to suspend the ontology

evolution at any given time.

To summarize, we give the ontology bootstrapping algorithm in Figure 4. The first

step is extracting the tokens from the WSDL for each Web service (line 2). The next

153

8

step is applying the TF/IDF and Web Context to extract the result of each algorithm

(lines 3-4). The possible concept, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖, is based on the intersection of tokens

of the results of both algorithms (line 5). If 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 tokens appear in the doc-

ument descriptor, 𝒟𝑑𝑒𝑠𝑐, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑖 is defined as concept, 𝐶𝑜𝑛𝑖. The union of all

token results is 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 for concept relation evaluation (lines 6-8). Each pair of

concepts, 𝐶𝑜𝑛𝑖 and 𝐶𝑜𝑛𝑗 , is analyzed for whether the token descriptors are contained

in one another. If yes, a subclass relation is defined. Otherwise the concept relation can

be defined by the intersection of the possible relation descriptors, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑖 and

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑅𝑒𝑙𝑗 (lines 9-13).

4 Conclusion
This paper proposes an approach for bootstrapping an ontology based on Web service

descriptions. The approach analyzes Web services from multiple perspectives and in-

tegrates the results. Web services usually consist of both WSDL and free text descrip-

tors. This allows bootstrapping the ontology based on WSDL and verifying the process

based on the Web service free text descriptor. The approach enables the automatic con-

struction of an ontology without the prior training required by previously developed

methods. As a result, ontology construction and maintenance efforts can be substan-

tially reduced. Our ongoing work includes further performance study of the proposed

ontology bootstrapping approach. We plan to apply the approach in other domains in

order to examine the automatic verification of the results.

References
1. Noy, N.F., Klein, M.: Ontology Evolution: Not the Same as Schema Evolution. Knowledge

and Information Systems 6(4) (2004) 428–440
2. Ehrig, M., Staab, S., Sure, Y.: Bootstrapping Ontology Alignment Methods with APFEL.

In: Proc. of 4th Intl. Semantic Web Conference (ISWC’05), Galway, Ireland (2005)
3. Zhang, G., Troy, A., Bourgoin, K.: Bootstrapping Ontology Learning for Information Re-

trieval Using Formal Concept Analysis and Information Anchors. In: Proc. of 14th Intl.

Conference on Conceptual Structures (ICCS’06), Aalborg University, Denmark (2006)
4. Platzer, C., Dustdar, S.: A Vector Space Search Engine for Web Services. In: Proc. of the

3rd European Conference on Web Services (ECOWS’05), Växjö, Sweden (2005)
5. Patil, A., Oundhakar, S., Sheth, A., Verma, K.: METEOR-S Web Service Annotation Frame-

work. In: Proc. of the 13th Intl. Conference on World Wide Web. (2004)
6. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool for Semi-automatically Annotating

Semantic Web Services. In: Proc. of Intl. Semantic Web Conference (ISWC’04). (2004)
7. Segev, A., Toch, E.: Context-Based Matching and Ranking of Web Services for Composition.

IEEE Transactions on Services Computing 2(3) (2009) 210–222
8. Davulcu, H., Vadrevu, S., Nagarajan, S., Ramakrishnan, I.: OntoMiner: Bootstrapping and

Populating Ontologies From Domain Specific Web Sites. IEEE Intelligent Systems 18(5)

(2003) 24–33
9. Sabou, M., Pan, J.: Towards Semantically Enhanced Web Service Repositories. Web Se-

mantics 5(2) (2007) 142–150
10. Gruber, T.R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition 5(2)

(1993) 199–220
11. Segev, A., Leshno, M., Zviran, M.: Context Recognition Using Internet as a Knowledge

Base. Journal of Intelligent Information Systems 29(3) (2007) 305–327
12. McCarthy, J.: Notes on Formalizing Context. In: Proc. of the 13th Intl. Joint Conference on

Artificial Intelligence (IJCAI’93), Chambéry, France (1993)

154

