
Efficient Linked-List RDF Indexing in
Parliament

Dave Kolas, Ian Emmons, and Mike Dean

BBN Technologies, Arlington, VA 22209, USA
{dkolas,iemmons,mdean}@bbn.com

Abstract. As the number and scale of Semantic Web applications in
use increases, so does the need to efficiently store and retrieve RDF
data. Current published schemes for RDF data management either fail
to embrace the schema flexibility inherent in RDF or make restrictive as-
sumptions about application usage models. This paper describes a stor-
age and indexing scheme based on linked lists and memory-mapped files,
and presents theoretical and empirical analysis of its strengths and weak-
nesses versus other techniques. This scheme is currently used in Parlia-
ment (formerly DAML DB), a triple store with rule support that has
recently been released as open source.

1 Introduction

As the number and scale of Semantic Web applications in use increases, so does
the need to efficiently store and retrieve RDF [1] data. A wide variety of RDF and
OWL [2] applications are currently being developed, and each application’s sce-
nario may demand prioritization of one performance metric or another. Current
published schemes for RDF data management either fail to embrace the schema
flexibility inherent in RDF or make restrictive assumptions about application
usage models.

Despite the fact that RDF’s graph-based data model is inherently different
than relational data models, many published schemes for RDF data storage
involve reductions to a traditional RDBMS [3–7]. This results in the deficiencies
of RDBMS’s (inflexible schemas, inability to efficiently query variable predicates)
being propagated to RDF storage; arguably, avoiding these deficiencies is one of
the major reasons for adopting an RDF data model. Other published approaches
eschew the mapping to an RDBMS, but suffer either inadequate load or query
performance for many applications. In this paper, we argue that the storage
approach in Parliament provides excellent load and query performance with low
space consumption and avoids the pitfalls of many other specialized RDF storage
systems.

Parliament [8] (formerly DAML-DB [9]) is a triple store developed by BBN
that has been in use since 2001. During that time, Parliament has been used for
a number of applications from basic research to production. We have found that
it offers an excellent tradeoff between load and query performance, and compares
favorably to commercial RDF data management systems [10].

17



2

Recently, BBN has decided to release Parliament as an open source project.
Parliament provides the underlying storage mechanism, while using Jena [11] or
Sesame [12] as an external API. This paper explains in detail the underlying
index structure of Parliament, and compares it to other published approaches.
Our hope is that open-sourced Parliament will provide a fast storage alternative
for RDF applications, create a platform upon which storage mechanism and
query optimizer research can be built, and generally advance the state of the art
in RDF data management.

The remainder of this paper is structured as follows. Section 2 addresses
related work. Section 3 describes the index structure within Parliament. Sec-
tion 4 explains how the operations on the structure are performed. Section 5
provides both worst case and average case analysis of the indexing mechanism,
and Section 6 provides a small empirical comparison to supplement [10].

2 Related Work

The related work on RDF data management systems falls into two major cate-
gories: solutions that involve a mapping to a relational database, and those that
do not.

2.1 RDBMS Based Approaches

A large proportion of the previously published approaches involve a mapping of
the RDF data model into some form of relational storage. These include triples-
table approaches, property tables, and vertical partitioning. There is a strong
temptation to use relational systems to store RDF data since such a great amount
of research has been done on making relational systems efficient. Moreover, ex-
isting RDBMS systems are extremely scalable and robust. Unfortunately, each
of the proposed ways of doing this mapping has deficiencies.

The triples-table approach has been employed in 3store [3], and is perhaps
the most straightforward mapping of RDF into a relational database system.
Each triple given by (s, p, o) is added to one large table of triples with a column
for the subject, predicate, and object respectively. Indexes are then added for
each of the columns. While this approach is straightforward to implement, it
is not particularly efficient, as noted in later work [4, 5, 13, 14, 10]. The primary
problem is that queries with multiple triple patterns result in self-joins on this
one large table, and are inefficient.

Property tables were introduced later, and allowed multiple triple patterns
referencing the same subject to be retrieved without an expensive join. This
approach has been used in Jena 2 [4]. A similar approach is used in [6]. In this
approach, each database table includes a column for a subject and several fixed
properties. The intent is that these properties often appear together on the same
subject. While this approach does eliminate many of the expensive self-joins in
a triples table, it still has deficiencies leading to limited scalability. Queries with
triple patterns that span multiple property tables are still expensive. Depending

18



3

on the level of correlation between the properties chosen for a particular property
table, the table may be very sparse and thus be less space-efficient than other
approaches. Also, it may be complex to determine which sets of properties are
best joined within the same property table. Multi-valued properties are problem-
atic in this approach as well. Furthermore, queries with unbound variables in the
property position are very inefficient and may require dynamic table creation.
In a data model without a fixed schema, it is common to ask for all present
properties for a particular subject. In the property table approach, this type of
query requires scanning all tables. With property tables, adding new properties
also requires adding new tables, a consideration for applications dealing with
arbitrary RDF content. It is the flexibility in schema that differentiates RDF
from relational approaches, and thus this approach limits the benefit of using
RDF.

The vertical partitioning approach suggested in [5] may be viewed as a spe-
cialization of the property table approach, where each property table supports
exactly one property. This approach has several advantages over the general
property table approach. It better supports multi-valued properties, which are
common in Semantic Web data, and does not sacrifice the space taken by NULL’s
in a sparsely populated property table. It also does not require the property-
clustering algorithms for the general property tables. However, like the property
table approach, it fails to efficiently handle queries with variables in the property
position.

2.2 Other Indexing Approaches

The other primary approaches to RDF data storage eliminate the need for a
standard RDBMS and focus instead on indexing specific to the RDF data model.
This set of approaches tends to better address the query models of the semantic
web, but each suffers its own set of weaknesses.

The RDF store YARS [15] uses six B+ tree indices to store RDF quads
of a subject, predicate, object, and a “context”. In each B+ tree, the key is
a concatenation of the subject, predicate, object, and context, each dictionary
encoded. This allows fast lookup of all possible triple access patterns. Unlike the
RDBMS approaches discussed above, this method does not place any particu-
lar preference on the subject, predicate, or object, meaning that queries with
variable predicates are no different than those with variable subjects or objects.
This structure sacrifices space for query performance, repeating each dictionary
encoded triple six times. The design also favors query performance to insertion
speed, a tradeoff not necessarily appropriate for all Semantic Web applications.
Our approach is more efficient both in insertion time and space usage, as will
be demonstrated. Other commercial applications use this method as well [16].
Kowari [14] is designed similarly, but uses a hybrid of AVL and B trees instead
of B+ trees for indexing.

The commercial quad store Virtuoso [7] adds a graph g element to a triple,
and conceptually stores the quads in a triples table expanded by one column.
While technically rooted in a RDBMS, it closely follows the model of YARS [15],

19



4

but with fewer indices. The quads are stored in two covering indices, g, s, p, o
and o, g, p, s, where the IRI’s are dictionary encoded. Several further optimiza-
tions are added, including bitmap indexing and inlining of short literal values.
Thus this approach, like YARS, avoids the pitfalls of other RDBMS based work,
including efficient variable-predicate queries. The pattern of fewer indices tips
the balance slightly towards insertion performance from query performance, but
still favors query performance.

Hexastore [13], one of the most recently published approaches, takes a similar
approach to YARS. While it also uses the dictionary encoding of resources, it
uses a series of sorted pointer lists instead of B+ trees of concatenated keys.
Again, this better supports the usage pattern of Semantic Web applications and
does not force them into a RDBMS query model. Hexastore not only provides
efficient single triple pattern lookups as in YARS, but also allows fast merge-
joins for any pair of two triple patterns. Again, however, it suffers a five-fold
increase in space for storing statements over a dictionary encoded triples table,
and favors query performance over insertion times. It is our experience that
applications often do require efficient statement insertion, and thus our approach
seeks to balance query performance and insertion time. Since this approach was
published most recently and compares favorably to previous approaches, we will
focus our empirical comparison evaluation on Hexastore.

Other commercial triple stores such as OWLIM [17] have been empirically
shown to perform well, but their indexing structure is proprietary and thus no
theoretical comparison can be made.

3 Index Structure

This section explains the three parts of the storage structure of Parliament: the
resource table, the statement table, and the resource dictionary. This description
is simplified for the sake of clarity; it does not discuss using quads instead of
triples, optimizations for blank nodes, the rule engine, or some small implemen-
tation details. Parliament can be compiled in either 32 or 64 bit modes, and the
width of the fields described varies accordingly.

3.1 Resource Table

The Resource Table is a single file of fixed-length records, each of which rep-
resents a single resource or literal. The records are sequentially numbered, and
this number serves as the ID of the corresponding resource. This allows direct
access to a record given its ID via simple array indexing. Each record has eight
components:

– Three statement ID fields representing the first statements that contain this
resource as a subject, predicate, and object, respectively

– Three count fields containing the number of statements using this resource
as a subject, predicate, and object, respectively

20



5

– An offset into the string representations file described below, used to retrieve
the string representation of the resource

– Bit-field flags encoding various attributes of the resource

The first subject, first predicate, and first object statement identifiers pro-
vide pointers into the statement table, which is described below. The subject,
predicate, and object counts benefit the find operations and query optimization,
discussed in Section 4. For the remainder of the paper, these counts will be
referred to as count(resource, pos) for the count of a resource in the given posi-
tion. The usage of the offset into the string representations file will be explained
below.

3.2 Statement Table

The Statement Table is the most important part of Parliament’s storage ap-
proach. It is similar to the resource table in that it is a single file of fixed-length
records, each of which represents a single statement. The records are sequentially
numbered, and this number serves as the ID of the corresponding statement.
Each record has seven components:

– Three resource ID fields representing the subject, predicate, and object of
the statement, respectively

– Three statement ID fields representing the next statements that use the same
resource as a subject, predicate, and object, respectively

– Bit-field flags encoding various attributes of the statement

The three resource ID fields allow a statement ID to be translated into the
triple of resources that represent that statement. The three next statement point-
ers allow fast traversal of the statements that share either a subject, predicate,
or object, while still storing each statement only once.

Figure 1 shows an example knowledge base consisting of five triples. Each
triple row in the statement list table shows its resource identifier as a number and
the pointers to the next statements as arrows. Omitted arrows indicate pointers
to a special statement identifier, the null statement identifier, which indicates
the end of the linked list.

3.3 Resource Dictionary

Like many other triple stores [13, 5, 6, 12], Parliament uses a dictionary encoding
for its resources. This dictionary provides a one-to-one, bidirectional mapping
between a resource and its resource ID. The first component of this dictionary
is the mapping from a resource to its associated identifier. This portion of the
dictionary uses Berkeley DB [18] to implement a B-tree whose keys are the
resources’ string representations and whose values are the corresponding resource
ID’s. This means that inserts and lookups require logarithmic time.

21



6

Fig. 1. Example Statement List and Resource Table

The second half of the dictionary is the reverse lookup from a resource ID to
a string representation. This is implemented in a memory-mapped file contain-
ing sequential, variable-length, and null-terminated string representations of re-
sources. A resource ID is translated into the corresponding string representation
by using the resource ID to index into the resource table, retrieving the string
representation offset, and using this to index into the string representations file
to retrieve the associated string. Thus, looking up a string representation from
a resource identifier is a constant time operation.

The current approach stores each string representation twice. Future imple-
mentations may eliminate this redundancy.

3.4 Memory-Mapped Files

Three of the four files that comprise a Parliament triple store (the resource
table, the statement table, and the string representations file) are stored and
accessed via a common operating system facility called “memory mapping”.
This is independent of the index structure of the store, but is worth mentioning
because it confers a significant performance advantage. Most modern operating
systems use memory mapping to implement their own demand-paged virtual
memory subsystem, and so this mechanism for accessing files tends to be highly
optimized and keeps frequently accessed pages in memory.

4 Triple Store Operations

The three fundamental operations that a triple store can perform are query,
insertion (assertion), and deletion (retraction). These are discussed below.

22



7

4.1 Query

Parliament performs a lookup of a single triple pattern according to the following
algorithm:

1. If any of the triple pattern elements are bound, Parliament uses the B-tree
to translate the string representations of these resources into resource ID’s.

2. If any bound elements are not found in the B-tree, then the query result is
the empty set, and the query algorithm terminates.

3. If none of the elements are bound, then the query result is the entire state-
ment list. Parliament enumerates this by iterating across all of the records in
the statement table and retrieving the string representations of the elements.

4. If exactly one element is bound, then Parliament looks in the resource table
for the resource table the ID of the first statement using that resource in the
position the resource appears in the given triple pattern.

5. If two or three elements are bound, then Parliament looks in the resource
table for those resource ID’s to retrieve count(resource, pos) for each. Par-
liament selects the resource whose count is smallest, and retrieves from the
resource table the ID of the first statement using that resource in the position
the resource appears in the given triple pattern.

6. Starting with that statement ID, Parliament traverses the linked list of state-
ment records corresponding to the position of the minimal count resource.

7. If the triple pattern contains exactly one bound resource, then this list of
statements is exactly the answer to the query, and again Parliament retrieves
the string representations of the elements as it enumerates the list to form
the query result.

8. If two or three elements are bound, then as Parliament enumerates the linked
list of statements, it checks whether the resources in the positions of the
non-minimal count resources are the same as the bindings in the given triple
pattern. Whenever a match is found, Parliament retrieves the string repre-
sentations of the elements and adds that triple to the query result.

Whenever Parliament is enumerating statements, it skips over statements
whose “deleted” flag has been set. See Section 4.3 below for details.

Parliament is designed as an embedded triple store and does not include a
SPARQL or other query language processor. Such queries are supported by ac-
cessing Parliament as a storage model from higher-level frameworks such as Jena
or Sesame. Single find operations (as discussed above) are combined together by
the higher-level framework, with Parliament-specific extensions for optimization.
In particular, when using Parliament with Jena’s query processors [11], we have
used several different algorithms for query planning and execution, which will
be detailed in subsequent publications. The basis of these optimizations is the
ability to quickly access the counts of the resources in the given positions.

4.2 Insertion

To insert a triple (s, p, o), Parliament executes the following algorithm:

23



8

1. Parliament uses the B-tree to translate the string representations of the three
resources into resource ID’s.

2. If all three elements are found in the B-tree, then Parliament performs a
query for the triple pattern (s, p, o). Note that this is necessarily a fully
bound query pattern. If the triple is found, then no insertion is required,
and the algorithm terminates.

3. If any elements are not found in the B-tree, then Parliament creates new
resources for each of them as follows:
(a) Parliament appends the string representation of the resource to the end

of the string representations file. If the file is not large enough to contain
the string, then the file is enlarged first. The offset of the beginning of
the string is noted for use in the next step.

(b) Parliament appends a new record to the end of the resource table. If
the file is not large enough to contain the new record, then the file is
enlarged first. The number of the record is saved as the new resource ID
for use in the steps below, and the offset from the string representations
file is written to the appropriate field in this record. The record’s counts
are initialized to zero, and the first statement ID’s are set to null.

(c) Parliament inserts a new entry into the B-tree. The entry contains the
resource’s string representation as its key and the new resource ID as its
value.

4. Parliament now has three valid resource ID’s representing the triple, and
knows that the triple is not present in the statement table.

5. Parliament appends a new record to the end of the statement table. If the
file is not large enough to contain the new record, then the file is enlarged
first. The number of the record is saved as the new statement ID for use in
the steps below, and the three resource ID’s obtained above are written to
the appropriate fields in this record. The record’s next statement ID’s are
all set to null.

6. For each of the three resources, Parliament inserts the new statement record
at the head of that resource’s linked list for the corresponding triple position
as follows:
(a) The resource record’s first statement ID for the resource’s position is

written into the corresponding next statement ID field in the new state-
ment record. Note that if this resource was newly inserted for this state-
ment, then this step will write a null into the next statement ID field.

(b) The ID of the new statement is written into the resource record’s first
statement ID for the resource’s position.

4.3 Deletion

The index structure of Parliament’s statement table is not conducive to the
efficient removal of a statement record from the three linked lists of which it is
a member. These linked lists are singly linked, and so there is no way to remove
a record except to traverse all three lists from the beginning.

24



9

Due to these difficulties, Parliament “deletes” statements by marking them
with a flag in the bit field portion of the statement record. Thus, the algorithm
consists of a find (as in the case of an insertion, this is a fully bound query
pattern) followed by setting the flag on the found record. In the future, we may
utilize doubly linked lists so that the space occupied by deleted statements can be
reclaimed efficiently. However, in our work to date deletion has been infrequent
enough that this has been deemed a lower priority enhancement.

5 Theoretical Analysis

As is readily apparent, the presented approach suffers some unfortunate worst
case performance, but the average case performance is quite good. This is con-
sistent with empirical results presented in [10] and this paper. We will address
both find operations on a single triple pattern and triple insertions.

5.1 Worst Case Analysis

The worst-case performance for a single triple pattern lookup is dependent on
how many of the elements in the pattern (s, p, o) are bound. If zero elements are
bound, the triple pattern results in a total scan of the statement list, resulting
in O(n). Since all triples are the expected result, this is the best possible worst
case performance. If one element is bound, the chain for that particular element
will be traversed with time O(count(bound, pos)). Again exactly the triples that
answer the pattern are traversed.

Things change slightly for the cases where two or three of the (s, p, o) ele-
ments are bound. If two elements are bound, the shorter of the two lists will be
traversed. This triple pattern can be returned in

O(min(count(bound1, pos1), count(bound2, pos2)))

However, this could be O(n) if all triples use the two bound elements. If all
three elements are bound, the shortest of the three lists will be traversed. This
shortest list will be longest when the set of statements is exactly the three-way
cross product of the set of resources. In this case, if the number of resources is
m, then the number of statements is m3 and every list is of length m2. Thus the
list length is n2/3, and a find operation for three bound elements is O(n2/3).

Since an insertion first requires a find on the triple to be inserted, it incurs
the worst-case cost of a find with three bound elements, O(n2/3). It also incurs
the cost of inserting any nodes in the triple that were not previously known into
the dictionary, but this logarithmic time O(log m) is overshadowed by the worst
case find time. After that, adding the triple to the head of the lists is done in
O(1) constant time. Thus the worst-case of the insertion operation is O(n2/3).

Here we note that this worst-case performance is indeed worse than other
previously published approaches, which are logarithmic. However, the scenarios
that produce these worst-case results are quite rare in practice, as will be shown
in the following section.

25



10

5.2 Average Case Analysis

While the worst-case performance is worse than other approaches, analyzing the
relevant qualities of several example data sets leads us to believe that the average
case performance is actually quite good.

The most relevant feature of a data set with respect to its performance within
this indexing scheme is the length of the various statement lists for a particular
subject, predicate, or object. For instance, the worst-case time of the insert
operation and the find operation with three bound elements is O(n2/3), but this
is associated with the case that the set of triples is the cross-product of the
subjects, predicates, and objects, which is a highly unlikely real world situation.
Since these bounds are derived from the shortest statement list, analysis of the
average list lengths in a data set is a key measure to how this scheme will perform
in the real world.

Table 1. List Length Means (Standard Deviations)

Data Set Size Subject Predicate Non-Lit Object Lit Object

Webscope 83M 3.96 (9.77) 87,900 (722,575) 3.43 (2,170) 4.33 (659)
Falcon 33M 4.22 (13) 983 (31,773) 2.56 (328) 2.31 (217)
Swoogle 175M 5.65 (36) 4,464 (188,023) 3.27 (1,793) 3.38 (569)
Watson 60M 5.58 (56) 3,040 (98,288) 2.87 (918) 2.91 (407)
SWSE-1 30M 5.25 (15) 25,404 (289,000) 2.46 (1,138) 2.29 (187)
SWSE-2 61M 5.37 (15) 83,773 (739,736) 2.89 (1,741) 2.87 (300)
DBpedia 110M 15 (39) 300,855 (3,560,666) 3.84 (148) 1.17 (22)
Geonames 70M 10.4 (1.66) 4,096,150 (3,167,048) 2.81 (1,623) 1.67 (15)
SwetoDBLP 15M 5.63 (3.82) 103,009 (325,380) 2.93 (629) 2.36 (168)
Wordnet 2M 4.18 (2.04) 47,387 (100,907) 2.53 (295) 2.39 (271)
Freebase 63M 4.45 (15) 12,329 (316,363) 2.79 (1,286) 1.83 (116)
US Census 446M 5.39 (9.18) 265,005 (1,921,537) 5.29 (15,916) 227 (115,616)

Table 1 shows the mean and standard deviations of the subject, predicate,
and object list lengths for several large data sets [19]. There are a few nice prop-
erties of this data that are worth noting. First, the average number of statements
using a particular subject is quite small in all data sets. The average number
of statements using a particular object is generally even smaller, though with a
much higher standard deviation. Finally, only the predicate list length generally
seems to scale with the size of the data set.

These observations have important implications with respect to the average
time of find and insert operations. For find operations, we now know several
things to be generally true:

– Either the object or subject list will likely be used for find operations when
all three elements are bound. Thus these operations will often touch fewer
than 10 triples.

26



11

– Due to the previous, insert operations should generally be quite fast.
– The predicate list is only likely to be used for find operations when only

the predicate is bound, and thus only when all statements with the given
predicate must be touched to be returned anyway.

– Find operations with two bound elements, which have the most troubling
theoretical worst-case performance, necessarily include either a bound sub-
ject or bound object. As a result, these too should generally be quite fast.

These conclusions collectively suggest real world performance that is much
more impressive than the worst-case analysis would imply, and this is shown
empirically in the following section.

6 Empirical Analysis

Since Hexastore [13] is the most recently published work in this area, and its in-
dexing structure out performed several of the other approaches, we have focused
our empirical evaluation on Parliament as compared to Hexastore. At the time of
our evaluation, only the prototype Python version of Hexastore was available for
comparison. Future work will compare against the newly released version. This
limitation resulted in the relatively small size of this empirical evaluation; we
could not go beyond the size of main memory without the comparison becoming
unfair to Hexastore. Parliament was tested with 850 million triples in [10].

Evaluation was performed on a MacBook Pro laptop with a 2.6 GHz dual
core CPU, 4 GB of RAM, and a 7200 RPM SATA HD, running Mac OS X
10.5.7. This platform was most convenient for execution of both systems. While
Hexastore’s evaluation focused on only query performance, we feel it is important
to include insertion performance and memory utilization as well, as there are
many Semantic Web applications for which these factors are significant. We have
focused on the Lehigh University Benchmark [20], as it was used in the Hexastore
evaluation and contains insertion time metrics as well. We have evaluated LUBM
queries 1, 2, 3, 4, and 9. Since the version of Hexastore used does not perform
inference, we were forced to modify queries 4 and 9 such that none was required.

The insertion performance graph is shown in Figure 2. The throughput of
Parliament stays fairly stable at approximately 35k statements per second. This
throughput is 3 to 7 times larger than that of Hexastore, which starts at approx-
imately 9k statements per second, and declines to less than 5k statements per
second as the total number of triples increases. Parliament’s throughput results
include both persisting the data to disk (the Python version of Hexastore is en-
tirely memory-based) and forward chaining for its RDFS inference capabilities.

Figures 3, 4, 5, 6, and 7 show the relative query performance of Parliament
and Hexastore on LUBM queries 1, 2, 3, 4, and 9 respectively.

Queries 1, 3, and 4 produce results where both systems appear to be following
the same growth pattern, though Hexastore performs slightly better on queries 1
and 3 and Parliament performs better on query 4. Parliament also demonstrates
more variability in the query execution times, which is likely a result of the
dependency on the operating system’s memory mapping functionality.

27



12

0 

5 

10 

15 

20 

25 

30 

35 

40 

0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5 

Th
ro
ug
hp

ut
 (t
ho

us
an

ds
 o
f s
ta
te
m
en

ts
 p
er
 s
ec
on

d)
 

Millions of Statements Loaded 

Parliament 

HexaStore 

Fig. 2. Insertion Performance

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5 

Re
sp
on

se
 T
im

e 
(m

ill
is
ec
on

ds
) 

Millions of Statements Loaded 

Parliament 

HexaStore 

Fig. 3. LUBM Query 1 Response Time

28



13

0 

200 

400 

600 

800 

1000 

1200 

1400 

0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5 

Re
sp
on

se
 T
im

e 
(m

ill
is
ec
on

ds
) 

Millions of Statements Loaded 

Parliament 

HexaStore 

Fig. 4. LUBM Query 2 Response Time

0 

0.5 

1 

1.5 

2 

2.5 

0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5 

Re
sp
on

se
 T
im

e 
(m

ill
is
ec
on

ds
) 

Millions of Statements Loaded 

Parliament 

HexaStore 

Fig. 5. LUBM Query 3 Response Time

29



14

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5 

Re
sp
on

se
 T
im

e 
(m

ill
is
ec
on

ds
) 

Millions of Statements Loaded 

Parliament 

HexaStore 

Fig. 6. LUBM Query 4 (modified) Response Time

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5 

Re
sp
on

se
 T
im

e 
(s
ec
on

ds
) 

Millions of Statements Loaded 

Parliament 

HexaStore 

Fig. 7. LUBM Query 9 (modified) Response Time

30



15

Queries 2 and 9 show Parliament and Hexastore following different growth
curves, with Parliament performing better in query 9 and Hexastore performing
better in query 2. This is more likely the result of differing query plans within the
two systems than a strength or deficiency of the storage structure, but without
insight into the query planner of Hexastore we cannot verify this claim.

Finally, Table 2 shows an estimate of memory used by Hexastore and Parlia-
ment with all 4.3M statements loaded. These numbers are as reported by Mac
OS X, but as is often the case with virtual memory management, the mem-
ory metrics are only useful as course estimates. However, they show what was
expected; Parliament’s storage scheme requires significantly less storage space.

Table 2. Space Utilization for 4.3M Triples (in GB)

Hexastore Parliament

Real Memory 2.02 0.50
Virtual Memory 2.59 1.38
Disk Space N/A 0.36

Overall, we conclude that Parliament maintains very comparable query per-
formance to Hexastore, while significantly outperforming Hexastore with respect
to insertion throughput and required space.

7 Conclusions

In this paper, we have shown the storage and indexing scheme based on linked
lists and memory mapping used in Parliament. This scheme is designed to bal-
ance insertion performance, query performance, and space usage. We found that
while the worst-case performance does not compare favorably with other ap-
proaches, average case analysis indicates good performance. Experiments demon-
strate that Parliament maintains excellent query performance while significantly
increasing insertion throughput and decreasing space requirements compared to
Hexastore. Future work will include experiments focusing on different query op-
timization strategies for Parliament, explanations and analysis of Parliament’s
internal rule engine, and further optimizations to the storage structure.

References

1. Klyne, G., Carroll, J., eds.: Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation (February 2004)
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

2. Dean, M., Schrieber, G., eds.: OWL Web Ontology Language Reference.
W3C Recommendation (February 2004) http://www.w3.org/TR/2004/REC-owl-
ref-20040210/.

31



16

3. Harris, S., Shadbolt, N.: Sparql query processing with conventional relational
database systems. In: Lecture Notes in Computer Science. Springer (2005) 235–
244

4. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D., Database, J.: Efficient rdf
storage and retrieval in jena2. In: EXPLOITING HYPERLINKS 349. (2003) 35–
43

5. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web
data management using vertical partitioning. In: VLDB ’07: Proceedings of the
33rd international conference on Very large data bases, VLDB Endowment (2007)
411–422

6. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient sql-based rdf querying
scheme. In: VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, VLDB Endowment (2005) 1216–1227

7. Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In Auer, S., Bizer,
C., Müller, C., Zhdanova, A.V., eds.: The Social Semantic Web 2007, Proceedings
of the 1st Conference on Social Semantic Web (CSSW), September 26-28, 2007,
Leipzig, Germany. Volume 113 of LNI., GI (2007) 59–68

8. BBN Technologies: Parliament http://parliament.semwebcentral.org/.
9. Dean, M., Neves, P.: DAML DB http://www.daml.org/2001/09/damldb/.

10. Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An evaluation of triple-
store technologies for large data stores. In: On the Move to Meaningful Internet
Systems 2007: OTM 2007 Workshops, Vilamoura, Portugal, Springer (2007) 1105–
1114 LNCS 4806.

11. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: WWW Alt. ’04: Pro-
ceedings of the 13th international World Wide Web conference on Alternate track
papers & posters, New York, NY, USA, ACM (2004) 74–83

12. Broekstra, J., Kampman, A., Harmelen, F.V.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Lecture notes in computer science.
Volume 2342., Springer (2002) 54–68

13. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic
web data management. Proc. VLDB Endow. 1(1) (2008) 1008–1019

14. Wood, D., Gearon, P., Adams, T.: Kowari: A platform for semantic web storage
and analysis. In: XTech2005: XML, the Web and beyond, Amsterdam (2005)

15. Harth, A., Decker, S.: Optimized index structures for querying rdf from the web.
Web Congress, Latin American 0 (2005) 71–80

16. Franz, Inc.: AllegroGraph http://www.franz.com/products/allegrograph/.
17. Kiryakov, A., Ognyanov, D., Manov, D.: Owlim — a pragmatic semantic repository

for owl. In: Lecture Notes in Computer Science. Volume 3807/2005. Springer (2005)
182–192

18. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley db. In: ATEC ’99: Proceedings of
the annual conference on USENIX Annual Technical Conference, Berkeley, CA,
USA, USENIX Association (1999) 43–43

19. Dean, M.: Toward a science of knowledge base performance analysis. In:
Invited Talk, 4th International Workshop on Scalable Semantic Web Knowl-
edge Base Systems (SSWS2008), Karlsruhe, Germany (October 2008) slide 20
http://asio.bbn.com/2008/10/iswc2008/mdean-ssws-2008-10-27.ppt.

20. Guo, Y., Qasem, A., Pan, Z., Heflin, J.: A requirements driven framework for
benchmarking semantic web knowledge base systems. IEEE Transactions on
Knowledge and Data Engineering 19(2) (2007) 297–309

32


