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Abstract. For Ontology Design Patterns (OP) to be widely adopted
by conceptual modelers, we need a critical amount of them, and that
amount should be larger for patterns that describe good practices for
modeling content (ie, Content Patterns or CP), e.g. about time, space,
events, biological entitites, medical cases, legal norms, etc. It is possi-
ble and desirable to reuse existing repositories that contain modeling
solutions, and to represent them as OPs. This paper analyzes some com-
ponents from the Component Library (CLIB), proposing some solutions
to represent them into OWL2 CPs. Some constructs from CLIB compo-
nents need the expressivity of rule languages in order to fully represent
them, but these extra-features can be separated from the basic ontolog-
ical content. Additionally, CLIB components are shown to be enrichable
with the pattern annotation schema defined for OPs, which also allows
a quick upload and publication on ontologydesignpatterns.org.

1 Introduction

Ontology Design Patterns (OP) [20] are reusable solutions for modeling ontolo-
gies, based on good practices. In order to be widely adopted by ontology model-
ers, we need a large amount of them, especially for patterns that describe good
practices for modeling content (Content Patterns, CP), either general (time,
space, events, etc.) or specific (biological entities, medical cases, legal norms,
etc.).

The ontologydesignpatterns.org initiative [19] aims to collect the OPs
collaboratively, and several of them are being uploaded on its semantic wiki-
based site. On the other hand, it is also possible to reuse existing repository of
resources, which contain modeling solutions that can be represented as CPs. One
of them is the Component Library (CLIB) [8, 10],3 which contains hundreds of
solutions, and explicitly builds on the idea of a system of concepts [8], as well as
to that of knowledge patterns [10]. The original idea of the authors of CLIB [8]
is indeed very close to that of CPs:

3 http://www.cs.utexas.edu/ mfkb/RKF/tree/
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... our goal is to identify repeated patterns of axioms in a large the-
ory, and then abstract and reify those patterns as components in their
own right (analogous to the notion of ”design patterns” in object-oriented
programming ...

... in contrast to [a] DL algorithm which exhaustively constructs con-
cept representations without regard to task, our algorithm is goal-driven,
constructing only those parts of the concept representation required to an-
swer questions. Our trade-off is to sacrifice completeness for a language
sufficiently expressive for our purposes. An interesting consequence of
our approach is that the concept description which is built is question-
specific, containing just that information required to answer the ques-
tion(s) which were posed ...

In practice, the main requirements of CPs: small, task-based models that fit
one or more competency questions by following good practices [16, 20], are shared
by CLIB components. The main differences with current OWL CPs include the
encoding of CLIB is done in the KM language. The statements in KM have
straightforward and well-defined semantics in First-order logic [9]. KM compo-
nents also represent dynamic aspects of actions the representation for which has
not been studied in the context of OWL.

This paper analyzes some components from CLIB, showing how to represent
them into OWL CPs. OWL2 [21] is employed in order to take advantage of the
maximal expressivity currently available for the Semantic Web. Some constructs
from CLIB components need the expressivity of rule languages in order to be fully
represented. These extra-features can be separated from the basic ontological
content, leaving intact the value of CLIB as a resource for CPs.

Additionally, CLIB components are shown to be enrichable with the pat-
tern annotation schema defined for OPs, which also allows a quick upload and
publication on the ontologydesignpatterns.org wiki.

The paper is organized as follows: in Section 2 we introduce CLIB and its
main features; in Section 3 some uses of the CLIB are described; in Section 4 we
represent some CLIB components as CPs on the Semantic Web; in Section 5 we
present the publishing plans for CLIB components as CPs.

2 Component Library

The Component Library or CLIB was created with the goal of enabling users
with little experience in knowledge engineering to represent knowledge from their
domain of expertise by instantiating and composing generic components from a
small, hierarchical library. Components are coherent collections of axioms that
can be given an intuitive label, usually a common English word. The compo-
nents should be general enough that their axiomatization is relatively uncon-
troversial. Composition consists of specifying relationships between instantiated
components so that additional implications can be computed. The current CLIB
contains a few hundred components, and less than one hundred relations.
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Each component of CLIB is formally expressed in KM [9], which in turn is
defined in first-order logic. KM includes a situation mechanism for representation
and reasoning with actions and the changes they cause.

The main division in CLIB is between entities (things that are) and events
(things that happen). Events are states and actions. States represent relatively
static situations brought about or changed by actions.

2.1 Actions and States

The actions are grouped into fifteen top-level clusters, each having several more
specific subclasses. These clusters are: Add, Remove, Communicate, Create,
Break, Repair, Move, Transfer, Make-Contact, Break-Contact, Make-Accessible,
Make-Inaccessible, Perceive, Shape, and Orient.

The list was developed by consulting linguistic resources such as WordNet
[15], the defining vocabulary of the Longman’s Dictionary of Contemporary En-
glish and the Roget’s theasaurus. We consider here a few examples of the formal
axioms that define the actions in the component library. (In the following, the
words shown in all caps are the concepts drawn from the CLIB, and the words
shown in italics are the relations drawn from the CLIB.)

Conditional rules: If the raw material of a PRODUCE is a SUBSTANCE,
then the product is composed of that SUBSTANCE. If the raw materials are
OBJECTs, then the product has those OBJECTs as parts.

Definitions: An instance of MOVE whose destination is inside a CON-
TAINER is automatically reclassified as an instance of ENTER.

Simulation: If the destination of a MOVE is a SPATIAL-ENTITY then
the location of the OBJECT of the MOVE after the MOVE is that SPATIAL-
ENTITY.

States are coherent collections of axioms that represent situations brought
about or changed by actions. Many of the CLIB actions are defined in terms
of the change in state they cause. This relationship between actions and states
is made explicit in the library: there are actions that put objects into states,
actions that take objects out of states and actions whose behavior is affected
by objects being in states. For example, the BREAK action puts an object into
a BE-BROKEN state. The REPAIR action takes an object in a BE-BROKEN
state out of that State.

2.2 Entity and Roles

The entity hierarchy in CLIB is less developed than the hierarchy of actions. An
important sub-division of entities contains role concepts. A role can be thought
of as a temporally unstable entity. It is what an entity is in the context of some
event. For example, PERSON is an entity while EMPLOYEE is a role. A PER-
SON remains a PERSON independent of the events in which she participates.
Conversely, someone is an EMPLOYEE only by virtue of participation in an EM-
PLOYMENT event. A more detailed discussion on the representation of roles
and the work related to them is available elsewhere [14].
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2.3 Relations

The CLIB contains a small set of relations to connect Entities and Events. The
design of the relations between events and entities was inspired by the case
roles in linguistics [1], the design of relations between entities was based on the
semantics of English noun phrases, and the choice of relationships between events
followed from studies in discourse analysis, and process planning.

Examples of event-entity relations are: agent, object, instrument, etc. Exam-
ples of entity-to-entity relations are content, has-part, location, material, etc.
Examples of event-to-event relationships are causes, defeats, enables, prevents,
etc.

While the current CLIB contains domain and range constraints for all these
relations, it does not yet contain their complete axiomatization. For example,
the CLIB does not yet contain axioms for what it means for an action A to
prevent another action B.

2.4 Properties

The CLIB has a small number of properties. Properties link entities to values.
For example, the size of an entity is a property that takes a value. The value can
be a cardinal (25 kilograms), a scalar (big relative to housecats) or a categorical
(brown). The current CLIB has about 25 general categories. This final list of
properties includes such properties as age, area, capacity, color, length, shape,
size, smell and wetness.

3 Uses of the Component Library

The Component Library has been used in several projects, but most notably,
in Vulcan’s Project Halo (See http://www.projecthalo.com) , and DARPA’s
Project CALO (See http://caloproject.sri.com). More detailed description
of these uses are available elsewhere [3, 4], but for the present paper, we only
focus on its use in a system called AURA that has been developed under Vulcan’s
Project Halo [4].

The short-term goal of AURA is to enable domain experts to construct declar-
ative knowledge bases (KBs) from a science textbook in the domains of Physics,
Chemistry, and Biology in a way that it can answer questions similar to those
in a college level exam. The overall concept of operation for AURA is as follows:
a knowledge formulation engineer (KFE) with at least a graduate degree in the
discipline of interest undergoes 20 hours of training to enter knowledge into
AURA; a different person, called a question formulation engineer (QFE), with a
high school level education undergoes 4 hours of training and asks questions of
the system. Knowledge entry is inherently a skill-intensive task, and therefore,
requires more advanced training in the subject as well as in using the system.
A QFE is a potential user of the system, and the training requirement was kept
lower because we wanted the barrier to using the system to be as low as possible.
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For this section, we primarily focus on the knowledge formulation component of
AURA because that highlights the use of CLIB more clearly.

The KFEs build their KBs by starting from CLIB. AURA implements a way
to convert the axioms in CLIB into a graphical form, to allow a KFE to search for
required components, and to graphically assemble them into a domain-specific
representation. As a concrete example, we show how a KFE would represent the
concept of Virus Infection in Figure 1.

Fig. 1. The Representation of Virus Infection using the CLIB

In this Figure, a KFE has connected three generic CLIB actions: PENE-
TRATE, MOVE-INTO and TAKE-CONTROL, together to first define a se-
quence amongst those events using the relation next-event, and first-event, and
then specialized those events using relations to VIRUS and CELL.

AURA has undergone substantial testing in its ability to allow KFEs to for-
mulate knowledge in Physics, Chemistry, and Biology showing the effectiveness
of this approach for knowledge representation and acquisition [7].
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4 Representing CLIB for the Semantic Web

Given the prior success in exploiting CLIB for knowledge representation and
acquisition, the time is now ripe to broaden its usage especially in the semantic
web community. Doing so will require at least the following steps. First, we need
to represent the content of CLIB in a format that is widely used in the semantic
web community. OWL is an obvious starting point, but we expect that for fully
representing the content of CLIB a language more expressive than OWL will
be needed. Second, we need to subject CLIB to community review so that its
representations are generally agreed upon and accepted. Such an exercise is con-
sistent with the original goal of CLIB to ensure that the component definitions
are non-controversial and represent the consenus view on the definition of the
concepts they represent. Such a goal is also consistent with the goal of the on-
tology patterns portal ontologydesignpatterns.org. Finally, we need to start
constructing use cases that are of relevance to semantic web that demonstrate
how the CLIB representations can be useful for modeling problems other than
what it has been used for.

For the rest of the section, we focus on the problem of representing the
content of CLIB using semantic web languages. We will first take an example
concept from CLIB, and first explain its formal semantics as they are represented
in its native representation language KM. Then we show the representation of
the same knowledge using OWL, and a rule language SILK.

4.1 CLIB constructs and formal semantics

In order to exemplify what CLIB constructs can be translated into OWL, by
preserving as much semantics as possible, we show here the KM axioms for the
Attach component in CLIB. The Attach is an action that “causes two things
to be attached to each other”. We have included only inferentially significant
axioms, and omitted the ones that are aimed at natural language generation, or
for controlling how they are displayed to the user.

(Attach has
(superclasses (Action))
(required-slot (object base))
(primary-slot (agent))

)

(every Attach has
(object ((exactly 1 Tangible-Entity) (a Tangible-Entity)))
(base ((exactly 1 Tangible-Entity) (a Tangible-Entity)))

;; SOFT PCS:
(soft-pcs-list (

(:triple (the base of Self)
object-of (mustnt-be-a Be-Inaccessible))))
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(resulting-state ((a Be-Attached-To)))
(add-list ((:set

(:triple (the resulting-state of Self)
object (the object of Self)
[Attach-add-1])

(:triple (the resulting-state of Self)
object (the base of Self)
[Attach-add-2])))))

(every Attach has
(preparatory-event ((:default

(a Make-Contact with
(object ((the object of Self)))
(base ((the base of Self))))

(a Detach with
(object ((the object of Self)))
(base ((the base of Self))))

))))

Informally, the KM code says that Attach:

– is subsumed by the more general component Action
– is always related to exactly one object and one base, both of type TangibleEntity
– can be related to an agent
– has a resulting-state of type Be-Attached-To, which has coreferential

links to the object and base of Attach, and (operationally) generates these
links when instantiated

– has two defeasible preparatoryEvents ((preparatory-event ((:default):
MakeContact and Detach, which have coreferential links to the object and
base of Attach

– has a “soft constraint” (soft-pcs-list): the base of Attach (coreferential
link) cannot be in a state of type: BeInaccessible

Although not explicit in the above code, Action inherits other properties from
its subsuming components (Action and Event):

– is always related to at least one instrument of type Entity
– is always related to at least one subevent of type Event (including itself: a

non-proper subevent relation)
– can be related to a nextEvent of type Event
– can be related to a timeDuring of type TimeInterval

Finally, it has properties that derive from hardcoded functionalities of KM. For
example, the following code collects the subevents of any Event (then including
Attach events) into a single list, which can then be simulated by KM (there are
several such operational statements that apply to temporal, spatial, agentive,
etc. aspects of events.4:
4 The (operational) semantics of the actions slot is built into KM
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(actions ((:set (forall (the subevent of Self)
(the actions of It))

Self)))

The expressivity of KM largely exceeds OWL model-theoretical semantics.
For example, as explained in 4.2, in OWL (either 1 or 2), coreferential links
cannot be declared in general, but only in special cases (transitive properties,
property chains). Also, defeasible axioms and soft constraints are not expressible
in regular OWL.5

Table 1 shows some reengineering patterns, presented as correspondences
between constructs that are used in CLIB, and their equivalents in OWL1 or
OWL2.6 More correspondences are exemplified in Section 4.2.

KM vs SW Semantics

KM Construct SWL SWL Construct

superclasses OWL1, OWL2 SubClassOf

required-slot OWL1, OWL2 SubClassOf ObjectSomeValuesFrom

primary-slot OWL1, OWL2 SubClassOf ObjectMinCardinality 0

exactly n OWL1, OWL2 ObjectExactCardinality n
exactly n A OWL2 ObjectExactCardinality n A

superslots OWL1, OWL2 SubObjectPropertyOf

domain OWL1, OWL2 ObjectPropertyDomain

instance-of OWL2 ClassAssertion

Table 1. A list of some KM constructs used in CLIB, and their approximation as
constructs from Semantic Web languages.

4.2 Representing CLIB using OWL

A translator to convert portions of CLIB into OWL is already available [6]. This
translator has been used extensively as part of both the Halo and CALO projects.
In the CALO project, the OWL ontology generated by this translator was used
to integrate several diverse programming languages and reasoning modules [3].
In the AURA system, the OWL export of CLIB and the content authored by
the KFEs was used to define a mapping between the CLIB and an ontology
generated through Semantic Media Wiki [5]. But, as expected, this translation
is incomplete. As a concrete example, we show below an OWL representation of
the Attach component that we had shown earlier.

SubClassOf(Attach Action)

5 There exist proposals and prototype implementatioms for extending OWL towards
non-standard description logics.

6 We present all OWL formulas in OWL2 Functional Syntax [18].
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SubClassOf(Attach ObjectSomeValuesFrom(base Tangible-Entity))
SubClassOf(Attach ObjectSomeValuesFrom(object Tangible-Entity))

In this OWL representation, there is no representation for the slots that
capture qualified cardinality restrictions, meta-level assertions, and the dynamic
aspects of Action: for example, its add-list and del-list as from the Attach
example above. OWL1 does not provide any support for those constructs. OWL2
has enough expressivity: for example, the following constructs can then be added,
by means of more reengineering patterns that help finding correspondences to
the semantics assumed in KM:

– qualified cardinality restrictions can be expressed natively in OWL2 (see ta-
ble 1), e.g.
SubClassOf(Attach ObjectExactCardinality (1 base TangibleEntity));

– meta-level assertions like those used in CLIB for classifying slots (e.g. (causes
(instance-of (CausalRelation))), can be represented by means of OWL2
“punning”, which provides different interpretations for the constants of an
ontology. For example, ClassAssertion axioms can be asserted of classes,
individuals, or properties without violating the formal semantics of OWL2,
e.g. ClassAssertion(causes CausalRelation);

– formal axioms for actions can be approximated by using OWL2 property
chains. Conditional rules like the one presented in Section 2.1 can be schema-
tized as follows:

(if [A R1 B] then (forall [A R2 C] (:triple [It R3 B] [A-add-1])))

and can be reengineered by firstly declaring some OWL object properties
with appropriate domains and ranges for the antecedent part of the condi-
tional rule:

ObjectPropertyDomain(R1 A)
ObjectPropertyDomain(R1 B)
ObjectPropertyDomain(R2 A)
ObjectPropertyDomain(R2 C)
ObjectPropertyDomain(R3 C)
ObjectPropertyDomain(R3 B)

and then declaring an object property chain axiom:

SubObjectPropertyOf(SubObjectPropertyChain(R2- R1) R3)

Similarly, definitional rules can be represented by means of property chains,
used in restrictions within equivalence axioms. The only rule type that seems
completely outside OWL2 is simulation. In that case, it’s the dynamics of
the process that needs to be simulated in the language, not just represented,
and this requires not only an add-list, but also a del-list, which could
only be added programmatically to OWL;
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– axioms including coreference are also very difficult to represent in OWL2
(coreference is prevented for complexity reasons). They can be partly repre-
sented by property chains, but the actual semantics has a substantial gap.
For example, the add-list construct for the Attach component requires
that the resulting state of Attach has the same object as the object and
base of Attach, i.e. the tangible entities that result to be attached after the
process. In OWL2 we can assert e.g.:

SubClassOf(Attach ObjectExactCardinality(1 base
ObjectIntersectionOf(ObjectExactCardinality(1 baseOf

BeAttachedTo) TangibleEntity)))

but the semantics does not catch the coreference, so that the BeAttachedTo
states of Attach and of its base and object can be different. Therefore,
given the complexity of this OWL2 construct, and its inability to catch
the important part of the original axiom, it seems pretty inadequate to be
incorporated into an OWL CP proposal;

– soft constraints and defeasible axioms are not covered by OWL2, but ex-
tensions of OWL exist that deal with probabilistic, possibilistic, and other
varieties of soft reasoning. We have not yet decided if soft axioms should be
provided in knowledge patterns as a general guideline, but we are exploring
more evidence of its advantages, and community feedback. Defeasible ax-
ioms within universal axioms can be approximated by cutting the defeasible
constraint on type, for example:
SubClassOf(Attach ObjectSomeValuesFrom(preparatoryEvent Event))
(since Event is the range of the slot preparatoryEvent).

As a wrap-up, after running all reengineering procedures described above,
the Attach component gets represented in OWL2 as follows:

SubClassOf(Attach Action)
SubClassOf(Attach ObjectExactCardinality (1 base TangibleEntity))
SubClassOf(Attach ObjectExactCardinality (1 object TangibleEntity))
SubClassOf(Attach ObjectMinCardinality (0 agent Entity))
SubClassOf(Attach ObjectSomeValuesFrom(resultingState BeAttachedTo))
SubClassOf(Attach ObjectSomeValuesFrom(preparatoryEvent Event))

We do not include the inherited axioms from parent components (Action and
Event).

We hope to investigate the use of OWL2 profiles7 and OWL-based rule lan-
guages [17] to see how more of the information in CLIB could be represented.

4.3 Representing CLIB using Rule Languages

The taxonomic subset of CLIB can be captured to a great extent using the
OWL family of languages. Property chains seem to help somehow to harvest
7 http://www.w3.org/TR/owl2-profiles/
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more. However, for a complete representation, a rule language is necessary. For
example, the Virus Infection example shown earlier is represented in KM as
follows:

(Virus-Infection has
(subclass-of (Move)))

(every Virus-Infection has
(agent ((a Virus)))
(object ((a Cell)))
(first-subevent ((the Penetrate sub-event of Self)))
(subevent ((a Penetrate with

(agent ((the agent of Self)))
(object ((the object of Self))))
(a Move-Into with
(agent ((the agent of Self)))
(object ((the object of Self))))

(Take-Control with
(agent ((the agent of Self)))
(object ((the object of Self)))))))

Fully representing this axiom will require a rule language. We already have
an effort underway to represent such rules using a new semantic web language
called SILK (See http://silk.semwebcentral.org). SILK is a successor of
SWSL and is more expressive than OWL. The above rule can be represented in
SILK as follows:

?x[agent -> _#1(?x):Virus],
?x[object -> _#2(?x):Cell],
?x[subevent -> _#3(?x):Penetrate [next-event -> _#4,

agent -> _#1,
object -> _#2]]

_#4(?x):Move-Into [next-event -> _#5,
agent -> _#1,
object -> _#2]]

_#6(?x):Take-Control [agent -> _#1,
object -> _#2]]

?x[first-subevent -> _#3(?x)]
:- ?x: Virus-Infection.

We believe that for fully representing the ontology design patterns in CLIB,
an expressive representation language such as SILK is indispensable.

For the editing, manipulation and storage of the knowledge created by the
KFEs, AURA uses a representation that is based on a network of individuals
- also known as prototypes [9]. A prototype captures a rule whose antecedent
is existentially quantified, and its consequent represents a network of existen-
tially quantified individuals. We show the representation of the above rule using
prototypes below:
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(_Virus-Infection2117 has
(prototype-scope (Virus-Infection))
(prototype-participants (_Cell2168

_Virus2167
_Penetrate2166
_Move-Into2165
_Take-Control2164
_Virus-Infection2117))

(object (_Cell2168))
(agent (_Virus2167))
(subevent (_Penetrate2166

_Move-Into2165
_Take-Control2164))

(first-subevent (_Penetrate2166)))

(_Cell2168 has
(instance-of (Cell)))

(_Virus2167 has
(instance-of (Virus)))

(_Penetrate2166 has
(object (_Cell2168))
(agent (_Virus2167))
(instance-of (Penetrate))
(next-event (_Move-Into2165)))

(_Move-Into2165 has
(object (_Cell2168))
(agent (_Virus2167))
(instance-of (Move-Into))
(next-event (_Take-Control2164)))

(_Take-Control2164 has
(object (_Cell2168))
(agent (_Virus2167)))

(Virus-Infection has (superclasses (Move)))

It may be possible to represent prototype version of the above rule directly
into OWL, but it would require further research to determine if the inferences
that are expected of a prototype can also be supported in OWL directly. We
are including the prototype representation in this paper to illustrate a possible
approach of dealing with the expressiveness limitations of OWL.
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It will also be interesting to explore the potential of integrating RIF8 [2],
also including its production rule dialect [13] in order to extend the ontology
patterns representation with full-fledged expressivity, while remaining within
the W3C standards.

5 Publishing CLIB-CP

We are planning to represent the generic fom CLIB and their most useful ax-
ioms into OWL2. We are also translating the metadata that annotate the com-
ponents. They consist mainly of natural language processing-related code for
generating friendly renderings of the components, and of some short comments
that summarize the intentional content of each component, for example: “A
conceal causes something to be concealed by something else.”. However, in the
ontologydesignpatterns.org initiative, we are interested in a rich annotation
of patterns, which provides information about intent, consequences, related pat-
terns, scenarios, competency questions, etc. In the automatic reengineering, we
are translating the short comments as strings for the Intent value in the pat-
tern annotation schema, and then we are adding the URIs of patterns mentioned
within others as related ones. All the other metadata will be possibly introduced
by engaging the open communities interested in reusing elements from our por-
tal, or in asking for clarifications.

Several systems to discuss and evaluate patterns have been developed for
the ODP portal [12]: they allow to automatically upload an OWL version of
a pattern, to ask for reviews and public comments, to provide feedback and
reviews, to discuss, to get consensus, and to recommend the patterns as best
practices eventually. For the CLIB-based CPs, a script is being implemented to
translate and import all at once, but adjusting some parameters.

Once we have a good fraction of CLIB published as ontology patterns on
our portal, we will use the review mechanism of the portal to evalute the ontol-
ogy patterns. For example, each component that is represented as an ontology
pattern will be reviewed from the point of view of completeness, accuracy, and
to what extent it represents the consensus meaning of that component. The re-
view process will be moderated by a scientific committee overseen by an ODP
editorial board.

6 Conclusions

The representation work on CLIB is related to the larger initiative of popu-
lating an online, collaboratively-maintained library of ontology design patterns.
Since reuse of content patterns requires a critical amount of them, the effort
concentrates on one hand on building the community that submits, discusses,
and validates pattern proposals, and on the other hand on representing existing
resources that have substantial affinity with content patterns. Representation
8 http://www.w3.org/TR/rif-rdf-owl/
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practices have been devised until now on FrameNet [11] and the CLIB, which is
the contribution of this paper. CLIB is probably the most developed repository
of knowledge patterns, and has a scope that goes beyond that of content ontology
patterns in trying to represent also event dynamics, simulation, etc. However,
the part translatable to OWL and rule languages like RIF or SILK proves to be
very inline with the ODP initiative, and will constitute an important inventory
and a rock-solid resource for the community.
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