
Efficient 3D and 4D Geospatial Indexing in RDF Stores with a

Focus on Moving Objects

Jans Aasman
1
, Steve Haflich

1

1
 Franz Inc., 2201 Broadway, Suite 715, Oakland, CA 94612

ja@franz.com, smh@franz.com

Abstract: We first explain AllegroGraph's existing capabilities for 2D

geospatial indexing for proximity queries. We explain our general position

on geospatial encoding and serialization. We describe our current work

extending to 3D and 4D to support moving objects (MOBs) with efficient

cursors on MOB tracks, and posit five classes of MOB queries.

Keywords: RDF Database, Geospatial 2D 3D 4D, moving objects,

scalability

1 Introduction

Combining geospatial and temporal reasoning in a single query framework seems an

important capability for the Semantic Web in general and for the intelligence community

in particular (see Aasman,[1]). If you want to reason about events that happen in time

and space you need capabilities that can deal with them together.

We see an active interest in geospatial computing in the Semantic Web community. A

prominent example is the Linked Data initiative that has the Geonames database as one of

the central data sources pointed to by many other data sources. The geospatial

community also shows a growing interest in RDF and semantic technologies. The

National Map project being one of the examples where we see how the experts in the

field are working to develop ontologies that will allow better use of the information in

various data sources.

But curiously, there is hardly any interest in dealing with time in the Semantic Web

community. The W3C site shows no activity and the temporal reasoning community

rarely considers RDF.

It follows that there is also not much interest apparent in the combination of geospatial

and temporal reasoning in one computational framework. Recently in January of 2009,

the National Science Foundation held a symposium, with leaders in the field, to gage

whether there is interest in the academic arena to develop research projects in this area.

The AllegroGraph RDF database has supported basic temporal reasoning and 2D

geospatial querying for two years, but recently we engaged projects that pushed the

representation requirements in unexpected ways. One project deals with AIS vessel-

tracking data and the other deals with GPS tracking data for cell phone users. The

current separate facilities for 2D geospatial indexing and temporal indexing

could not in combination provide sufficient efficiency to deal with moving objects

(MOBs) on a large scale. Consequently, we started a research project for direct indexing

of 3D and 4D data. This paper reports some of our findings and ongoing development.

2 Some Observations About Data Representation

We have several observations about data representation. It is useful to separate the issues

of internal representation from external representation(s), i.e. serialization formats.

It is frequently the practice, probably inherited from relational databases (RDB), of

storing longitude, latitude, optionally altitude and time, each as a separate triple. These

correspond to the separate columns in a RDB. We show below that this is grossly

inefficient for locality queries, and can result in O(n^2) or worse performance. Our

experience is that longitude/latitude and longitude/latitude/time (etc.) should be encoded

and indexed internally as a single RDF quantity. (It is essentially never the case that one

wants to retrieve or search any one of these data without retrieving them all together.)

We have devised and will describe an indexing scheme that supports locality search with

near-linear O(n) time in the number of entries in the result set.

If geo or geo/time data should be combined as a single datum internally, they should also

remain a single datum when externalized, e.g. in N-triples format. RDF serialization

places no requirements on triple ordering, and if a latitude and longitude pair were to

became hugely separated in a serialization it could be pernicious to have to recombine

them during deserialization. Therefore we make the following position statement: There

should be a standard RDF type for externalized geo data that allows geo and geo/time

entry to be represented as a single lexical datum. As a specific straw proposal,

externalization for geo position should be something like ISO6709, and externalization of

a MOB datum should be something like the concatenation of an ISO6709 string with an

ISO8601 string (details to be worked out).

3 How We Do Geospatial in AllegroGraph

This current section will explain the principles that underlie our 2D, 3D, and 4D

indexing. The section following will discuss a series of increasingly difficult queries on

an RDF based MOB database. This taxonomy of queries is useful both in query

implementation and in predicting performance.

AllegroGraph is both an RDF triple store and a quad graph store. It was designed to be

hugely scalable (beyond core size). The four parts of each triple [sic] SPOG can hold any

kind of data. All parts are efficiently linearly sortable. Along with string resources and

literals, efficient specialized part encodings are supported: machine numerical types

(fixed and float) as well as other specialized types. The encoded types generally sort in

the natural order of the encoding.

Computer main memory and disk are linearly addressable vectors. It is well known that a

vector of length n can be sorted in O(n log n) time. Searched in O(log n) time.

AllegroGraph is designed to exploit machine speed, despite scaling requirements, by

keeping everything linear. AllegroGraph maintains multiple sorted indexes (e.g. SPOG,

POSG, GOSP) and by selecting the proper index, triples variously related to others can be

retrieved from a local region of that index.

If a user wants to retrieve everything about <http://franz.com/employees#Jans>, all

triples with this Subject are sorted together in the SPOG index. All triples with Jans as

the Object are together in the OSPG index. All triples with a particular Predicate e.g.

<http://franz.com/employees#isSupervisorOf> are grouped together in the POSG index,

sorted secondarily on Object. And so on...

Age, date and/or time, currency, phone numbers, stock prices, license-plate numbers, and

barometric pressure are all linearly orderable. Cartesian and spherical (e.g. geospatial)

coordinates in two or higher dimensions are not immediately orderable and sortable. How

to integrate these into the AllegroGraph model?

The important problem is proximity search. We want to optimize speed retrieving all

triples with coordinates in a certain locality.

Data in two dimensions could be sorted on the two separate dimensions in the obvious

way, either first on Y/latitude or X/longitude, or the reverse. But this causes search time

over a locality to increase linearly with the size of the data set. Locality search increases

with the product of the search width and the number of items in the dataset, i.e. O(n^2).

We'd much rather just search the region of interest, reasonably bounded in two

dimensions instead of just one.

Within the requirements of AllegroGraph's fundamentally linear indexing, how can we

avoid this unfortunate scaling? R-trees and numerous other schemes support very

efficient search of localities. But if all the data won't fit in memory, paging performance

can be unpredictable and data management can be convoluted. There is no obviously

efficient way to reconcile 2-D and higher R-trees with the AllegroGraph linear indexing.

But suppose we knew a little more about how we will use our data, specifically: The

approximate size of typical regions to be searched. We can sort the data into strips.

In detail, the coordinates are converted to unsigned integers. The major sort ordinate is

split into strip and modulus within the strip. This is merely integer division with

remainder. (All this can be thought of as a variation on the technique of space-filling

curves.) If the search diameter is exactly the same as the strip width, we need traverse

short linear regions of just two strips. For circular region, the number of data traversed is

only 4/pi the size of the result set. AllegroGraph implements cursors as the mechanism

for stepping through a range of data. A specialized class of cursor called a concatenated

cursor can step though a set of linear segments of the data, e.g. the regions of the two

strips above.

If the search diameter is smaller than the strip width, short regions of only one or two

strips need be traversed. Efficiency stays high, falling off roughly linearly in the size of

the mis-estimate in the estimated search diameter.

If the search diameter is somewhat larger than the strip width, the ratio between the

number of data that need be traversed and the size of the result set stays fairly constant,

but the number of separate linear strips that must be addressed and seeked increases about

linearly with the error in estimate. With an increasing in the number of separate linear

regions that must be traversed there is of course an additional cost, but performance stays

reasonable even with fairly large estimation errors.

To summarize our 2D implementation, it may be inconvenient to need to specify strip

width in advance. But performance is still reasonable even with an order of magnitude

error. In addition, if extremely different strip sizes are needed, the data can be stored

twice with different strip sizes. The two coordinates can be anything: pressure and

temperature distance and time. This last possibility suggests extension to 3-D and

beyond, particularly MOB data encoding paths in latitude/longitude/time.

The 2D approach extends naturally to 3D and 4D, except that instead of string data in

strips we store it in prisms.

Erratum: The prisms in the above and all remaining 3D drawings are mis-oriented

and should have been drawn with the prisms aligned with the time axis, as in this

single corrected sample below. They will be redrawn for the final camera copy!

4 On the Difficulty of Various Classes of Moving Object Queries

This paper concludes with an informal illustration of five classes of MOB queries. These

different kinds of queries have different degrees of difficulty.

I. Simple proximity search.

This has already been covered above. Find all 3D data with a certain proximity (or

bounding box or other solid) of a given point.

II. Given two particular MOB tracks, determine if and when they were ever

within a certain lat/lon/time distance.

This requires following the two tracks in parallel through time, repeatedly checking

distance. The several prisms containing the regions around each track occur in local

linear regions of the SPOG index. A special kind of cursor is implemented which can

traverse through time, adding or removing prisms as the path shifts in longitude and

latitude. But the two cursors need traverse only the data for the two given MOBs.

Any proximate data will necessarily be adjacent in one of several adjacent prisms.

III. Given a single MB, detect any other MOBs that ever come within a certain

proximity.

This is somewhat similar to the above, requiring traversal of that single MOB path

and detecting other MOBs in proximity. Any such MOB data will be in located

within the same several adjacent prisms in the track being followed. Therefore, this

search still requires only traversing the portion of the total data set along a single

track.

IV. Find all occurrences of any two MOBs within a certain proximity.

This clearly requires a traversal through the entirety of the MOB data using a slightly

different kind of cursor. However, since MOB positions within a given proximity

must be within a local region proximate within one of several adjacent prisms, the

scan can be done with a single traversal through the data, stepping in parallel through

some small number of adjacent prisms.

V. Detect potential Social Network Cliques between unknown MOBs, e.g. as

evidenced by MOBs repeatedly being proximate in Place and Time, or being

repeatedly suspiciously proximate in Place at different Times.

We do not know how to solve this, because we do not quite know what we would be

looking for. It is a real research problem, hence (for now) the visual pun.

References

1. Aasman, J.: Unification of Geospatial Reasoning, Temporal Logic, & Social Network Analysis in Event-based
Systems, Distributed Event Based Systems (DEBS 2008) http://portal.acm.org/citation.cfm?id=1386007

