
4store: The Design and Implementation of a

Clustered RDF Store

Steve Harris, Nick Lamb, and Nigel Shadbolt

Garlik Ltd.
{steve.harris, nick.lamb, nigel.shadbolt}@garlik.com

Abstract. This paper describes the design and implementation of the
4store RDF storage and SPARQL query system with respect to its cluster
and query processing design. 4store was originally designed to meet the
data needs of Garlik, a UK-based semantic web company. This paper
describes the design and performance characteristics of 4store, as well as
discussing some of the trade-offs and design decisions. These arose both
from immediate business requirements and a desire to engineer a scalable
system capable of reuse in a range of experimental contexts where we
were looking to explore new business opportunities.

1 Introduction

The need for 4store originated from a fundamental business requirement in Gar-
lik. 4store was designed primarily to provide the backend storage for Garlik’s
DataPatrol1, a consumer-facing personal information protection product. This
product and its variants now have established user bases of many tens of thou-
sands of individuals.

4store was implemented on a low-cost networked cluster with many tens of
servers supporting a 24x7 operation. In addition Garlik has built semantically
informed search and harvesting software and used industrial strength language
engineering technologies across many millions of people-centric Web pages. Meth-
ods have been developed for extracting information from structured and semi
structured databases. This information is organised against a lightweight people-
centric ontology which, when imported comprises many billions of RDF triples.

Since its initial development 4store has been replaced within Garlik by a new
clustered store with even greater scalability and efficiency. The 4store source
code has been made available under the GNU General Public Licence version
3 [1]. The ANSI C99 source code and documentation can be found at http:
//4store.org/.

1 http://www.garlik.com/. DataPatrol is an online application that checks databases
and internet data sources for indications that personal information has “leaked” into
the public domain.

81

1.1 Original Requirements

Due to the expected data volume that would be stored Garlik decided to aim for
the storage of 109 quads in a cluster of nine machines, each machine having two
processor cores, 4GB of RAM, and two SATA disks – a typical configuration for
a commodity server at the time.

Average response time to SPARQL [2] queries was required to be in the low
milliseconds range – for the typical queries that would be required to provide
the service.

One of the features of the application was that a wide range of heterogeneous
data would need to be incorporated into the system. Moreover, new data sets
were likely to become available whose form and structure we could not anticipate.
Since the exact nature of the data could not be known it was decided that the
storage system should not be specialised to any particular RDF schema.

Data updates were intended to be applied in bulk. The RDF store refreshing
a weeks worth of data at a time. Time allowed for this import was around eight
hours. Due to the volume of updates taking place it was felt that transactions
would be required to ensure the integrity of results.

1.2 Current Requirements

As the application grew, the requirements evolved. For the last version of 4store
that was used to support DataPatrol, the requirement was to hold 15×109 triples
in a cluster of nine machines with 8GB of RAM each.

The volume of updates averaged 4×109 triples per week, updated in a twelve
hour period. However, it was found that explicit transactions were not necessary,
so this requirement was dropped.

Garlik had also developed other applications backed by 4store during this
period, including QDOS2 and the QDOS FOAF Index3, which brought their
own requirements. The requirement that had the most impact on the design was
for live updates, completing in a predictable time, proportional to the size of the
RDF file imported. This required moving from an earlier quad index structure
to the one described in section 5.2. It was important that we were able to adapt
the design of the store to new business requirements.

2 Related Work

There are a number of other RDF storage systems which use cluster based stor-
age, or share some design principles with 4store. These include:

3store Although 3store [3] is not a cluster-based RDF engine many of the design
principles originated in 3store. In particular the method of mapping RDF
Resources to integers is inherited more or less directly from 3store.

2 http://qdos.com/, an online impact measuring application.
3 http://foaf.qdos.com/, an index of around ten million FOAF files, stored in an

instance of 4store.

82

Bigdata Bigdata [4] is another clustered RDF store. It has very high import
performance, but little information about its design is available at this time.

Jena Clustered TDB Jena’s Clustered TDB backend [5] has similar design
goals to 4store. The paper describes an early prototype, rather than a pro-
duction environment, but the segmentation and storage are substantially
different to those in 4store.

Virtuoso Cluster Edition The Clustered Edition of Virtuoso [6] uses yet an-
other clustering model based on the Map-Reduce algorithm and bitmap quad
indices.

YARS2 YARS2 [7] uses a very different approach to 4store to achieve heavy
utilisation of the cluster following a more conventional clustering model to
spread the load across multiple nodes. It is known to scale to 9× 109 triples.

3 Architecture

At the time of the initial design it was uneconomic to purchase computers with
sufficient main memory to hold an adequate proportion of an RDF index for the
projected data size. It was estimated that a reasonable average memory footprint
for a quad was in the region of 100 bytes, implying that 93GB of RAM would
be required to hold the complete index. As a result it was decided to pursue a
clustered storage methodology.

For reasons of cost efficiency it was decided to base the cluster on commod-
ity 64-bit, multicore x86 hardware, running the Linux operating system. At the
time this was felt to offer the best price/performance ratio, and offers access to a
large number of skilled administrators and systems programmers. The commu-
nications were to be provided by Gigabit Ethernet network interface controllers
and switches. The choice of this hardware platform suggested the “Shared Noth-
ing” architecture [8] as the most practical design.

3.1 Cluster Topology

The data is divided among a number of segments (non-overlapping slices of data),
with one or more segments on every storage node, as shown in figure 1. These
nodes are divided into Processing and Storage nodes.

It is also possible to run 4store on a single node, running the Processing
front-end and one or more Storage back-ends on a single machine. 4store draws
little advantage from the proximity, and the overhead of TCP communications
between the Processing and Storage components is still incurred.

3.2 Segmentation

The segmentation model used in 4store is extremely simple. A RID integer (see
section 5.1) is calculated for the subject of any given triple. The segment number
is then computed such that

segment = rid(subject) mod segments

83
























































  

















Fig. 1. 4store’s cluster topology

To segment resources the same function is applied to the RID of the resource.
This extremely simplistic segmentation schema has some benefits, but also a
number of drawbacks, as illustrated below.

Benefits For commonly encountered data this segmentation scheme produces
remarkably even distribution of data amongst the segments. If sn is the popula-
tion of segment n then the coefficient of variation (cv) for a given system is given

by σ(s)
s̄ . The values of cv for the twenty five million triple BSBM [9] dataset,

a sample of FOAF data4, and the USGS TIGER/Line dataset 5 are shown in
table 1.

Due to the relatively value low of cv there is rarely any need to migrate
segments between nodes, and there is little need to gather the statistics required
for re-segmenting the data during import operations.

4 Taken from a population of ten million FOAF files crawled in 2008 as part of the
QDOS FOAF Index project

5 The USGS TIGER/Line dataset, converted into RDF. This dataset was regularly
used as test data in the development of 4store.

84

Dataset cv
Fr
Fq

BSBM 25MT 2.83 × 10−3 14.99
FOAF 1.70 × 10−2 9.09
TIGER/Line 1.59 × 10−3 5.27

Table 1. Characteristics of various datasets

Drawbacks Synthetic datasets, and potentially real-world ones could skew the
distribution of subjects in such as way as to increase the value of cv, this would
have a deleterious effect on the performance and efficiency of the cluster. For
example, a large number of triples of the following form would increase cv sub-
stantially:

country:US :citizen _:us1 .
country:US :citizen _:us2 .
...

Given a triple pattern where the subject is not known, the segmentation
algorithm used cannot determine in which segment the matching quad or quads
will be found. Because of this it is necessary for the querying process to contact
every node in the cluster in order to find matches for this pattern. In practice this
limits the application of this algorithm to relatively small clusters. However, in
such small clusters it potentially offers an advantage in that the query optimiser
is frequently given the choice between a broad shallow query across many nodes,
or a narrow deep one against a single node.

When there are two or more potential query operations with similar speci-
ficity, but some have constant or known subject values, and some have constant
or known object values then the query engine can make the choice between
querying all nodes specifying one or more objects in the bind (see section 6.1),
or it can specify the subjects and target on the required segments.

The trade-off is that broad bindings consume more resources overall, but
complete in a shorter wall-clock time, the IO load being spread across many
nodes in the cluster.

3.3 Segment Distribution and Replication

Given a set of nodes N, {α, β, ...} and a set of segments S, {0, 1, ...} the nodes
are assigned non-negative integer identifiers, starting from zero. The segments
are the divided amongst the nodes, such that the set of segments assigned to
node n with r replicas Anr is as below.

Anr =
r

⋃

m=0

Rnm

Rnm =

{

{s ∈ S : s mod |N | = n} for m = 0

{s ∈ S :
((

s +
⌊

s
|N |

⌋)

mod (|N | − m) + m
)

mod |N | = n} for m > 0

85

For a cluster of 8 nodes, consisting of 32 segments with 2 way replication,
the allocations would be as seen in table 2. The aim of this replication method is
to ensure that should up to r nodes fail, the increased load is distributed evenly
across the remaining nodes.

Node Rn0 Rn1 Rn2

α {0, 8, 16, 24} {7, 14, 21, 28} {6, 13, 20, 27}
β {1, 9, 17, 25} {0, 15, 22, 29} {7, 14, 21, 28}
γ {2, 10, 18, 26} {1, 8, 23, 30} {0, 15, 22, 29}
δ {3, 11, 19, 27} {2, 9, 16, 31} {1, 8, 23, 30}
ε {4, 12, 20, 28} {3, 10, 17, 24} {2, 9, 16, 31}
ζ {5, 13, 21, 29} {4, 11, 18, 25} {3, 10, 17, 24}
η {6, 14, 22, 30} {5, 12, 19, 26} {4, 11, 18, 25}
θ {7, 15, 23, 31} {6, 13, 20, 27} {5, 12, 19, 26}

Table 2. Segment distribution across an eight node cluster with two way replication

4 Inter-Node Communications

Processing nodes communicate with storage nodes via TCP/IP. There is no
direct communication between storage nodes. Having discovered the addresses
of the storage nodes (see section 4.1) at startup a processing node asks each
node which segments are stored there, and makes one connection per segment
on that node. At this point the storage nodes may also optionally (configured
at setup time) require an authentication step using a shared secret password
to provide some degree of assurance that the processing node is authorised to
access the data. The connection is not encrypted because of the likely impact on
performance.

Connections between processing nodes and storage nodes are used to send
variable sized messages using a type-length-value scheme, each message is either
a request or a reply. Communication is always initiated by the processing node
sending a message with a request. For most types of request the storage node
replies with a message of its own, a few types do not require any reply. In place
of the expected reply a storage node can send an error reply, including human
readable text if there is a fatal error performing the requested action.

Only one message is sent at a time on any particular connection, but since
there is a separate connection for each segment, a request can be sent to all the
segments and then all the replies aggregated, meaning the total time to fulfill
the request over the whole cluster is limited by the slowest response, rather than
the sum of time taken to fulfill the request for each individual segment.

In order to provide replication requests which write new data to a segment
are sent to all replicas of the segment, while to improve performance requests
which only read data (e.g. the requests used for the bind functions described

86

in section 6.1) make requests to a single replica, and try to choose a replica
on a node with least outstanding requests. If a storage node fails while in use,
attempts to write data will report errors until it is repaired, but attempts to read
data will continue to work normally (but potentially with reduced performance)
if at least one replica of each segment is still accessible.

4.1 Discovery

From the outset we wanted processing nodes to be able to discover the stor-
age nodes containing the relevant data without any specific configuration. The
processing node needs to identify the complete address (IP address and port
number) of a listening TCP socket on each storage node. A “well known port”
was not desired, as this would impose a limit of only one instance of the storage
node software per node. DNS Service Discovery [10] seemed well suited to this
purpose and, since the storage nodes are on the local network, we used Multi-
cast DNS [11] to enable this without needing a DNS server to be installed or
specifically configured for this purpose.

Each storage node advertises a service with the 4store DNS service type
(4store. tcp). To distinguish multiple datasets stored on the same physical
nodes, or on different nodes connected to the same network, each dataset has a
unique name, which is included in a DNS TXT record, and the total number of
segments is also included in the advertisement.

The processing nodes solicit advertisements for the 4store service type and
then listen for advertisements. Received advertisements are checked to see that
the name matches the desired dataset, and if so the processing node attempts
to connect to the advertised address. If the connection fails, other addresses are
tried. If after a reasonable time the processing node has not been able to identify
and connect to all the storage nodes (or for a processing node which performs
only queries, enough nodes to access all the distinct segments) it gives up and
reports an error.

5 RDF Representation

5.1 Resources

RIDs RIDs (Resource IDentifiers) are used as a symbol encoding [12] for re-
source values. RIDs are 64-bit integers which represent URIs, Literals, and Blank
Nodes using a disjoint value space. The one or two most significant bits of the
RID value determine whether the RID encodes a URI, Literals or Blank Node:

MSB1 MSB2 Encodes
0 Literal
1 0 Blank Node
1 1 URI

87

In the case of URIs and Literals the remainder of the RID is made up of the
least significant bits of a UMAC-64 [13] hash of the UTF-8 encoded lexical value
of the resource. The cryptographic features of a strongly universal hash are of
little relevance, however the collision resistance is desirable. In the case of literals
with either a language tag or a datatype, an attribute RID is calculated from
the language tag or datatype, stored as the attr and additionally exclusive-or’d
with UMAC hash of the lexical value. For URIs, Blank Nodes, and Plain Literals
the value of attr is zero.

Blank Nodes are encoded differently. An integer representing the highest
blank node identifier is maintained on the storage node(s) holding segment zero.
When an importing process wishes to allocate some Blank Node RIDs it requests
a block of IDs, represented as (min, max) from segment zero. These IDs are bit-
wise permuted in such a way as to keep both the MSBs and LSBs of the resulting
ID varying frequently, whilst ensuring that distinct input IDs in the range [0, 262]
produce unique output IDs. The variability at both ends of the identifier ensures
an even distribution of Blank Nodes across both segments, and in the trie used
to store quads (see section 5.2).

Once a collision is detected on any given segment, all future translations
from lexical forms to RIDs on that segment must be confirmed by the resource
index in the appropriate segment, in order to prevent incorrect results from being
returned.

As the RDF Literals and URIs are stored in separate value spaces the point
at which collisions are likely depends on the number of unique literals and URIs
in a given dataset. The probability of a collision occurring for n values in a space
of d possible hash values is given by

1 −
n−1
∏

k=1

(

1 −
k

d

)

So, if the number of literals is fl and the number of URIs is fu then the overall
probability of a collision in a particular segment, where there are s segments is:

1 −







fl
s −1
∏

k=1

(

1 −
k

263s

)

fu
s −1
∏

k=1

(

1 −
k

262s

)







Assuming that the number of resources in each segment is approximately
equal, which is likely given the strong universality of the UMAC function [13].

The number of values that can be hashed before we expect to encounter a
collision is given by

√
N for a hash of N values. If we make the assumption6 that

fl ≈ fu, and define fr as the sum of fl and fu then the approximate number of
resources that can be imported before we expect to encounter a collision is given
by 2

√
262.

6 Although this situation is not especially likely the statistics for the breakdown into
URIs and Literals are not available at this time. Nevertheless, this approximation
should still provide a reasonable order-of-magnitude estimate

88

To know the expected number of quads that can be imported before encoun-
tering a collision (eq) it is necessary to know the ratio of unique quads (fq) to
fr.

eq = 232 fq

fr

Some values for fq

fr
are given in table 1. From this we can estimate that

typically 3.9 × 1010 quads of FOAF data could be imported before collision
handling would be required. Consequently, it is a worthwhile optimisation to
delay handling of collisions until it becomes necessary.

Lexical Value Storage RDF Resources, (URIs, Literals, and Blank Nodes) are
represented as a 3-tuple of (rid, attr, lexical value), and stored in a bucketed,
power-of-two sized hash table, shown as the “R Index” in figure 1. The rid and
attr are both RIDs, and the lexical value is a text string, encoded in one of a
number of ways.

5.2 Quad Storage

In 4store, RDF triples are represented as quads of (model, subject, predicate, object),
where a model is somewhat analogous to a SPARQL Graph. The chief differences
between a SPARQL Graph and a model are in the handling of empty graphs
and the behaviour of the default graph. In 4store, triples assigned to the default
graph are placed in a particular model, which is used in query execution against
the default graph – when the SPARQL default graph behaviour is enabled.

Although the quads are queried using a flat pattern structure (see section
6.1), the internal structure more closely resembles property tables [12].

Each quad in a particular segment is stored in three indexes. The first two
will be described here and the third will be described in section 5.3. The indexes
described here are shown as “P Indices” in figure 1.

The P Indices consist of a set of radix tries [14], two for each predicate,
using a 4-bit radix. Ordinarily radix tries are at a disadvantage compared to
balanced trees as their worst case lookup performance is O(k), where k is the
key length, compared to O(log n) for a B-Tree [15]. However the keys in this
case have already been mapped to 64-bit integers, so are of finite, short length.
Additionally, the integers are already evenly distributed across the space due to
the combination of hashing and Blank Node identifier distribution, making the
worst case lookup conditions uncommon.

The key for the per-predicate radix tries is the subject or object of the quads
to be indexed. The graph and subject/object are stored in a list of rows, pointed
to by leaf entry in the radix trie.

Queries with known subjects or objects, but unknown predicates are rela-
tively expensive to execute, as all tries must be consulted to determine if match-
ing subjects or objects appear with that predicate.

89

5.3 Model Storage

Graphs are indexed using a hash table that points to a list of rows of triples.
This index is shown as the “M Index” in figure 1. The function of the graph
index is twofold. Primarily it allows queries of the following form to be executed
efficiently:

SELECT * WHERE { GRAPH <some-graph> { ?s ?p ?o } }

A side effect of this is that it allows graph-level deletes to be performed
more efficiently, clearing out the Graph index entry and removing matching
quads from the appropriate radix trees, this can be performed on each segment
independently as all the pertinent information is held locally to the segment.

6 Query Operations

Often the focus on performance of clustered systems is on delegating work to
cluster members in order to distribute the work. In large clusters with many
parallel task to complete this is a significant efficiency gain, but on the relatively
small clusters that 4store is designed to run on this is not always the case.

Running a test on a cluster of five machines, connected by Gigabit Ethernet
on an isolated network the mean time over one thousand requests for one node to
issue an empty request and receive an empty response from one cluster member
is 175µs, given an established TCP/IP connection.

For comparison, a join on two 2,000 row binding tables, with one common
variable can be completed on the same hardware in 520µs. Consequently, given
a pure response-time consideration it’s only advantageous to push the join down
to cluster members if the tables can be split, sent, joined and returned by the
remote cluster members in 520µs. Given the situation that CPU manufacturers
are offering increasing numbers of cores, there is a potential to perform multi-
ple joins simultaneously without incurring network IO overhead. As many such
parallel operation can be performed locally, this optimisation looks increasingly
unattractive for small operations.

There are however still situations in which performing the joins on cluster
members has an overall time advantage. For instance, when the data for both
sides of the join is already present on one member, one such situation will be
discussed in section 8.2.

Equally a cluster where a very large volume of queries is being performed,
saturating the CPU cores on the front-end machines, would benefit from pushing
more joins down into the cluster. Another situation would be when the joins are
typically performed across very large tables. A join between two binding tables
has a complexity around O(n log n), so breaking this down into m O(n

m log n
m)

operations is a win in net processor time for sufficiently large n, regardless of
the parallelism.

4store has two fundamental distributed query operations, bind and resolve,
these are used to perform the underlying operations for all SPARQL expression
evaluation and are described below.

90

6.1 The Bind Functions

The bind functions are used by the query engine when it wishes to produce a
binding set for some SPARQL graph pattern. One function takes four multisets
of RIDs, and the other a set of quads of RIDs that describe the match to be
performed (see below). These arguments are presented to the network distri-
bution algorithm. The network distribution algorithm decides what segment or
segments should be consulted to return the complete set of bindings and divides
the sets into one set for each segment that is to be consulted.

Once the results have been obtained from the segments of interest the network
distributor performs a multiset union on the results and returns this to the query
engine.

The primary form of the bind function takes four multisets of RIDs, M , S,
P and O and a set of flags indicating which columns should be projected. These
multisets are matched against the quads held by a particular segment (Qs),
containing a set of quads of RIDs such that quads of the form (m, s, p, o) are
selected where:

{(m, s, p, o) ∈ Qs : m ∈ M ∨ M = ∅, s ∈ S ∨ S = ∅, p ∈ P ∨ P = ∅, o ∈ O ∨ O = ∅}

The resulting multiset of quads is then projected to produce a multiset of
n-tuples where n is the cardinality of the projection set.

There is also a second bind function, called the reverse-bind, for historical
reasons. This reverse-bind function takes a set of quads R, and returns a multiset
of quads such that:

{(m, s, p, o) ∈ Qs : (m′, s′, p′, o′) ∈ R, m = m′ ∨ m′ = ω, s = s′ ∨ s′ = ω,

p = p′ ∨ p′ = ω, o = o′ ∨ o′ = ω}

This multiset is then projected as per the main bind form. ω in this expression
is the “null” value, some nominated RID value which cannot appear in real data.

6.2 The Resolve Function

The resolve function is used to map RIDs to attribute RIDs and the lexical value
of the input RID.

It takes a set of RIDs and returns a set of tuples of the form (rid, attr, lexical
value), for a given segment. As in the bind case there is a network distributor
that is responsible for sending resolve requests to the appropriate segments and
the result is the union of the returned values from each segment.

7 Query Execution

The 4store query engine is largely based on Relational Algebra. This is due
to the fact that 4store’s query engine predates the finished SPARQL algebra.
Moreover, there is a large body of literature around optimisation that can be

91

applied to relational algebra. Implementations that started after the publication
of the SPARQL specification are more likely to use the SPARQL algebra. How-
ever many of the observations that follow are likely to be relevant to SPARQL
algebra implementations.

4store uses the Rasqal SPARQL parser [16]. Rasqal produces a parse tree
representing the underlying structure of the SPARQL expression. 4store walks
this tree looking for occurrences of variables, which it records as metadata, and
labels blocks of binding patterns with IDs. For example, consider the following
query, where the block IDs are show in parentheses:

SELECT * WHERE {
?x a <Foo> . (0)
?x <has> ?y . (0)
OPTIONAL {
?y <factor> ?z . (1)
}
{ ?y <value> ?v . (2)
?v <label> ?l . (2)

} UNION {
?y <label> ?l . } (3)

}

Additionally it records which blocks are joined to which other blocks, and by
what operation. So, in this case we have:

child parent operation
1 0
2 0 !

3 2 ∪

The query executor descends the expression tree, internally joining the ex-
pressions to produce a table for each block. Although the projection is performed
internally by the bind function, in the expressions below it will be shown sepa-
rately, for clarity:

b0 ← πxρx/subject(bind(∅, ∅, {rdf:type}, {<Foo>})) !

πx,yρx/subjectρy/object(bind(∅, x, {<has>}, ∅))

b1 ← πy,zρy/subjectρz/object(bind(∅, b0.y, {<factor>}, ∅))

b2 ← πy,vρy/subjectρv/object(bind(∅, b0.y, {<value>}, ∅)) !

πv,lρv/subjectρl/object(bind(∅, v, {<label>}, ∅))

b3 ← πy,lρy/subjectρl/object(bind(b0.y, ∅, {<label>}, ∅))

92

The next phase collapses all the UNION expressions. Relational algebra has
no equivalent to SPARQL’s UNION, but we will use the ∪ symbol to represent
SPARQL’s UNION. UNION blocks are collapsed bottom-up (from highest block
ID to lowest), first any FILTER expressions are evaluated, and non-satisfying
rows are removed, then the binding tables for co-UNIONs (any blocks related
by the ∪ operation in the operations table) are concatenated:

b2 ← b2 ∪ b3

Next the joins across the remaining blocks are performed:

b0 ← b0 ! b2 b1

Finally, any remaining FILTERs, ORDER BY, and DISTINCT are applied.
FILTERs are left to as late as possible to avoid having to resolve more RIDs
than required. The presence of LIMIT without ORDER BY, internal complexity
limiting and other factors may indicate that not all lexical values for bindings
are required. Calls to the resolve operation are relatively expensive, as they are
more likely to require random access IO in the storage nodes, and can transfer
large volumes of data.

It has been our experience that when dealing with queries over large volumes
of data using the SPARQL protocol it is often necessary to use the LIMIT
keyword, or enable some form of effort limiting, or soft limit to reduce the volume
of answers that will be returned. Few HTTP client libraries expose sufficient
support for flow control to indicate to the SPARQL server that enough answers
have been obtained, or else that the query has been running for too long.

Where possible FILTER expressions are evaluated as results are streamed
to the client, with blocks of RIDs from b0 being resolved at once, based on an
heuristic estimation of how many rows of values will be required to satisfy the
query.

8 Notable Optimisations

8.1 Join Ordering Optimisation

The primary source of optimisation is the conventional ordering on the joins
internal to a block join. We attempt to predict which bind will be the most spe-
cific, perform that one first, then successively apply the same specificity estimate,
given the values from the binding table at that point.

Earlier versions of 4store had access to comprehensive quad histogram data.
The current version only has access to predicate frequency information in order
to perform this heuristic evaluation. This is due to the structure of the radix
trie indexes, an earlier index form providing a highly efficient way to obtain
occurrence histograms as a side-effect of its design.

93

8.2 Common Subject Optimisation

Where two or more binds of the form

bind(M1, S, {p1}, {o1}), bind(M2, S, {p2}, {o2}), . . . bind(M b, S, {pb}, {ob})

are encountered, where |Mn| ≤ 1 this pair of binds can be transformed to a
single reverse-bind:

reverse-bind

(

b
⋃

n=1

{(m, s, pn, on) : s ∈ S, m ∈ Mn}
)

Where Mn is treated as {ω} if |Mn| = 0.
This has a twofold advantage. Firstly it reduces the number of network oper-

ations, and secondly (and more importantly) it breaks the join operation across
the storage nodes, due to the way quads are segmented.

In the example of the following query:

SELECT ?x WHERE {
?x <givenName> "John" ;

<familyName> "Smith" .
}

Any pair of triples matching this pattern will fall into the same segment, as
they must share a subject RID, so when the storage node performs the join it will
only have to consider one segment at a time, eliminating unnecessary bindings
for ?x before they reach the front-end, and thus reducing the search space.

8.3 Cardinality Reduction

If the REDUCED or DISTINCT keywords are used then the cardinality of bind
functions need not be preserved. Because of this, the presence of one of these
keywords is passed down to the storage node, and it takes any time-efficient mea-
sures that are available to reduce the cardinality of the result set. For example,
by removing adjacent identical rows, and also by use of index structures. Given a
bind of the form πpredicate(bind(∅, ∅, x, ∅)) it is sufficient to to consult the list of
predicate indices, to return the RID values for the matching predicates present in
the segment. If DISTINCT is specified then the front-end still needs to perform
the DISTINCT operation, but typically the size of the result set returned will
be greatly reduced.

Similar optimisations are available for bindings to all subjects, objects, mod-
els, and resources.

8.4 Unreferenced Variables

It is often necessary to place variables in graph patterns where the value of the
variable is not required. Consider a query to find all the people that have some
employer:

94

SELECT DISTINCT ?x WHERE {
?x a <Person> ;

<has> ?employer .
}

By inspection it is possible to ascertain that bindings for ?employer are not
required, we simply have to ensure that such a binding exists. Given this, the
bind call for the second triple pattern above can be reduced to:

πxρx/subject(bind(∅, x, {<has>}, ∅))

Without the DISTINCT or REDUCED keywords the engine is still required
to preserve the cardinality of ?x, but in either case we can avoid holding a column
of bindings in the binding table.

9 Future Work

9.1 Updates

As of writing the only update operations that are supported in the front-end are
deleting an entire model, and adding triples to a model. The nascent SPARQL/Update
specification will require fine-grained updates.

9.2 Full Text Indexing

Currently 4store has no index that can efficiently address full text searches. This
is supported in SPARQL via the regex function. More sophisticated full-text
searching is commonly offered as a non-standard extension. This is an area for
future work.

10 Conclusion

In this paper we have described in detail the architectural design principals
and methods of implementation for key aspects of our clustered RDF store. We
discussed the merits and demerits of a number of fundamental features of the
store such as its segmentation model. We have detailed a number of optimisation
strategies and we have also reviewed the performance characteristics and trade-
offs that informed our design.

We believe that there is much to be gained by sharing effective design pat-
terns, best practice, and hard won insights amongst our emerging community.

References

1. Free Software Foundation: GNU General Public License. http://www.gnu.org/
licenses/gpl.txt (June 2007)

95

2. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. http:

//www.w3.org/TR/rdf-sparql-query/ (2005)
3. Harris, S., Shadbolt, N.: SPARQL query processing with conventional relational

database systems. In Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy,
S., Pan, Z., Sheng, Q.Z., eds.: WISE Workshops. Volume 3807 of Lecture Notes in
Computer Science., Springer (2005) 235–244 http://eprints.ecs.soton.ac.uk/
11126/1/harris-ssws05.pdf.

4. Personick, M.: Bigdata: Approaching web scale for the semantic web. http://
www.bigdata.com/whitepapers/bigdata_whitepaper_07-08-2009.pdf (2009)

5. Owens, A., Seaborne, A., Gibbins, N., mc schraefel: Clustered TDB: A clustered
triple store for Jena. In: WWW2009. (November 2008) http://eprints.ecs.
soton.ac.uk/16974/.

6. Erling, O., Mikhailov, I.: Towards web scale RDF. In: Proceedings
of the 4th International Workshop on Scalable Semantic Web Knowledge.
(October 2008) http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
VOSArticles/VOSArticleWebScaleRDF.pdf.

7. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository
for querying graph structured data from the web. In Aberer, K., Choi, K.S.,
Noy, N.F., Allemang, D., Lee, K.I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P., eds.: ISWC/ASWC. Volume
4825 of Lecture Notes in Computer Science., Springer (2007) 211–224 http://www.
deri.ie/fileadmin/documents/DERI-TR-2007-04-20.pdf.

8. Stonebraker, M.: The case for shared nothing. IEEE Database Eng. Bull. 9(1)
(1986) 4–9 http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf.

9. Bizer, C., Schultz, A.: Berlin SPARQL benchmark (BSBM) specification - v2.0.
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/

10. Cheshire, S.: DNS service discovery (DNS-SD). http://www.dns-sd.org/ (2009)
11. Cheshire, S.: Multicast DNS. http://www.multicastdns.org/ (2006)
12. Wilkinson, K.: Jena property table implementation. Technical report,

Hewlett-Packard Labs (October 2006) http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.85.530.

13. Krovetz, T.: UMAC: Message authentication code using universal hashing. IETF
RFC 4418 (March 2006) http://tools.ietf.org/html/rfc4418.

14. Morrison, D.R.: PATRICIA - practical algorithm to retrieve information coded
in alphanumeric. Journal of the ACM 15(4) (October 1968) 514–534 http://

portal.acm.org/citation.cfm?doid=321479.321481.
15. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes.

Technical report, Boeing Scientific Research Laboratories (July 1970) http://www.
minet.uni-jena.de/dbis/lehre/ws2005/dbs1/Bayer-McCreight.pdf.

16. Beckett, D.: Rasqal RDF Query Library. http://librdf.org/rasqal/ (2005)

96

