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Abstract. Semantic Web reasoning systems are confronted with the
task to process growing amounts of distributed, dynamic resources. This
paper presents a novel way of approaching the challenge by RDF graph
traversal, exploiting the advantages of swarm intelligence. The nature-
inspired and index-free methodology is realised by self-organising swarms
of autonomous, light-weight entities that traverse RDF graphs by fol-
lowing paths, aiming to instantiate pattern-based inference rules. The
method is evaluated on the basis of a series of simulation experiments
with regard to desirable properties of Semantic Web reasoning, focussing
on anytime behaviour, adaptiveness and scalability.

1 Introduction

Motivation It is widely recognised that new adaptive approaches towards robust
and scalable reasoning are required to exploit the full value of ever growing
amounts of dynamic Semantic Web data.[8] Storing all relevant data on only one
machine is unrealistic due to hardware-limitations, which can be overcome by
distributed approaches. The proposed framework employs twofold distribution:
the reasoning task is distributed on a number of agents, i.e. autonomous micro-
reasoning processes that are referred to as beasts in the remainder, and data
can be distributed on physically distinct locations. This makes reasoning fully
parallelisable and thus scalable whenever beasts do not depend on results of
other beasts or data on other locations. In most use-cases, co-ordination between
reasoning beasts is required, and this paper explores the application of swarm
intelligence to achieve optimised reasoning performance.

A second problem of current reasoning methods that focus on batch-pro-
cessing where all available information is loaded into and dealt within one central
location, is that the provenance of the data is often neglected and privacy-issues
are risen. An interesting alternative is local reasoning that supports decentralised
publishing as envisioned in [19], allowing users to keep control over their privacy
and the ownership and dissemination of their information. Another advantage
of decentralised reasoning compared to centralised methods is that it has the
potential to naturally support reasoning on constantly changing data.

Adaptiveness, robustness and scalability are characteristic properties of swarm
intelligence, so that its combination with reasoning can be a promising approach.
The aim of this paper is to introduce a swarm-based reasoning method and to
provide an initial evaluation of its feasibility and major characteristics. A model
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of a decentralised, self-organising system is presented, which allows autonomous,
light-weight beasts to traverse RDF graphs and thereby instantiate pattern-
based inference rules, in order to calculate the deductive closure of these graphs
w.r.t. the semantics of the rules. It will be investigated whether swarm intelli-
gence can contribute to reduce the computational costs that the model implies,
and make this new reasoning paradigm a real alternative to current approaches.

Method In order to calculate the RDFS or OWL closure over an RDF graph, a
set of entailment rules has to be applied repeatedly to the triples in the graph.
These rules consist of a precondition, usually containing one or more triples as
arguments, and an action, typically to add a triple to the graph. This process is
usually done by indexing all triples and joining the results of separate queries.
Swarm-based reasoning is an index-free alternative for reasoning over large dis-
tributed dynamic networks of RDF graphs.

The idea is simple: an RDF graph is seen as a network, where each subject
and each object is a node and each property an edge. A path is composed
of several nodes that are connected by properties, i.e. edges. The beasts, each
representing an active reasoning rule, which might be (partially) instantiated,
move through the graph by following its paths. Swarms of independent light-
weight beasts travel from RDF node to RDF node and from location to location,
checking whether they can derive new information according to the information
that they find on the way. Whenever a beast traverses a path that matches the
conditions of its rule, it locally adds a new derived triple to the graph. Given
an added transition capability between (sub-)graphs, it can be shown that the
method converges towards closure.

Research questions The price for our approach is redundancy: the beasts have
to traverse parts of the graph which would otherwise never be searched. It is
obvious that repeated random graph traversal of independent beasts will be
highly inefficient. The trade-off that needs to be investigated is thus, whether the
overhead can be reduced so that the method offers both adaptive and flexible, as
well as sufficiently efficient reasoning. The main research question of this paper is
whether Swarm Intelligence can help to guide the beasts more efficiently, so that
the additional costs are out-balanced by a gain in adaptiveness. More specifically,
the following research questions are going to be answered:

1. Does a swarm of beasts that is co-ordinated by stigmergic communication
perform better than the same number of independent beasts?

2. Does adaptive behaviour of the population lead to increased reasoning per-
formance?

3. How does the reasoning framework react to a higher number of locations?

Implementation and Experiments To prove the concept, a prototypic system
has been implemented based on AgentScape[15]. Each beast is an autonomous
reasoning agent, and each distributed graph administered by an agent that is
referred to as dataprovider and linked to a number of other dataproviders. Based
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on this implementation, the feasibility and major characteristics of the approach
are evaluated on the basis of simulation experiments in which beasts calculate
the deductive closure of RDF graphs[2] w.r.t. RDFS Semantics[11]. To study the
properties of the approach in its purest form, the focus is explicitly restricted
to the most simple instantiation of the model of swarm-based reasoning. This
means that the answers to the research questions are preliminary.

Findings The experiments described in this paper have two goals: proof of con-
cept and to obtain a better understanding of the intrinsic potential and chal-
lenges of the new method. For the former, fully decentralised beasts calculate
the semantic closure of a number of distributed RDF datasets. From the latter
perspective, the lessons learned are less clear-cut, as the results confirm that
tuning a system based on computational intelligence is a highly complex prob-
lem. However, the experiments give crucial insights in how to proceed in future
work; most importantly on how to improve attract/repulse methods for guiding
swarms to interesting locations within the graph.

What to expect from this paper This paper introduces a new swarm-based para-
digm for reasoning on the Semantic Web. The main focus is to introduce the
general reasoning framework to a wider audience and to study its weakness and
potential on the most general level.

We will provide background information and discuss related work in the next
section 2, before we define our method in section 3. We present our implemen-
tation in section 4 and some initial experiments in section 5, before we discuss
some ideas for future research and conclude in section 6.

2 Background and Related Work

In this section, we provide a brief overview of RDFS reasoning and Swarm In-
telligence and discuss existing approaches towards distributed reasoning.

The challenge we want to address is to deal with truly decentralised data,
that each user keeps locally. Bibliographic data is an example that would ideally
be maintained by its authors and directly reasoned over. We will use this scenario
throughout the paper to introduce our new Semantic Web reasoning paradigm.

2.1 Semantic Web Reasoning

To simplify the argument and evaluation, we focus on RDF and RDFS (RDF
Schema), the two most widely used Semantic Web languages.1

Listing 1.1 shows two simple RDF graphs in Turtle notation about two pub-
lications cg:ISWC08 and fvh:SWP of members of our Department, maintained
1 It is relatively straightforward to extend our framework to other rule-based frame-

works, such as OWL-Horst reasoning, which is currently the most widely imple-
mented form of Semantic Web reasoning.
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separately by respective authors and linked to public ontologies pub and people
about publications and people2, and reasoned and queried over directly.

cg:ISWC08
pub:title "Anytime Query Answering in RDF through Evolutionary Algorithms" ;
pub:publishedAs pub:InProceedings ;
pub:author people:Gueret ;
pub:author people:Oren ;
pub:author people:Schlobach ;
pub:cites fvh:SWP .

fvh:SWP
pub:title "Semantic Web Primer" ;
pub:publishedAs pub:Book ;
pub:author people:Antoniou ;
pub:author people:vanHarmelen .

Listing 1.1. Two RDF graphs about publications

These two graphs describe two publications cg:ISWC08 and fvh:SWP by dif-
ferent sets of authors and are physically distributed over the network. The state-
ments contained in the graphs are extended with schema-information as shown
in listing 1.2 and defined in the two respective ontologies, for example with the
information that pub:InProceedings are pub:Publications, people:Persons
are people:Agents, or that pub:author has the range people:Person.

pub:InProceedings rdfs:subClassOf pub:Publication
people:Person rdfs:subClassOf people:Agent
pub:author rdfs:range people:Person

Listing 1.2. Some RDFS statements

Given the standard RDFS semantics, one can derive that cg:ISWC08 is a
publication, and that authors are also instances of class people:Person, and thus
people:Agent. The formal semantics of RDFS and OWL enable the automation
of such reasoning. The task addressed in the experiments is to calculate the
RDF(S) deductive closure, i.e. all possible triples that follow implicitly from the
RDF(S) semantics[11]. Table 1 lists some examples of these entailment rules,
where the second column contains the condition for a rule to be applied, and the
third column the action that is to be performed.3

2.2 Swarm Intelligence

As our alternative reasoning method is swarm-based, let us give a short high-
level introduction to the field of Swarm Intelligence. Inspired by the collective
behaviour of flocks of birds, schools of fish or social insects such as ants or bees,
Swarm Intelligence investigates self-optimising, complex and highly structured
systems. Members of a swarm perform tasks in co-operation that go beyond the
2 In the experiments, SWRC and FOAF are used, but to simplify the presentation of

the example, ontology names are generic.
3 The rules follow the conventions: p denotes a predicate, i.e. a URI reference, s a

subject, i.e. a URI reference or a blank node, and o refers to an object (which might
also be a subject for an ongoing triple), i.e. a URI reference, a blank node or a literal.
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Rule If graph contains Then add

rdfs2
p rdfs:domain o1 . and
s p o2 .

s rdf:type o1 .

rdfs3
p rdfs:range o . and
s1 p s2 .

s2 rdf:type o .

rdfs4a s p o . s rdf:type rdfs:Resource .

rdfs7
p1 rdfs:subPropertyOf p2 . and
s p1 o .

s p2 o .

rdfs9
s1 rdfs:subClassOf o . and
s2 rdf:type s1 .

s2 rdf:type o .

Table 1. RDFS entailment rules

capabilities of single individuals, which function by basic stimulus → response
decision rules. Swarms are characterised by a number of properties, most im-
portantly lack of central control, enormous sizes, locality and simplicity. Those
properties result in advantageous characteristics of swarms, such as adaptive-
ness, flexibility, robustness, scalability, decentralisation, parallelism and intel-
ligent system behaviour. These are also desirable in distributed applications,
making swarms an attractive model for bottom-up reverse engineering.

Formicidae Ant (Formicidae) colonies appear as super-organisms because co-
operating individuals with tiny and short-lived minds operate as a unified en-
tity. Large colonies are efficient due to the self-organisation and functional spe-
cialisation of their members. Another characteristic property of ant colonies is
their ability to find shortest paths by indirect communication based on chem-
ical pheromones that they drop in the environment. The pheromones act as a
shared extended memory and enable the co-ordination of co-operating insects.
This mechanism is known as stigmergy[4].

2.3 Related Work

Scalability issues that are risen by the growing amount of Semantic Web data
are addressed by projects such as the Large Knowledge Collider[9], a platform
for massive distributed incomplete reasoning systems. Calculating the deductive
closure with respect to RDFS entailment rules is a standard problem on the
Semantic Web and has been addressed extensively. Relevant is the recent work
on distributed reasoning. The most prominent paradigms are based on various
techniques to distribute data [14,12,1,6] towards several standard reasoners and
to combine the results. This is different to the swarm-based methodology, where
reasoning is distributed over data that remains local at distributed hosts, so
that only small bits of information are moved in the network. Probably closest
to this methodology is the distributed resolution approach proposed in [16], but
it requires more data to be exchanged than our light-weight swarm-approach.

Biologically inspired forms of reasoning are an emerging research area that
aims at modelling systems with intelligent properties as observed in nature.
Semantic Web reasoning by Swarm Intelligence has been suggested in [3], that
proposes the realisation of “knowledge in the cloud” by the combination of mod-
ern “data in the cloud” approaches and Triplespace Computing. Triplespace
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Computing[7] is a communication and co-ordination paradigm that combines
Web Service technologies and semantic tuplespaces, i.e. associative memories as
embodied in Linda[10]. This combination allows for the persistent publication of
knowledge and the co-ordination of services which use that knowledge. The envi-
sioned system includes support for collaboration, self-organisation and semantic
data that can be reasoned over by a swarm which consists of micro-reasoning
individuals that are able to move in and manipulate their environment. The
authors suggest to divide the reasoning task among co-operating members of a
semantic swarm. Limited reasoning capabilities of individuals and the accord-
ing reduction of required schema information result in the optimisation of the
reasoning task for large-scale knowledge clouds.

3 Semantic Web Reasoning as Graph Traversal

In this section, we introduce our new reasoning methodology, which is based on
autonomous beasts that perform reasoning by graph traversal. Given a possibly
distributed RDF graph and corresponding schemata, beasts expand the graph
by applying basic inference rules on the paths they visit.

3.1 Reasoning as Graph Traversal

When a beast reaches a node, it chooses an ongoing path that starts at the
current node. This decision can be taken based on pheromones that have been
dropped by previous beasts, or based on the elements of the triples, preferring
triples which correspond to the pattern of the inference rule (best-first or hit-
detection). If the chosen triple matches the beast’s pattern, the rule will be fired
and the new inferred triple added to the graph.

Given three infinite sets I, B and L respectively called URI references, blank
nodes and literals, an RDF triple (s, p, o) is an element of (I∪B)×I×(I∪B∪L).
Here, s is called the subject, p the predicate, and o the object of the triple. An
RDF graph G (or graph or dataset) is then a set of RDF triples.

Definition 1 (Reasoning as Graph Traversal). Let G be an RDF graph,
NG the set of all nodes in G and MG = (L ∪ I) × . . . × (L ∪ I) the memory
that each beast is associated with. RDF graph traversal reasoning is defined as
a triple (G, BG, MG), where each b ∈ BG is a transition function, referring to
a (reasoning) beast rb : MG × G × NG → MG × G × NG that takes as input a
triple of the graph, moves to an adjacent node in the graph, and depending on
its memory, possibly adds a new RDF triple to the graph.

RDFS reasoning can naturally be decomposed by distributing complemen-
tary entailment rules on the members of the swarm, so that each individual is
responsible for the application of only one rule. Therefore, we introduce differ-
ent types of beasts, one type per RDF(S) entailment rule containing schema
information. If a concrete schema triple of a certain pattern is found, a cor-
responding reasoning beast is generated. Regarding for example the rule rdfs3
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from Table 1, which deals with range restrictions: whenever in the schema an
axiom p rdfs:range x is encountered, which denotes that every resource in the
range of the property p must be of type x, a beast responsible for this bit of
schema information is initialised as a function rb3 that is associated to memory
{p, x}. Table 2 lists the RDFS entailment rules, omitting blank node closure
rules rdf2 and rdfs1, with the pattern that is to be recognised in column 2 and
the reasoning beast with its memory requirement in column 3.

Entailment rule Pattern of schema triple Beast: memory
rdfs2 p rdfs:domain x . rb2: p x
rdfs3 p rdfs:range x . rb3: p x
rdfs5 p1 rdfs:subPropertyOf p .

p rdfs:subPropertyOf p2 .
rb7: p1 p2

rdfs6 p rdf:type rdf:Property . rb7: p p
rdfs7 p1 rdfs:subPropertyOf p2 . rb7: p1 p2

rdfs8 c rdf:type rdfs:Class . rb9: c rdfs:Resource
rdfs9 c1 rdfs:subClassOf c2 . rb9: c1 c2
rdfs10 c rdf:type rdfs:Class . rb9: c c
rdfs11 c1 rdfs:subClassOf c .

c rdfs:subClassOf c2 .
rb9: c1 c2

rdfs12 p rdf:type
rdfs:ContainerMembershipProperty .

rb7: p rdfs:member

rdfs13 s rdf:type rdfs:Datatype . rb9: s rdfs:Literal

Table 2. Schema-based instantiation of reasoning beasts

Table 3 shows the beasts needed for RDFS reasoning with their pattern-
based inference rules. Underlined elements correspond to the memory. Reason-
ing beasts rdf1b, rb4a and rb4b are schema-independent and do not require any
memory. They infer for each predicate that it is of rdf:type rdf:Property
and for each subject and object that it is of rdf:type rdfs:Resource. Reason-
ing beasts rb2 and rb3 apply the semantics of rdfs:domain and rdfs:range,
while beasts rb7 and rb9 generate the inferences of rdfs:subPropertyOf and
rdfs:subClassOf. From now on, they are being referred to as domain-beast,
range-beast, subproperty-beast and subclass-beast.

Beast : memory If pattern Then add
rdf1b : ∅ s p o . p rdf:type rdf:Property .
rb2 : {p,x} s p o . s rdf:type x .
rb3 : {p,x} s p o . o rdf:type x .
rb4a : ∅ s p o . s rdf:type rdfs:Resource .
rb4b : ∅ s p o . o rdf:type rdfs:Resource .
rb7 : {p1,p2} s p1 o . s p2 o .
rb9 : {c1,c2} s rdf:type c1 . s rdf:type c2 .

Table 3. Inference patterns of reasoning beasts

Let us assume that a range-beast arrives at node o from a node s via an edge
(s, p, o). Because p corresponds to its remembered property, it writes the triple
(o, rdf:type, x) to the graph. As it can walk both directions of the directed
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graph, it will output the same triple when it arrives at node s from node o via
edge (o, p, s). Finally, it moves on to a new destination n via a property pi, where
(o, pi, n) ∈ G.

There are many design decisions in the creation of beasts: in our prototypical
implementation, all schema triples are retrieved and pre-processed, calculating
the subclass and subproperty closure, before the beasts are created. For this
reason, there is no one-to-one mapping between RDFS rules and beasts. For
example, the transitivity of rdfs:subClassOf is first exhausted, so that rule
rdfs11 is encoded with several beasts of type rb9. The more generic approach
would have been to introduce a special transitivity-beast, which also writes new
subclass triples to the graph and then to have beasts picking up the schema-
information that they are to apply. This option is to be investigated in future
work. An advantage of the proposed mechanism is that all reasoning patterns
require only one matching triple for the rule to be fired, so that inferences do
not depend on remote data.

Example Let us consider again the two RDF graphs from our previous example.
Fig. 1 shows the RDF graph for the first publication. Dashed arrows denote
implicit links derived by reasoning.

ISWC08

Oren

Guéret

Schlobach

pub:inProceedings

SWP

Anytime Query...

people:Person

pub:Publication

SW Primer

people:Agent

pub:author

pub:au
thorpu

b:
au

th
or

pub:publishedAs

pub:citespub:title

rdfs:subClassOf

pub:title

rdf:type

rdf:type

rdf:type

rdfs:su
bClassO

f

rdf:type

rdf:type

rdf:type

Fig. 1. An exemplary RDF graph

For the three schema axioms of the previous example, beasts are created. For
the range-triple pub:author rdfs:range people:Person, a range-beast rb31 is
created with memory pub:author and people:Person. For the subclass triple
people:Person rdfs:subClassOf people:Agent, a beast rb91 is created which
is instantiated with the memory bits people:Person and people:Agent (the
other subclass-beast is generated accordingly). In this example, only one beast
per instantiated type is created, in practise there will be more. The beasts are
randomly distributed over the graph, say rb31 to node fvh:SWP, and similarly
the other two beasts. Beast rb31 has now two options to walk. Moving to “SW
Primer” will lead it to a cul-de-sac, which means it needs to walk back via
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cg:ISWC08 towards, e.g. person:Oren. At node person:Oren, the walked path is
cg:ISWC08 pub:author person:Oren which means rb31’s pattern matches the
walked triple, and it will add a triple person:Oren rdf:type people:Person to
the graph. When, after walking other parts of the graph, the subclass beast rb91

chooses to follow the new rdf:type link from person:Oren to people:Person,
it finds its memory condition matched, and will add the triple person:Oren
rdf:type people:Agent to the graph, and so forth. This example highlights the
obvious challenges faced by the approach, most importantly, that unnecessary
paths need to be investigated and that the order of visiting beasts is important
(rb31 had to be at person:Oren first, before rb91 could find anything).

Completeness The closure C∗ over a dataset G contains all triples that follow
from the RDF(S) semantics. In our framework, entailment rules are instantiated
by the schemata and embodied by beasts. Let b1, . . . bn be a swarm with at least
one individual per type. The complete closure C∗ is derived when the union of
the beast-outputs b1(c1) ∪ · · · ∪ bn(cn) ≡ C∗.

Proposition 1 (Completeness). Reasoning as graph traversal converges to-
wards completeness.

Proof. Sketch: To prove that the method converges towards completeness, it has
to be shown that all elements of C∗ are inferred eventually, i.e. that each beast
bm infers the complete closure bm(c∗m) of the rule it incorporates. Given the
beast-function as defined above, a beast infers c∗m when it visits all triples of
the graph that match its inference-pattern. This can be achieved by complete
graph traversal, which is trivially possible and can be performed according to
different strategies, such as random walk, breadth- or depth- first. It has to be
performed repeatedly, as other beasts can add relevant triples. C∗ is reached
when the swarm performed a complete graph traversal without adding a new
inference to the graph. Given random jumps to other nodes within the graph,
which also prevents beasts from getting stuck in local maxima, the same holds
for unconnected (sub-)graphs. When a swarm consists of s members b1

m, . . . bs
m

per type, the individuals of one type can infer bm(c∗m) collectively.

The proposed method is sound but redundant, as two beasts can derive
the same inference by the application of different rules and superfluous schema
information can lead to inferences that are already present in the data. Beasts
produce new inferences gradually, and as those are added to the corresponding
graph and not deleted, the degree of completeness increases monotonically over
time, so that our methodology shows typical anytime behaviour.

Jumping distributed graphs For the time being, our examples were not dis-
tributed. Our framework is more general as beasts can easily move to other
locations in the network to apply their inference rules there. Challenging is the
case when reasoning requires statements of two unconnected (sub-)graphs that
are physically distributed over a network (which is not the case for the proposed
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RDFS reasoning method but would be for distributed OWL-Horst[17] reason-
ing). In our current implementation, this case is covered by a simple routing
strategy using Bloom filters [1].

Movement Control The reasoning beasts operate on an energy metaphor: moving
in the graph costs energy and finding new inferences, which can be interpreted as
food, is rewarding. This is modelled via a happiness-function. When the beasts
are created, they have an initial happiness-value. Then, at each step from RDF
node to RDF node, one happiness-point is subtracted. When a beast receives a
reward due to an inference that is new (not-new inferences are worthless), its
happiness increases. With this simple mechanism, a beast adapts to its envi-
ronment: while it is successful and thus happy, it will probably find even more
applications of its rule, whereas for a beast that did not find a new triple for a
long time, it might be little reasonable to continue the search. When a beast is
unhappy or unsuccessful (i.e. it did not find anything new for a given number of
node-hops), it can change its rule instantiation, its type, the location or die.

3.2 Distributed Reasoning by Beasts in a Swarm

An advantageous property of populations that are organised in swarms is their
ability to find shortest paths to local areas of points of interest. Inspired by ant
colonies that lay pheromone-paths to food sources, beasts choose ongoing paths
based on pheromones. The environment provides beasts with the information
who has been at their current location before, which can be utilised by the
swarm to act as a whole, to avoid loops and to spread out evenly, which is useful
because the swarm has no gain if members of the same rule-instantiation traverse
the same path more than once.

When a beast reaches a node and chooses the next ongoing edge, it parses
its options, and while no application of its inference-pattern is found, which
would cause it to choose the corresponding path and fire its rule, it applies a
pheromone-based heuristic. It categorizes the options into sets of triples: the ones
which are promising because no individual of its rule-instantiation has walked
them before and the ones that already have been visited. If promising options are
available, one of them is chosen at random, otherwise the ongoing path is chosen
probabilistically, preferring less visited triples. Only pheromones of beasts with
the same rule-instantiation are considered, other possibilities, such as preferring
pheromones of other beasts to follow them, are subject to further research. Let τj

denote the pheromones on a path j and n the number of paths. The probability
pi to choose path i is determined by equation 1. It is between 0 and 1 and higher
for paths that have been walked less in the past. This formula has been inspired
by Ant Colony Optimization[5], where the probability to choose a path i is τi,
i.e. the pheromones on that path, divided by the sum of the pheromones on all
options.

pi =

Pn
j=0 τj−τi

n−1∑n
j=0 τj

. (1)
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4 Implementation

The implementation of our model is based on AgentScape [15], a middleware
layer that supports large-scale agent systems. Relevant concepts are locations,
where agents can reside, and agents as active entities that are defined according
to the weak notion of agency [18], which includes autonomy, social ability, re-
activeness and pro-activeness. Agents can communicate by messages and migrate
from one location to another.

Both the environment and the reasoning beasts of our model are implemented
as AgentScape agents. The environment consists of a number of agents that hold
RDF (sub-)graphs in Jena [13] models and are called dataprovider. We assume
that each dataprovider resides on a distinct location and does not migrate. Beasts
do migrate and communicate directly with the dataprovider that resides on their
current location. Reasoning beasts migrate to the data, perform local calcula-
tions and move on to the next location, so that only the code of the beasts
and results that can lead to inferences on other locations are moved in the net-
work and not the data. Other set-ups would be possible, such as beasts querying
dataproviders from the distance, without being physically on the same location.
Beasts communicate indirectly with each other by leaving pheromone-traces4 in
the environment. They operate on a plain N3 text representation.

5 Research Questions and Corresponding Experiments

This section presents a series of experiments. The focus is not on fine-tuning
parameters, but on testing basic strategies to generate first answers to the re-
search questions, and to provide a clear baseline for further experiments. The
experiments are based on a number of publication.bib files of members of our
Department. The files have been converted to RDF, following the FOAF and
the SWRC ontologies.

Beasts are instantiated by our beast-creation mechanism as presented above.5
Ignoring schema-triples that contain blank nodes, 195 beasts are generated from
the employed FOAF and SWRC schemata: 11 subproperty-beasts, 87 subclass-
beasts, 48 domain-beasts and 49 range-beasts, each of them with a unique rule-
instantiation. In all experiments, swarms of 5 beasts per rule-instantiation are
traversing the graphs. Each beast starts at a random node at one of the locations.

Each dataset is administered by a dataprovider that is residing on a distinct
location, which is named after the corresponding graph. The initial happiness on
each dataset and the maximum number of requests that do not lead to any new
4 Pheromones are stored as reified triples.
5 For the sake of simplicity, the experiments are restricted to RDFS simple reason-

ing. This means that RDFS entailment rules which have only one single schema-
independent triple-pattern in the precedent (rdf1, rdfs4a and rdfs4b, rdfs6, rdfs8,
rdfs10, rdfs12 and rdfs13) and blank node closure rules are deliberately omitted.
These inferences are trivial and can be drawn after the RDFS simple closure has
been derived, in case they are required.
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inference, is set to 100 and the maximum number of migrations between locations
and their corresponding dataproviders is set to 10. A beast’s happiness increases
by 100 when it inferred a triple that was new indeed. In all experiments, beasts
ideally die when the closure is deduced. Then, they cannot find new inferences
any more and eventually reach their maximum unhappiness after a number of
unsuccessful node- and location-hops.

To evaluate the obtained results, the inferences of the beasts are compared
to the output of Jena’s RDFS simple reasoner.6 All graphs show how the degree
of completeness (i.e. the percentage of found inferences) per dataset is rising
in relation to the number of sent messages. A message is a request for ongoing
options from a beast to the dataprovider.

5.1 Baseline: random walk

To generate a baseline for the comparison of different strategies, the beasts in
the first experiment choose between their options randomly, even if one of the
options contains a triple that leads to an inference.
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Fig. 2. Random walk without hit-detection

Fig. 2 visualizes the percentage of found inferences over time for each of the
datasets. At the end of the experiment, 75.59% of the complete closure have
been reached. The results demonstrate typical anytime behaviour: for longer
computation times, more inferences are generated.

5.2 Does a swarm of beasts that employs stigmergic communication
outperform the same number of independent beasts?

To investigate the question whether stigmergic communication accelerates con-
vergence, a random walk strategy with hit-detection (so that the beasts prefer
6 In contrast to the beasts, Jena did not generate any inference stating that a resource

is of type Literal, so those triples have been added to the output of Jena.
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triples that match their reasoning pattern) is compared to a strategy that em-
ploys indirect communication by repulsing pheromones, as described in section
3.2. Fig. 3(a) and Fig. 3(b) visualize the results.
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(a) Random walk with hit-detection
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(b) Indirect communication

Fig. 3. Random walk with hit-detection compared to stigmergic communication

A first result is that compared to the random walk without hit-detection, both
methods have a positive impact on the reasoning performance of the beasts. Sec-
ondly, in contrast to the hypothesis that stigmergic communication would lead to
a faster convergence, the graphs are almost alike in the number of sent messages
and also in their convergence-behaviour and reached percentage of the closure
(94.52% for the random walk and 92.85% for the stigmergic communication).

In the start-phase of the experiments, new inferences are found easily, the
difficult task is to detect the last remaining inferences. The assumption was
that repulsing pheromones would guide the beasts to the unvisited sub-graphs
where the remaining inferences are found. These experiments provide interesting
insights into how to proceed in tuning the swarm behaviour: especially by the
employment of attracting pheromones to lead fellow beasts to regions with food.

5.3 Does adaptive behaviour of the population increase the
reasoning-performance?

To answer the question whether adaptive behaviour of the individuals is bene-
ficial, a dynamic adaption of rule-instantiations in case of unsuccessfulness is
tested. Note that this is only one possibility out of many for the beasts to
adapt to their environment. Here, each beast is provided with a set of possible
rule-instantiations instead of remembering only two arguments. For example,
a subclass-beast does not only receive one subclass and one superclass to in-
stantiate its rule, but several subclasses with the same superclass. The beasts
switch their rule-instantiation to another random instantiation after each 50th

unsuccessful message-exchange. Fig. 4 shows the results of the adaptive beasts:
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Fig. 4. Beasts that change their rule instantiation

The resulting graph shows clearly that the intuition that dynamic adaptions
should lead to increased reasoning-performance did not apply to this experiment.
On average, the swarms found 80.67% of the complete closure. In the future, more
intelligent approaches have to be investigated, replacing e.g. the randomness in
the changes, so that beasts change into successful rule-instantiations. Care has
to be taken that not all beasts change to the most successful instantiations,
because inferences that occur seldom also need to be found.

5.4 How does the reasoning framework react to a higher number of
locations?

An important question regarding the potential scalability of our model is to
study what happens when more datasets are added, so we compared the set-up
with 5 datasets as shown in figure 3(b) to the same set-up with 10 datasets. We
employed the same number of beasts as in the previous experiments.
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Fig. 5. 10 datasets

Fig. 5 demonstrates that the percentage of the complete closure (93.2%) per
dataset is nearly as high as for a set-up with 5 datasets. This is because beasts
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that can infer more new triples are increasingly happy and thus can send more
messages to the dataproviders. The figure clearly indicates that more data on
distributed locations lead to more activity, resulting in more inferences. This is,
although not unexpected, a nice result.

6 Conclusion

We have presented a radically new method for Semantic Web reasoning based on
Swarm Intelligence. The major feature of this idea is that many light-weight au-
tonomous agents collectively calculate the semantic closure of RDF(S) graphs by
traversing the graphs, and apply reasoning rules to the nodes they are currently
located on. The advantage of this approach is its adaptiveness and its capability
to deal with distributed data from dynamic sources. Such a reasoning procedure
seems ideal for the Semantic Web and might help in setting up a decentralised
publishing model that allows users to keep control over their personal data.

A metaphor for the way that the proposed paradigm envisages future Se-
mantic Web reasoning is the eternal adaptive anthill, the Web of Data as de-
centralised accessible graphs, which are constantly traversed and updated by
micro-reasoning beasts. Based on this vision it can be claimed that swarm-based
reasoning is in principle more adaptive and robust than other Semantic Web
reasoning approaches, as recurrently revisiting beasts can more easily deal with
added (and even deleted) information than index-based approaches.

Our experiments show a proof of concept: over an (admittedly small) decen-
tralised environment of our departmental publications we show that this idea
works in principle, which gives us motivation to continue to improve the current
framework in future research. Furthermore, first experiments have given clear
guidelines for where more research is needed: first, the implementation framework
based on AgentScape and Jena might not be ideal, as the dataprovider might
be too central to the current implementation and thus become a bottleneck.
However, through distribution of the reasoning, scaling is in principle straight-
forward. As usual, scaling comes at a price, in our case that the distribution
will make it difficult for the beasts to find triples they can reason on. Initial
experiments with Swarm Intelligence indicate that this might be a way forward,
although it is well known that tuning such highly complex systems is very diffi-
cult (as our experiments confirm).

Ideas for future work are abundant: improving the implementation of the
general model, routing strategies, security issues, dealing with added and deleted
statements, trust etc. All these issues can relatively elegantly be represented in
our framework, and some solutions are straightforward. Most interesting at the
current stage will be to investigate more swarm strategies, such as scout models
to guide beasts of similar types towards areas of interest, cloning successful
beasts and much more. This paper is a first step.
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