
eXtreme Design with Content Ontology Design
Patterns

Valentina Presutti and Enrico Daga and Aldo Gangemi and Eva Blomqvist

Semantic Technology Laboratory, ISTC-CNR

Abstract. In this paper, we present eXtreme Design with Content On-
tology Design Patterns (XD): a collaborative, incremental, iterative method
for pattern-based ontology design. We also describe the first version of a
supporting tool that has been implemented and is available as a plugin
for the NeOn Toolkit. XD is defined in the context of a general approach
to ontology design based on patterns, which is also briefly introduce in
this work.

1 Introduction

Ontology design patterns (ODPs) [7] are an emerging technology that favors the
reuse of encoded experiences and good practices. ODPs are modeling solutions
to solve recurrent ontology design problems. They can be of different types1

including: logical, which typically provide solutions for solving problems of ex-
pressivity e.g., expressing n-ary relations in OWL; architectural, which describe
the overall shape of the ontology (either internal or external) that is convenient
with respect to a specific ontology-based task or application e.g. a certain DL
family; content, which are small ontologies that address a specific modeling issue,
and can be directly reused by importing them in the ontology under develop-
ment e.g., representing roles that people can play during certain time periods;
presentation, which provide good practices for e.g. naming conventions; etc.
With the name eXtreme Design (XD) we identify an approach, a family of
methods and associated tools, based on the application, exploitation, and defini-
tion of ontology design patterns (ODPs) for solving ontology development issues.
In this paper, we describe XD and go into details of its guidelines for ontology
development with Content ODPs (CPs). Also we briefly describe the prototype
of a supporting tool i.e. the XD plugin for the NeOn Toolkit.
XD adopts the notion of ontology project, a development project characterized
by two main sets: (i) the problem space, which is composed of the actual modeling
issues, here referred to as the local problems, that have to be addressed during
the project e.g., to transform a set of microformats to an RDF dataset, to model
roles that can be played by people during certain time periods; (ii) the solu-
tion space, which is made up of reusable modeling solutions e.g. a reengineering
practice for associating microformats’ attributes to a certain RDF vocabulary’s

1 http://ontologydesignpatterns.org/wiki/OPTypes

83



2

Fig. 1. The eXtreme Design approach. ODPs are associated with Generic Use Cases
and compose the ontology project’s solution space, which is used as the main knowledge
source for addressing ontology design issues e.g. reengineering, evaluation, construction,
etc., the ontology project’s problem space provides descriptions of the actual issues
called “Local Use Cases”.

relations, a piece of an ontology that models time-indexed roles i.e. a CP.
The general approach is schematized in Figure 1. Each element in the solution
space is an ODP associated with a Generic Use Case (GUC), the latter repre-
senting the problem that the ODP provides a solution for, as introduced by [6].
The elements of the problem space are called “Local Use Case” (LUC), they
define the actual modeling issues that need to be addressed in order to work out
the ontology project, they represent the ontology project’s requirements. Under
the assumption that GUCs and LUCs are represented in a compatible way e.g.,
both in the form of competency questions or sentences, it is possible to compare
LUCs to GUCs, and if they match, the ODPs associated with the matching
GUCs are selected and reused for building the final solution. Informally, a GUC
matches a LUC, if the latter can be completely or partly described exactly in
terms of the GUC, or as a more specific case of it; or if the LUC can be described
in terms of part of the GUC.
All matching ODPs are selected and used according to specific guidelines and
possibly with some tool support.
In this paper, we focus on XD guidelines for CPs, where GUCs and LUCs are
expressed in the form of natural language competency questions, and ODPs are
CPs. In the rest of the paper XD is used for referring to XD with CPs.
XD is partly inspired by software engineering eXtreme Programming (XP) [11],
and experience factory[12, 1]. The former is an agile software development method-
ology the aim of which is to minimize the impact of changes at any stage of the
development, and producing incremental releases based on customer require-
ments and their prioritization. The latter is an organizational and process ap-
proach for improving life cycles and products based on the exploitation of past
experience know-how.
Although XD has similarities with the two approaches, its focus is different:

84



3

where XP diminishes the value of careful design, this is exactly where XD has
its main focus. XD is test-driven, and applies the divide-and-conquer approach
as well as XP does. Also, XD adopts pair design, as opposed to pair program-
ming. The intensive use of CPs, modular design, and collaboration are the main
principles of the method. While a rigorous evaluation of the whole methodology
is still in our future plans, the effectiveness of CPs in ontology design has been
rigorously evaluated in [5], where XD has been used as reference development
guidelines. Furthermore, initial questionnaires and informal discussions made
emerge that the perception of the trainees with respect to the method is posi-
tive. The contribution of this paper is twofold: (i) a collaborative, incremental,
and iterative method for pattern-based ontology design, called eXtreme Design
(XD); (ii) a first version of the XD tool, a NeOn Toolkit plugin that currently
supports CP repository browsing and selection, a good practice assistant, and a
wizard for CPs’ specialization.
The paper is structured as follows: in Section 1.1 we briefly discuss the state
of art on ontology design methodologies and ontology design patterns. Section
2 discusses the principles of the method and details the XD workflow with the
help of a simplified scenario taken from a real case study. Section 3 describes
XD tool, a NeOn Toolkit2 plugin for pattern-based design support.

1.1 State of the art and related work

The notion of “pattern” has proved useful in the context of design within
many areas, such as architecture, software engineering, etc. So far, very few
purely pattern-based methodologies have been proposed. In ontology engineer-
ing, pattern-based methods are present primarily on the logical level, where
patterns support methods for ontology learning, enrichment and similar tasks
like in [2]. In these methods patterns are used more or less automatically, e.g.
lexico-syntactic patterns to identify ontological elements in a natural language
text or to extract relations between ontology concepts. In [3], a method for con-
structing ontologies based on patterns is proposed, the difference between this
method and XD is that the former do not consider collaboration, and that the
patterns were assumed to be a non-evolving set mostly defined with a top-down
approach. Another related approach is that described in [8], where competency
questions have been introduced. XD takes inspiration from this work, specially
for the use of competency questions as reference source for the requirement
analysis. However, the methodology described in [8] do not consider modular
nor pattern-based design approach, and do not address collaborative develop-
ment. Many other ontology development methodologies have been proposed, an
example is the DILIGENT methodology [9], which takes into account collabo-
rative aspects, but do not consider the use of patterns and is not test-oriented.
From the software engineering field we can mention the eXtreme Programming
methodology, which XD is inspired by. However, the focus of XD is completely
different from that of XP, although they share some base principles such as pair

2 http://www.neon-toolkit.org

85



4

design as opposed to pair programming, test-driven development, and customer
involvement.

2 Guidelines for XD with Content Ontology Design
Patterns

In this section, we describe the methodological guidelines for applying XD with
Content ODPs (CPs), through the definition of an iterative workflow and a case
example showing an actual iteration.
The XD method with CPs is the result of the observation and consequent de-
scription of the way we (in our lab) use to develop ontologies with CPs. Since
2005, we have been developing CPs, teaching pattern-based ontology design in
conference tutorials and PhD courses, and for much longer we have been using
and refining this approach for our professional work.
In order to teach pattern-based design to PhD students and practitioners, we
needed to provide trainees with guidelines to follow. This requirement provided
us with a good occasion for defining the XD method with CPs, and also with a
context for running the method with different teams, and applying possible re-
finement/adjustment. So far, we have identified the main principles and setting
of the method, defined the iterative workflow, identified a set of requirements for
tool support, started supporting tools development, and identified and started
investigation of open issues.

XD principles. XD principles are inspired by those of the agile software method-
ology called eXtreme Programming (XP) [11]. The main idea of agile software
development is to be able to incorporate changes easily, in any stage of the de-
velopment. Instead of using a waterfall-like method, where you first do all the
analysis, then the design, the implementation and finally the testing, the idea is
to cut this process into small pieces, each containing all those elements but only
for a very small subset of the problem. The solution will grow almost organically
and there is no “grand plan” that can be ruined by a big change request from
the customer.
The XD method is inspired by XP in many ways but its focus is different: where
XP diminishes the value of careful design, this is exactly where XD has its main
focus. Of course, designing software and designing ontologies is inherently dif-
ferent, but still there are many lessons to be learnt from programming. XD is
test-driven, and applies the divide-and-conquer approach as well as XP does.
Also, XD adopts pair design, as opposed to pair programming. Although we
did not perform yet a formal evaluation of pair design’s effectiveness, we have
collected trainees feedback through informal discussions and questionnaires af-
ter the executions of XD with different trainees teams. Most of them feel to
take benefit from on-the-fly brainstorming, and perceive to improve the effect of
learning-by-doing with this setting. We have planned to conduct more rigorous
evaluation of the method which also involves the analysis of this aspect.
The intensive use of CPs, modular design, and collaboration are the main prin-

86



5

ciples of the method. The effectiveness of CPs in ontology design has been rigor-
ously evaluated in [5], where XD has been used as reference development guide-
lines.
The main principles of the XD method can be summarized as follows:

– Customer involvement and feedback. The development of an ontol-
ogy is part of a bigger picture, where typically a software project is under
development. Ideally, the customer should be involved in the ontology devel-
opment and its representative should be a team, whose members are aware
of all parts and needs of the project. For example, the roles that should be
represented include: domain experts i.e. persons with deep knowledge of the
domain to be described by the ontology; those who are in charge of main-
taining the knowledge/data bases i.e. persons who know the views over the
data that are usually required by users; those who control/coordinate orga-
nization processes i.e. persons who have an overall view on the entire flow of
data; etc. Depending on the project characteristics, and on the complexity of
the organization, the customer representative can be one person or a team.
It is important that the team of designers is able to easily interact with the
customer representative in order to minimize the possible number of assump-
tions that they have to make on the incomplete requirement descriprions i.e.
assumptions on the implicit knowledge, without discussing/validating them
first. Interaction with the customer representative is key for favoring the
explicit expression of knowledge that is usually implicit in requirement doc-
uments, including competency questions. Furthermore, the customer repre-
sentative should be able to describe what tasks the application involving the
ontology is expected to solve.

– Customer stories, Competency Questions (CQs), and contextual
statements. The ontology requirements and its tasks are described in terms
of small stories by the customer representative. Designers work on those
small stories and, together with the customer, transform them in the form
of CQs and contextual statements. Contextual statements are accompanying
assertions that explicit knowledge that is typically implicit in CQs. CQs
and contextual statements will be used through the whole development, and
their definition is a key phase as the designers have the challenge to help the
customer in making explicit as much implicit knowledge as possible.

– CP reuse and modular design. If there is a CP’s GUC that matches a
LUC it has to be reused, otherwise a new module i.e. a CP with its GUC,
is defined based on the LUC under development and shared with the team
(and ideally on the Web3).

– Collaboration and Integration. Integration is a key aspect of XD as the
ontology is developed in a modular way. Collaboration and constant sharing
of knowledge is needed in a XD setting, in fact similar or even the same CQs
and sentences can be defined for different stories. When this happens, it is
important e.g. that the same CP is reused.

3 For example on http://ontologydesignpatterns.org

87



6

– Task-oriented design The focus of the design is on that part of the do-
main of knowledge under investigation that is needed in order to address the
user stories, and more generally, the tasks that the ontology is expected to
address. This is opposed to the more philosophical approach of formal ontol-
ogy design where the aim is to be comprehensive with respect to a certain
domain.

– Test-driven design. Stories, CQs, and contextual statements are used in
order to develop unit tests. A new story can be treated only when all unit
tests associated with it have been passed. This aspect enforces the task-
oriented approach of the method. It has to be noticed that in this context,
“unit tests” have a completely different meaning with respect to software
engineering unit tests. An ontology module developed for addressing a cer-
tain user story associated to a certain competency question, is tested e.g.
(i) by encoding in the ontology4 a sample set of facts based on the user
story, (ii) defining one or a set of SPARQL queries that formally encode
the competency question, (iii) associating each SPARQL query with the ex-
pected result, and (i) running the SPARQL queries against the ontology and
compare actual with expected results. Unit tests for ontologies have been an-
alyzed already in [13], where the focus is more on purely logical structures.
We leave the investigation of unit test types, and their employment in XD,
at future developments.

– Pair design. The team of designers is organized in pairs. At least one pair
is in charge of integrating ontology modules.

The next section shows details of the XD iterative workflow.

2.1 XD iterative workflow

Figure 2 shows the workflow of XD with CPs. In this section we will describe the
single tasks with the help of a simplified scenario coming from a real case study
in the Fishery domain. XD is an incremental, iterative method for pattern-based
ontology development. Before entering the details of each single task, it is worth
to make few premises. The team of designers is organized in pairs that work in
parallel. At least one pair is in charge of integrating the modules produced by
the other pairs, in order to obtain incremental releases of the ontology. A wiki
for the project is set up with a basic structure able to collect customer stories
and their associated modeling choices, testing documentation, and contextual
statements. The wiki will be used in order to build incrementally the project
documentation. During the development, and in particular for testing purposes,
an ontology module containing instances according to the customer stories is
created and shared. This module is used in order to run unit tests against the
ontology.

4 According to the common way of using the term “ontology”, in this context we do
not distinguish between TBox and ABox, or ontology and knowledge base. Here, an
ontology includes also facts.

88



7

Fig. 2. The XD iterative workflow.

Task 1. Get into the project context. The development starts with a group
of designers and a group of domain experts i.e. the customer representative. In
principle they do not know much about each other, do not have a precise idea
of what will be the result of the project, are used at different terminology, and
have a different background. This task has a twofold objective: (i) make the cus-
tomer representative aware of the method and tools that will be applied during
the project, (ii) provide the designer team with an overview of the problem, its
scope, and initial terminology.
The result of this task is the setting up of a collaborative environment where
customer and designers will share documentation and argument about modeling
issues, including terminology i.e. a wiki for the project.

Task 2. Collect requirement stories. The customer representative is in-
vited to write stories, possibly from real, documented scenarios, that samples
the typical facts that should be stored in the resulting ontology5. All stories
are organized in terms of priority, and possible dependencies between them are
identified and made explicit6. Each story is described by means of a small card,

5 We do not distinguish between TBox and ABox, ontology and knowledge base. With
the term ontology we encompass both according with the current trend in the Se-
mantic Web community.

6 E.g., a story can be modeled only if another story already has been successfully
addressed

89



8

like the one depicted in Table 1, which includes the story’s title, a list of other
stories which it depends on, a description in natural language, and a priority
value7. It is important to notice that this task is not intended to be performed
only once during the project. Stories can be added by the customer during the
whole project life cycle. For example, if a new requirement emerges new stories
can be written.

Task 3. Select a story that has not been treated yet. Each pair of de-
signers selects a story that will be the focus of their work for the next iteration.
A new wiki page for the story is created: the name of the page is the title of the
story, and its content is set up based on the information that are in the card. By
performing this task a pair enter a development iteration. For example, consider
that a pair has selected the story described by the card in Table 1.

Table 1. A requirement story card. It includes the story’s title, a list of other stories
which the story depends on, a natural language description, and a priority value.

Title Tuna observation
Depends on Exploitation values, Tuna areas
Description In 2004 the resource of species “Tuna” in water area 24 was observed

to be fully exploited in the tropical zone at pelagic depth.
Priority High

Task 4. Transform the story into CQs. The pair process the story and from
it derive a set of CQs. In order to do that, designers could involve the customer
for having feedback/clarifications. First the story is split into simple sentences,
meaning that complex example sentences may be broken up into shorter sen-
tences to increase clarity. The sentences are abstracted so that they describe a
class of facts instead of a specific one. The sentences are then transformed into
CQs. For example, the story “Tuna observation” is transformed to the following
CQs8, which are added in the story wiki page:

– CQ1: What are the exploitation state and vertical distance observed in a
given climatic zone for a certain resource?

– CQ2: What resources have been observed during a certain period in a certain
water area?

Additionally, the following contextual statement is derived from the discussion
with the customer representative9:

– A resource contains one or more species.
7 Priority values are assigned by designers based on interaction with the customer

representative. The values can vary and depends on project’s conventions.
8 The elaboration of the story is a complex cognitive procedure which is not explained

here. It would deserve a dedicated discussion which is out of scope of this paper.
9 There would be additional ones, we have simplified for the sake of brevity.

90



9

– Species are associated to vertical distances. As a consequence, the vertical
distance of a resource is inferred through the vertical distance of the species.

Contextual statements are listed in a dedicated wiki page, and are handled by
the pair in charge of the integration task.

Task 5. Select a CQ that has not been treated yet. The iteration contin-
ues by selecting one of the CQs. For example, CQ1.

Task 6. Match the CQ to GUCs. This task has the aim of identifying candi-
date CPs based on the CQ, which express part of the LUC. The matching proce-
dure can be done either with some tool support e.g., keyword based searching, or
manually e.g., if the designers have a good knowledge of available CPs. We here
assume that designer manually perform the matching against the ontologydesign-
patterns.org repository [4] of CPs. In our example, candidate CPs are: situation,
and time intervalAll of them are available on http://ontologydesignpatterns.org.
The competency question of situation “What entities are in the setting of a certain

situation?” can be said to match the observation, the resource, and the param-
eters that are in the setting of that observation. Additionally, the time interval
CP may be seen as partially matching the question of what period a certain ob-
servation was made, although this could also be solve with just a simple datatype
property. The CP contains CQs such as: “What is the end time of this interval?,

What is the starting time of this interval?, What is the date of this time interval?”.
The result of this task is then two matching CPs.

Task 7. Select the CPs to reuse. The goal of this task is to select which
of those patterns should be used for solving the modeling problem. We may de-
cide that time interval adds too much extra effort, besides the needed year of
observation, in which case we will only select situation.

Task 8. Reuse and integrate selected CPs. The term “reuse” here refers
to the application of typical operation that can be applied to CPs i.e. im-
port, specialization, and composition [7]. In our example, we specialize situa-
tion in order to address CQ1. The particular situation is in our case the ob-
servation, and the thing observed is the resource. Additionally, the exploita-
tion state, climatic zone, and vertical distance of the observation, are also in-
volved in the setting. Thereby, we add a subclass of situation:Situation10

named AquaticResourceObservation, and add the other entities as subclasses
of owl:Thing. In addition, we construct subproperties of the situation:isSettingFor
and its inverse situation:hasSetting, for connecting the observations to the
resources and the different parameters. The result is shown with a UML diagram
in Figure 3. In this case we have shown a simplified example where only one CP
has been reused and specialized. In other cases, we might reuse more CPs. Each
of them would be first specialized then integrated with the others. The process
10 The prefix “situation:” is for http://ontologydesignpatterns.org/cp/owl/situation.owl,

while “Situation” is a class defined in the situation CP.

91



10

Fig. 3. The acquatic resource observation ontology module that specializes the situation
CP.

that is typically performed during this task is sketched in Figure 4.

Fig. 4. The process performed in order to execute Task 8 “Reuse and integrate selected
CPs”.

Task 9. Test and fix. The goal of this task is to validate the resulting module
with respect to the CQ just modeled. To this aim, the task is executed through
the following steps: (i) the CQ is elaborated in order to derive a unit test e.g.,
SPARQL query; (ii) the instance module is fed with sample facts based on the
story; (iii) the unit test is ran against the ontology module. If the result is not
the expected one i.e. the test is not passed, the module is revised in order to fix
it, and the unit test ran again until the test is passed; (iv) run all other unit
tests associated with the story so far until they all pass. Notice that all unit tests
are described in dedicated wiki pages that are properly linked to the associated
story. If all CQs associated to the story have been addressed, the pair can pass
to Task 10, otherwise they “go back” to Task 5. In our example, the unit test
associated to CQ1 is the following:

92



11

SELECT ?exp ?dist ?resource ?zone
WHERE {
?obs a :AquaticResourceObservation .
?obs observedResource ?resource .
?obs inClimaticZone ?zone
?obs inState ?exp .
?obs atVerticalDistance ?dist
}

Task 10. Release module. This task identifies the end of an iteration for a
pair and its result is an ontology module. Once a whole story has been addressed,
and the resulting module has been successfully tested, the new module can be
released. The module is assigned with a URI and published in order to be shared
by the whole team. If the module can be publicly shared, it can be published in
open Web repositories such as ontologydesignpatterns.org. The module is then
passed to the pair in charge of the integration. The pair of designer selects a new
story if there are still some unaddressed.

Task 11. Integrate, test and fix. Once a new module is released, it has
to be integrated with all the others that constitute the current version of the
ontology. At least one pair is in charge of performing integration and related
tests: new unit tests are defined for the integration, and all existing ones are
again executed as regression tests before moving to next task. In this task, all
contextual statements are taken into account and all necessary alignment axioms
are defined. The module is now under the complete control and editing of the
pair in charge of the integration. The products of this tasks are new unit tests
and alignment axioms, all properly documented in the wiki.

Task 12. Release new version of the ontology. Once all unit tests have
been passed, a new version of the ontology can be released.

3 XD tools for the NeOn toolkit

The eXtreme Design plugin for NeOn Toolkit11 (XD tool) supports pattern-
based ontology design. Its current version12, focusses on XD with CPs, and sup-
ports some of the tasks described in Section 2. The main goal of XD tool is to
improve the user experience with ontology design editors by providing them with
a new interaction approach to ontology design. Instead of performing language-
oriented operations e.g. instantiate a class, define a subclass, etc., the designer
handles “pieces” of ontologies i.e. CPs, and is helped in performing modular
design and applying design good practices.
The tool provide an Eclipse perspective, named “eXtreme Design”, that includes

11 http://www.neon-toolkit.org
12 Available at http://stlab.istc.cnr.it/stlab/Download

93



12

the following components: CP browser and CP details view, XD annotation di-
alog, XD selector, XD assistant, XD wizards. In the following sections, these
components are described in detail.

3.1 The CP browser and CP details view

The CP browser relies on a remote connection to registries of CPs. By default,
XD tool allows to browse all CPs available at ontologydesignpatterns.org. The
repository of CPs is visualized according to a semantic description based on the
codolight13 ontology. This approach makes the XD tool able to easily add new
repositories to the browser, once it is provided with a codolight-based OWL
description of them. This view allows the user to browse and select CPs as
shown in Figure 5(a). The CP details view shows all available annotations of the
selected CP. From the CP browser, a CP can be specialized and imported in the
ontology under development.

(a) CP browser. (b) XD annotation dialog.

Fig. 5. XD browser and annotation dialog.

3.2 XD annotation dialog

The XD annotation dialog, shown in Figure 5, supports multilingual annotation
of ontology modules or CPs. This dialog supports a number of default vocab-
ularies, and custom ones can be added. One of the vocabularies available by
13 http://ontologydesignpatterns.org/cpont/codo/codolight.owl

94



13

default is the CP annotation schema14, an OWL ontology particularly suited for
annotating CPs.

3.3 XD selector: pattern selection support

The XD selector provides the infrastructure for plugging into XD a component
implementing a matching/searching algorithm that starting from a CQ gives
as output a selection of candidate CPs. Currently only the APIs have been
implemented, we are working at two proofs of concept components: an instance
of Watson [10] specific for CPs, and a new version of OntoCase [2].

3.4 The XD assistant: support for design good practices

This component is able to provide the user with feedback related to possible
mistakes and suggestions on good practices in a certain modeling situation. The
XD assistant has a plugin-based architecture that make it easy to extend the
help elements based on new emerging good/bad practices.
The XD assistant communicates two types of messages to the user: (i) Warn-
ings: these messages are visualized when there is a strong suspect of wrong
design. E.g. there is an anti-pattern in the module; (ii) Suggestions: these mes-
sages are visualized in order to suggest axioms currently missing in the module,
that could improve the design.

3.5 XD wizards

XD also features a set of wizards. At the moment it includes a wizard for sup-
porting CP specialization. The wizard can be accessed in the CP browser view,

(a) Step 3: create special-
ized entities.

(b) Step 4: check state-
ments that are true.

Fig. 6. Some steps of XD specialization wizard

by the command “specialized” included in the contextual menu that can be acti-
vated by right.clicking on the CP to be specialized (selected from the repository).
14 http://ontologydesignpatterns.org/schemas/cpannotationschema.owl

95



14

The wizard guides the user through the following steps:

Step 1. The user selects the project and the target ontology (if any). Addi-
tionally, the user has to check one of three possible results that can be produced
by the wizard:(i) Create a new module/CP and import it in the target ontology ;
(ii) Create a new module/CP and store it in the indicated project ; (iii) Merge the
resulting entities in the target ontology.

Step 2. All entity leaves are displayed to the user that is invited to select
the entities to be specialized.

Step 3. For each selected entity the user creates the new specific one as shown
in Figure 6(a).

Step 4. The wizard suggests possible axioms that can be added to the on-
tology by means of natural language statements. The users can automatically
produce these additional axioms by selecting the assertions that they consider
“true” in their context. This step of the wizard is depicted in Figure 6(b).

Step 5. Finally, an overview of natural language assertions corresponding to
the formal axioms stated in the developed module is shown. This step has the
aim of giving the users the possibility to review the result before to produce
the module. They can always go back to a certain step in order to fix possible
mistakes.

4 Conclusion and future work

In this paper, we have discussed eXtreme Design (XD), an approach to on-
tology design based on the application, exploitation, and definition of ontology
design patterns (ODPs). In more detail, we have presented two main contri-
butions: a collaborative, incremental, and iterative method for pattern-based
ontology design; and a first version of the XD tool, a NeOn Toolkit plugin that
currently supports CP repository browsing and selection, a good practice assis-
tant, and a wizard for CPs’ specialization.
XD main principles are collaboration, integration, testing, and the extensive
use of CPs. XD has been inspired by good practices typically adopted by the
eXtreme Programming (XP) [11] software development methodology, such as
pair programming, and customer involvement. While a rigorous evaluation of
the whole methodology is still in our future plans, the effectiveness of CPs in
ontology design has been rigorously evaluated in [5] where, however, XD has
been used as reference development guidelines. Furthermore, initial question-
naires and informal discussions made emerge that the perception of the trainees
with respect to the method is positive.
In order to ease the execution of the method some automatic support is needed.
For example, matching CQs with GUCs is a complex task and automatic support

96



15

for filtering candidate CPs is necessary in order to exploit at best the evolv-
ing repositories of CPs. For addressing this type of needs, we have developed
a NeOn Toolkit plugin, named “XD tool”, that currently support CP brows-
ing, annotation, and specialization. Furthermore, it provides APIs for pluggin-in
components that implement matching algorithms. A lot of work is still ongoing,
including the development of two components supporting matching/selection
of CPs. As future work, we have planned to continue with XD tool develop-
ment, and to conduct frequent user studies in order to evaluate and improve the
methodology as well as to collect feedback and suggestions on the XD tool.

References

1. V. R. Basili, G. Caldiera, and D. Rombach. Experience Factory, pages 469–476.
Wiley & Sons, 1994.

2. E. Blomqvist. Ontocase - automatic ontology enrichment based on ontology design
patterns. In A. Bernstein and D. Karger, editors, To appear in Proceedings of the
8th International Semantic Web Conference (ISWC 2009), 2009.

3. P. Clark and B. Porter. Building concept representations from reusable compo-
nents. In Proceedings of AAAI’97, pages 369–376. AAAI press, 1997.

4. E. Daga, V. Presutti, and A. Salvati. http: //ontologydesignpatterns.org and eval-
uation wikiflow. In A. Gangemi, J. Keizer, V. Presutti, and H. Stoermer, editors,
SWAP, volume 426 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

5. Eva Blomqvist and Aldo Gangemi and Valentina Presutti. Experiments on Pattern-
based Ontology Design. In The Fifth International Conference on Knowledge Cap-
ture, 2009.

6. A. Gangemi. Ontology Design Patterns for Semantic Web Content. In Proceedings
of the 4th International Semantic Web Conference, pages 262–276. Springer, 2005.

7. V. P. A. Gangemi. Ontology design patterns. In R. S. S. Staab, editor, Handbook
of Ontologies, International Handbooks on Information Systems. Springer, 2nd
edition, 2009.

8. M. Gruninger and M. Fox. The role of competency questions in enterprise engi-
neering, 1994.

9. S. Pinto, S. Staab, and C. Tempich. DILIGENT: Towards a fine-grained method-
ology for Distributed Loosely-controllled and evolvInG Engineering of oNTologies.
In Proceedings of ECAI-2004, 2004.

10. M. Sabou, C. Baldassarre, L. Gridinoc, S. Angeletou, E. Motta, M. d’Aquin, and
M. Dzbor. Watson: A gateway for the semantic web. In ESWC 2007 poster session,
June 2007-06.

11. J. Shore and S. Warden. The Art of Agile Development. O’Reilly, Sebastopol, CA,
USA, 2007.

12. C. G. von Wangenheim, K.-D. Althoff, and R. M. Barcia. Goal-oriented and
similarity-based retrieval of software engineering experienceware. In G. Ruhe and
F. Bomarius, editors, SEKE, volume 1756 of Lecture Notes in Computer Science,
pages 118–141. Springer, 1999.

13. D. Vrandečić and A. Gangemi. Unit tests for ontologies. In M. Jarrar, C. Os-
tyn, W. Ceusters, and A. Persidis, editors, Proceedings of the 1st International
Workshop on Ontology content and evaluation in Enterprise, LNCS, Montpellier,
France, October 2006. Springer.

97




