
Ontology Naming Pattern Sauce
for (Human and Computer) Gourmets

Vojtěch Svátek1, Ondřej Šváb-Zamazal1, and Valentina Presutti2

1 Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic

{svatek|ondrej.zamazal}@vse.cz
2 ISTC-CNR, Via Nomentana 56, 00161 Rome, Italy

presutti@cnr.it

Abstract. Various explicit and implicit naming conventions for entities
have emerged in ontological engineering realms during the decade/s of
its existence. In the paper we argue that the naming principles are nei-
ther trivial nor completely haphazard in practice, present a preliminary
categorisation of ontology naming patterns, and discuss the impact of
entity naming on both human and computer perception of ontologies.

1 Introduction

By the OntologyDesignPatterns.org (ODP) portal categorisation, ontology nam-
ing patterns (Naming OPs) are “good practices that boost ontology readability
and understanding by humans, by supporting homogeneity in naming proce-
dures”. The present work is one of first attempts to systematically populate this
category of design patterns; there has recently been similar effort carried out in
the narrower context of bioinformatics [6], and references to entity name content
have been made in general literature on ontological modelling such as [3, 8].

Meaningful names are helpful for both people and machines. Undoubtedly, in
particular from the point of view of machine ‘consumers’, the logical structure of
an ontology is mandatory and unambiguous, while entity naming is dependent
on subjective choices of designers, and is even optional in the sense that random
strings can be used instead of names. Metaphorically, we could thus view the
logic as ‘meat’ and naming as ‘sauce’. Even if sauce is not a necessary part of ev-
ery meal, it often helps digest the meat, and could in some cases be more caloric
(to read: bear more real-world semantics) than the meat. ‘Digesting’ the logic is
easy when entities are presented to the user in small chunks, such as in window-
based interfaces of ontology editing environments. However, in this mode, only a
small part of the whole knowledge structure can be viewed. On the other hand,
various linear and diagrammatic notations allow to display larger clusters of en-
tities but require the user to employ his/her intuition on the role of each entity
in the structure. Then natural-language-like naming gains on importance. Note
that some user-facing initiatives in ontological engineering, such as the intro-
duction of Manchester syntax for OWL [1], use natural-language-like features to

171



improve the readability at the level of meta-model constructions. Naming pat-
terns could play an analogous role at the level of model entities. Naming can also
increase the ‘nourishing factor’ (i.e. information value) of knowledge structures,
just because of the same feature that precludes their unambiguous processing:
while the inventory of logical constructs (and even logical design patterns) in a
language such as OWL is necessarily restricted by the language norm, naming
conventions and patterns can exploit any kind of structure that can be expressed
within alphanumeric strings. While ‘digesting’ is only an issue for humans, ‘addi-
tional calories’ can be quite beneficial for software tools that analyse and process
ontologies, such as ontology matchers over complex correspondences [5].

Let us rapidly demonstrate the ‘digestive’ and ‘nourishing’ potential of ade-
quate naming on an OWL restriction in Manchester syntax:

StateOwned Director only (nomination some ministry)

With more careful naming the same axiom could look like this:
StateOwnedCompany hasDirector only (nominatedBy some Ministry)

Presumably, this version much more clearly conveys the message that “all direc-
tors of state-owned companies are nominated by some ministry”. We will refer
to elements of this example later. The rest of the paper is structured as follows.
Section 2 outlines our principles of categorising naming patterns. Section 3 then
characterises different categories of patterns, including examples from existing
ontologies.3 We first discuss generic naming conventions, then focus on patterns
specific for a particular entity type (classes, instances or properties), and finally
on patterns spanning over multiple entities. Finally, Section 4 wraps up the paper
and outlines directions for future research.

2 Naming Pattern Categorisation Criteria

In this first approximation we suggest to categorise naming patterns along four
interdependent dimensions: (1) by structural complexity and underlying (mod-
elling) language construct; (2) by lexical specificity and linguistic depth; (3) by
domain specificity; (4) by descriptiveness/prescriptiveness.

In this paper we use the structural complexity of the pattern and underlying
language construct (from the meta-model) as the primary categorisation crite-
rion, as it is rather crisp. In this respect, we distinguish between generic naming
conventions, single-entity patterns related to different entity types (classes, ob-
ject properties, data properties and instances) and cross-entity patterns related
to constructs such as class-subclass pairs or pairs of mutually inverse properties.
For the moment, we do not systematically cover patterns defined on the top of
more than two directly connected entities. We also assume the underlying lan-
guage to be OWL, although naming patterns are obviously, compared to logical
patterns, less sensitive to shifting to a different language (say, with different
formal semantics but similar outlook, as is the case with frame languages).

3 A more thorough description is in the long version of the paper, see http://nb.vse.

cz/~svatek/wop09long.pdf.

172



Patterns can differ in their lexical specificity. Some refer to concrete lexemes,
which can be both ‘stop words’ (such as ‘is’ or ‘of’) and ‘semantic’ words (such
as ‘part’); on the other hand, some patterns only refer to parts of speech. The
linguistic depth of patterns may span from surface attributes of strings such as
capitalisation or presence of numerals to patterns referring to deeper linguistic
notions such as active/passive mode of verbs.

Some naming patterns can certainly be characteristic for problem domains,
say, engineering or genomics. We do not consider this aspect here.

Finally, we include both patterns that have been tentatively verified as ‘fre-
quent’ in existing ontologies, i.e. ‘descriptive’ patterns, and patterns that we see
as useful as guidance for developing new ontologies (or reengineering old ones)
even if they are not widely used nowadays, i.e. ‘prescriptive’ patterns. We believe
that naming patterns should on the one hand try to accomodate what is intu-
itive for most modellers (and thus widely used) and on the other hand promote
clarity and readability even at the cost of going against the mainstream.

3 Detailed Descriptions of Naming Pattern Categories

3.1 Generic Principles and Conventions

Naming Vocabulary In view of comprehensibility to humans as well as NLP
tools, the terms from which an entity name is constructed should be built from
human language vocabulary ; as mentioned in the introduction, the designer
should not forget that the ontology will probably be used not only by purely
formal reasoners but also by people and even NLP procedures that could lever-
age on meaningful naming. Furthermore, abbreviations (as also suggested in [3])
and colloquialisms should be avoided. Acronyms are often inevitable; however,
the practice of using acronyms as prefixes of whole taxonomic trees, as artificial
codes indicating the membership of the entity to this tree, is questionable, as it
alienates the naming from the natural language.

The requirement of using human language naturally does not stipulate that
only terms from common, generic vocabularies can appear in entity names. Spe-
cific domains may have their own terminology that is only familiar to a few
dozens of experts and still could (or even should) be included in ontologies.
Some of the terms may not exhibit typical features of words in human language;
for example, names of genes in a gene ontology would consist of mixed alpha-
betic/numeric strings. Moreover, terms having a different generic meaning could
be used in a specific domain ontology; for example the term ‘Mouse’ (as one of
numerous metaphoric terms that are no longer viewed as colloquialisms) can be
used in a domain ontology of computer equipment without the need for (unnat-
ural) specifier such as ‘ComputerMouse’. Care should however be taken when
using terms so generic that they could interfere with entities in the same ontol-
ogy (e.g. qualifier terms such as ‘high’ or ‘light’); this problem is discussed in
Section 3.3.

173



Case and Delimiter Conventions Such conventions exist even in program-
ming environments. For OWL ontologies, a minimal requirement on capitalisa-
tion and delimiters seems to be to keep the same convention for all occurrences
of one entity type; in addition, we would recommend, consistently with [3] (and
following conventions used in description logics), to capitalise class names and de-
capitalise property names. As we saw in Example 1, this improves the readability
of complex OWL restrictions, which often consist of sequences of alternating class
and property names (aside modelling language keywords). For delimiters, OWL
best practices do not encourage blanks in names, so underscore (This Class),
hyphen (This-Class) and ‘camel case’ (ThisClass) are all frequently used. In our
opinion, however, underscore and ‘camel case’ are better alternatives, as the use
of hyphen may interfere with compound words (in which the token before the
hyphen often has a different role than if the same term were used in appositive),
especially if the ontology is analysed by an automated NLP procedure that tries
to properly tokenise each entity name.

3.2 Class Naming Patterns

The central issue in naming classes is whether the name of a class should im-
peratively be a noun phrase and whether it should be in singular or plural. We
would strongly encourage singular for OWL ontologies: first, it is nowadays pre-
dominant in existing ontologies; second, some linear RDF notations such as N34

expect it in their syntax by using the ‘a’ (indefinite article) token for instance-
class relationship, such as “John a Person” (John is an instance of class Person).
On the other hand, there are situations where merely syntactical plural is fully
justified for a class name. Let us consider ‘Bananas’ as subclass of ‘FruitMeal’
in a catering ontology: here, multiple physical entities (bananas) play the role of
a single object (meal) and do not matter individually.

There does not seem to be any logical reason for using another part of speech
than noun for class name. Modellers sometimes omit the noun if it is present
at a higher level of the hierarchy, and only use the specifying adjective, such as
‘StateOwned’ as subclass of ‘Company’ in our initial example. We however dis-
courage from such shorthanding. First, for elementary comprehensibility reasons
illustrated on Example 2. Second, even if frame-based ontology engineering is
tolerant in this respect ([3] for example only discourages from incomplete short-
handing, such as having both ‘RedWine’ and ‘White’ as subclasses of ‘Wine’),
note that in OWL ontologies, due to the underlying description logics, the ex-
plicit taxonomy is only secondary to axiomatisation as such. Making a concept
anyhow dependent (even in a ‘harmless’ manner, such as in terms of naming) on
its parent concept is thus rather awkward.

On the other hand, entity names consisting of too many tokens are also unde-
sirable. It may be the case that they could be transformed to anonymous classes
as part of axioms, see for example ‘FictionalBookbyLatinAmericanAuthor’ men-
tioned by Welty [8] or linguistic disjunctions mentioned below.

4 http://www.w3.org/2000/10/swap/Primer

174



3.3 Instance Naming Patterns

If individuals are present in an OWL ontology, their names typically correspond
to standard vocabulary noun phrases; examples are chemical elements or polit-
ical countries. In very specific ontologies (or ontologies that are melted with
a specific knowledge base) instance names could also be non-linguistic strings
such as names of genes or product codes. Individuals are sometimes also used for
specified values, as depicted in the corresponding in logical pattern [4]. Then the
enumerated individuals (usually declared as different from each other) define a
class; e.g. the set of individuals ‘poor health’, ‘medium health’ and ‘good health’
defines the class ‘Health value’. A subtle issue is whether the name of such an
individual can be other than noun phrase. It seems that if an individual is to de-
note a mere ‘value’ or ‘status’ rather than a real-world entity, the part of speech
of its name does not matter in principle. However, using plain adjectives such as
‘good’ or ‘high’ is tricky. Note that there is a risk of confusing such individuals
with the general notions of ‘goodness’ or ‘highness’; this is emphasised by the
status of individuals as first-class citizens in OWL. It may then easily happen
that an individual originally defining a specified value with respect to a certain
class would be improperly reused with respect to another class. For example, in
a wine ontology5 the individual Light is part of enumeration of class WineBody;
then someone might reuse the same individual as part of enumeration of Wine-
Grape, or even of WineBottle or anything that can be light or heavy. Clearly,
the lightness values of wine body are ontologically different from the lightness
values of a wine grape; and even the physical lightness values of a wine grape are
ontologically different from the lightness values of a wine bottle, as each of them
is associated with a different scope of weight (as measurable quantity). For this
reason we recommend to refer to the name of class in the name of the individuals
representing specified values. On the other hand, there is a risk of confusing the
‘value’ or ‘status’ individuals with real-world entities; for example the individual
representing the status of ‘excellent student’ should probably not be an instance
of class Student. A safe option for naming such individuals thus would be to
include both the class name and a term such as ‘status’ or ‘value’ in their name,
e.g. ‘poor health value’, ‘excellent student status’ or ‘light wineBody value’.

3.4 Property Naming Patterns

Although object properties and data properties have similar status in OWL,
their naming seems to be linked to different patterns.

Comprehensibility concerns suggest that the name of an object property
should not normally be a plain noun phrase, for clear discernability from class
names as well as from the name of the inverse property. Indeed, a majority of
object properties either have a verb as their head term or end with an attributive
preposition (such as ‘of’, ‘for’), which indicates that the name should be read as
if it started with ‘is’: for example ‘(is) friend of’, ‘(is) component for’. A plain

5 http://www.ninebynine.org/Software/HaskellRDF/RDF/Harp/test/wine.rdf

175



preposition is occasionally used for spatio-temporal relationships. Furthermore,
linguistic processing of ontologies would possibly benefit from the usage of con-
tent verbs rather than auxiliary ones where appropriate, as content verbs bring
additional lexemes into the game. In this sense, property names like ‘manu-
factures’ or ‘writtenBy’ bring ‘extra calories’ compared to property names like
‘hasProduct’ or ‘hasAuthor’ (assuming that the range of the properties is ‘Prod-
uct’ and ‘Author’, respectively). We elaborate further on object properties in
the paragraph on naming patterns over restrictions in Section 3.7.

On the other hand, for data property names nouns seem appropriate, as
they are analogous to database fields. Often the ‘primitive data’ nature of data
properties can be underlined by using head nouns such as ‘date’, ‘code’, ‘number’,
‘value’, ‘id’ or the like.

3.5 Subclass and Instantiation Naming Patterns

It is quite common that a subclass has the same head noun as its parent class.6

By an earlier study [7] we found out that this pattern typically represents be-
tween 50–80% of class-subclass pairs such that the subclass name is a multi-token
one. This number further increases if we consider thesaurus correspondence (syn-
onymy and hyperonymy) rather than literal string equality. Sometimes the head
noun also disappears and reappears again along the taxonomic path, as a specific
concept cannot be expressed by a dedicated term but only by circumlocution; for
example in Player - Flutist - PiccoloPlayer (note that Flutist is a single-token
name, i.e. not in conflict with our pattern), in a music ontology.7

Retrospectively, violation of head noun correspondence in many cases indi-
cates a problem in the ontology. Common situations are:

– Inadequate use of class-subclass relationship, typically in the place of whole-
part or class-instance relationship, i.e. a conceptualisation error.

– Name shorthanding, typically manifested by use of adjective, such as ‘State-
Owned’ (subclass of ‘Company’), as mentioned above.

While the former probably requires manual debugging of the ontology, the latter
could possibly be healed by propagation of the parent name downto the child
name. Note that such propagation may not be straightforward if the parent itself
has a multi-word name. For example, ‘MD Georectified’, which is a subclass of
‘MD GridSpatialRepresentation’,8 could be extended to ‘MD GeorectifiedRepre-
sentation’, ‘MD GeorectifiedSpatialRepresentation’ or ‘MD GeorectifiedGridSpa-
tialRepresentation’, and only deep understanding of the domain would allow to
choose the right alternative.

The class-instance relationship does not seem to follow generic naming pat-
terns. An exception is the case of specified values discussed in Section 3.3.
6 The head noun is typically the last token, but not always, in particular due to

possible prepositional constructions, as e.g. in ‘HeadOfDepartment’.
7 http://www.kanzaki.com/ns/music
8 Taken from http://lists.w3.org/Archives/Public/public-webont-comments/

2003Oct/att-0026/iso-metadata.owl.

176



3.6 Subproperty and Inverse Property Naming Patterns

We are not aware of a conspicuous naming pattern for the subproperty rela-
tionship. A tentative suggestion for reengineering methods could perhaps be the
following: if there are multiple (object or data) properties with same head noun
(depending on a usual auxilliary verb), they could possibly be generalized to a su-
perproperty. For example, the properties ‘hasFirstName’, and ‘hasFamilyName’
could yield ‘hasName’ as superproperty.

Inverse property naming patterns should help link an object property to its
inverse and at the same time discern between the two. They are thus related
to the logical design pattern of bi-directional relations: if there is no inverse
property, there is less of problem at the level of naming but more at the logical
level. As canonical inverse property naming patterns we can see the following:

– active and passive form of the same verb, such as ‘wrote’ and ‘writtenBy’
– same noun phrase packed in auxilliary terms (verbs and/or prepositions),

such as ‘memberOf’ and ‘hasMember’.

If the nominal and verbal form are mixed, e.g. ‘identifies’ and ‘hasIdentifier’, the
accessibility is fine for humans but worse for NLP procedures.

3.7 Naming Patterns over Restrictions

As we mentioned Section 3.4, one alternative for object property name is that
including the name of the class in the range and/or domain of this property. This
can be seen as a naming pattern over a global property restriction. Let us illustrate
some options for such patterns on the notorious pizza domain. We suggest that
the property from PizzaTopping to Pizza can be labelled as:9 ‘isToppingOfPizza’;
‘isToppingOf’; ‘toppingOf’; or maybe ‘ofPizza’. Intuitively, we probably feel that
‘hasPizza’ does not sound well. On the other hand, for the inverse property we
would rather suggest10 ‘hasTopping’ or maybe ‘PizzaTopping’.

As possible reasons for the different ‘psychologically natural’ choice of naming
pattern for the mutually inverse properties we could see the nature of topping as
1) an entity dependent on a pizza entity (a topping cannot exist without a pizza),
or 2) a role entity (as being a pizza topping is merely a role of some food). The
first hypothesis would mean that the presence of the name of a class in the name
of a property (for which this class is in the domain or range) indicates that entity
of this class is dependent on the entity on the other side of the property. The
second hypothesis would mean that the presence of the name of a class in the
name of a property (for which this class is in the domain or range) indicates that
this class is a role. Both hypotheses can also be adjusted according to presence
of auxilliary verbs (‘is’, ‘has’) and suffixed propositions.

In principle, we could also identify naming patterns over local property re-
strictions, for example in the form of ‘lexical tautologies’ such as MushroomPizza
9 Let us for simplicity ignore the naming options with alternative prepositions (‘isTop-

pingOn’) or without domain/range tokens at all (‘laidOn’, ‘on’).
10 Again ignoring essentially different options such as ‘withTopping’ or ‘laidWith’.

177



equivalentTo (Pizza and contains some Mushroom). This issue may deserve
further study, although the frequency of such constructions is not very high.

4 Conclusions and Future Work

The intended contribution of the paper is a preliminary system of ontology nam-
ing patterns, which we illustrated on examples. Undoubtedly, consistent and
comprehensible entity naming is an important aspect of re/usability of ontolo-
gies. The main reason why research on this topic has been quite scarce to date is
probably the high risk of subjectivity and subtle, heuristic nature of any cues one
could figure out. We are aware of this risk; the naming suggestions in this paper
are meant to serve as starting point for discussion in the pattern community
rather than a mature system of best practices.

Most imminent future work will consist in large-scale evaluation of existing
ontologies in terms of naming as well as bare plain logical patterns.11 Within
the empirical analysis stream, we should also study the usage of other textual
labels rather than URI fragments (such as rdf:label and rdf:description), and
compare their content with that of the URIs. We would also like to set up a
specific metadata schema for collecting this type of patterns in the ODP portal.
Finally, in the context of this portal, we would like to apply the naming patterns
to evaluate other types of ontology design patterns, especially the content ones.

This work has been partially supported by the IGA VSE grant no.20/08 “Eval-
uation and matching ontologies via patterns”.

References

1. The Manchester OWL Syntax. Online http://www.co-ode.org/resources/

reference/manchester_syntax/
2. Annotation System. OWL WG, Work-in-Progress document, http://www.w3.org/

2007/OWL/wiki/Annotation_System.
3. Noy N. F., McGuinness D.L.: Ontology Development 101: A Guide to Creating

Your First Ontology. Online http://www-ksl.stanford.edu/people/dlm/papers/

ontology-tutorial-noy-mcguinness.pdf
4. Rector A. (ed.): Representing Specified Values in OWL: ”value partitions” and

”value sets”. W3C Working Group Note, 17 May 2005, online at http://www.w3.

org/TR/swbp-specified-values/.
5. Ritze D., Meilicke C., Šváb-Zamazal O., Stuckenschmidt H.: A pattern-based ontol-

ogy matching approach for detecting complex correspondences. In: OM Workshop
at ISWC’09.

6. Schober D. et al.: Survey-based naming conventions for use in OBO Foundry ontol-
ogy development. BMC Bioinformatics, Vol.10, Issue 1, 2009.

7. Šváb-Zamazal O., Svátek V.: Analysing Ontological Structures through Name Pat-
tern Tracking. In: EKAW-2008, Acitrezza, Italy, 2008.

8. Welty C.: Ontology Engineering with OntoClean. In: SWAP 2007, Bari.

11 We plan to continuously update these results at http://nb.vse.cz/~svabo/

namingPatternsAnalysis/.

178




