
Detecting Different Versions of Ontologies in
Large Ontology Repositories

Carlo Allocca, Mathieu d’Aquin and Enrico Motta!

Knowledge Media Institute (KMi), The Open University, Walton Hall,
Milton Keynes MK7 6AA, United Kingdom

{c.allocca, m.daquin, e.motta}@open.ac.uk

Abstract. There exist a number of large repositories and search en-
gines collecting ontologies from the web or directly from users. While
mechanisms exist to help the authors of these ontologies manage their
evolution locally, the links between different versions of the same ontol-
ogy are often lost when the ontologies are collected by such systems. By
inspecting a large collection of ontologies as part of the Watson search
engine, we can see that this information is often encoded in the identifier
of the ontologies, their URIs, using a variety of conventions and formats.
We therefore devise an algorithm, the Ontology Version Detector, which
implements a set of rules analyzing and comparing URIs of ontologies to
discover versioning relations between ontologies. Through an experiment
realized with 7000 ontologies, we show that such a simple and extensible
approach actually provides large amounts of useful and relevant results.
Indeed, the information derived from this algorithm helps us in under-
standing how version information is encoded in URIs and how ontologies
evolve on the Web, ultimately supporting users in better exploiting the
content of large ontology repositories.

1 Introduction

Ontologies are the pillars of the Semantic Web and because more and more on-
tologies are made available online, finding, understanding and managing online
ontologies is becoming more challenging. Indeed, ontologies are not isolated arti-
facts: they are, explicitly or implicitly, connected to each other [4]. in particular,
while being collected by online repositories and search engines, ontologies evolve
and different documents can be collected at different times that represent two
versions of the same ontology.

A number of studies have intended to tackle some of the challenges raised by
ontology versioning, from both theoretical and practical points of view. At the
theoretical level, studies have targeted ontology versioning in order to provide
a theoretically semantic model for managing ontologies in distributed environ-
ments, such as the Web [2,3]. According to [3], the ontology versioning problem

! This work was funded by the EC IST-FF6-027595 NeOn Project. I would
like also to thank Ben Hawkridge for providing very powerful machine to
complete the experiments.

has been defined as the ability to handle changes in ontologies by creating and
managing their own variants/mutants/versions. In other words, ontology ver-
sioning means that there are multiple variants of an ontology around and that
these variants should be managed and monitored. Accordingly, tools such as
Evolva [5] have been developed to support the developers of ontologies in mak-
ing them evolve and in managing the versions locally. However, such systems
use different ways to represent and codify version information, which is not
transfered when the ontologies are collected and made accessible through online
repositories. Standards such as OWL and OMV [1] include primitives to encode
version information as ontology annotations. However, such standards are not
universally used and ontology developers rarely make the effort of applying such
standards. Instead, they tend to codify information related to the version of an
ontology directly in its URI. Indeed, typing the query “metadata” currently gives
1356 results in the Watson search engine1 (valid on the 20/08/2009). However,
only inspecting the URIs in the first page of results, we can see that many of
these documents (e.g., http://loki.cae.drexel.edu/~wbs/ontology/2004/
01/iso-metadata and http://loki.cae.drexel.edu/~wbs/ontology/2003/
10/iso-metadata), represent different versions of the same ontology.

In this paper, we present an algorithm, the Ontology Version Detector (OVD)
which tries and detect different ways (i.e., different conventions) for encoding
version information in ontology URIs in order to derive versioning links between
ontologies within a large repository. It relies on a comparison of the URIs of
ontologies to detect number differences, which can represent version numbers
(e.g., v1.2, v3.6), dates (e.g., 2005/04, 01-12-1999) or other types of versioning
information (e.g., time-stamps). One of the advantages of such an approach is
that it is based on a set of rules, each encoding a particular pattern for the
representation of version information and so, if missing patterns are observed in
the collection, they can easily be added and taken into account by the algorithm.
In this paper, we detail the set of rules derived from our observations using the
Watson ontology search engine.

We conducted an experiment applying OVD on a sub-set of the Watson
repository of ontologies containing about 7000 ontologies. While we are aware
that the approach implemented by OVD has a number of limitations (i.e., if only
looks at the information encoded in the URI through numbers), this experiment
showed that a large amount of versioning links implicitly encoded in the URIs
of the ontologies can be correctly detected. Indeed, this experiment resulted in
155,589 versioning links, representing 1,365 “evolving ontologies” and which have
been evaluated with an estimated precision of 51.2%. In addition, the analysis
of these results allows us to identify ways to overcome the limitations of OVD,
to better understand how version information is encoded in URIs and to assess
how ontologies evolve on the Web, ultimately providing valuable information for
the users of ontology repositories.

In the next section, we describe a number of examples and general patterns
we observed in the Watson collection of ontologies. Section 3 then details our

1 http://watson.kmi.open.ac.uk

OVD algorithm for detecting and comparing such patterns. Our experiment on
applying OVD is presented in Section 4. Finally, Section 5 discuss the conclusions
and future work.

2 Identifying Version Information Patterns

Analyzing a representative sample (nearly 1000) of ontologies from Watson’s on-
tology repository, we have, manually, identified many ontology URIs containing
information concerning the version of the ontology. In this paper, we focus on
particular versioning patterns. Specifically, we only discuss three classes of URIs
that can be compared to establish versioning links between URIs: Class A, where
the versioning information is encoded in a single number; Class B, where the ver-
sioning information is expressed by two numbers, which are often the month and
year of a date; and Class C where the versioning information is expressed by
three numbers, which always correspond to complete date.

2.1 Class A: version information expressed by one number

These are simplest and most frequent cases: when the comparison of two URIs
would only show a difference in one number. In many examples, this number
represents a very simple version number, like in the following example:

Example 1:

1. http://www.vistology.com/ont/tests/student1.owl;
2. http://www.vistology.com/ont/tests/student2.owl;

However, there can be many variants of such a pattern. In the following
example, a time-stamp is used to mark a particular version of the ontology:

Example 2:

http://160.45.117.10/semweb/webrdf/#generate_timestamp_1176978024.
owl

http://160.45.117.10/semweb/webrdf/#generate_timestamp_1178119183.
owl

2.2 Class B: version information expressed by two numbers

Under this category, we find more classical ways to represent version numbers
(with a number of the major revision and a number of the minor revision), like
in the following example:

Example 3:

1. http://lsdis.cs.uga.edu/projects/semdis/sweto/testbed_v1_1.owl
2. http://lsdis.cs.uga.edu/projects/semdis/sweto/testbed_v1_4.owl

However, a majority of the URIs using two numbers to represent version
information use a date format that includes the year and the month. In the
following example, the year is the first element to be encoded.

Example 4:

http://loki.cae.drexel.edu/~wbs/ontology/2003/02/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2004/04/iso-metadata

However, there can be four different ways to combine the month and the
year: 1) Big endian form (yyyy/mm), in which the year is expressed by four
digits; 2) Little endian form (mm/yyyy), in which the year is expressed by four
digits; 3) Big endian form yy/mm, in which the year is expressed by only two
digits; 4) Big endian form (mm/yy), in which the year is expressed by only two
digits. Since we did not encounter examples where the year was expressed with
two digits only, we ignore this case in this paper, but rules to cover such patterns
can easily be added to the OVD algorithm.

2.3 Class C: version information expressed by three numbers

Under this category we only found cases in which the versioning information
is represented through a date format structure using the day, the month and
the year. The example below is based on the big endian form (yyy-mm-dd),
but as for the cases above, little endian forms (and even middle endian forms,
mm-dd-yyy) could be employed.

Example 5

http://ontobroker.semanticweb.org/ontologies/ka2-onto-2000-11-07.
daml

http://ontobroker.semanticweb.org/ontologies/ka2-onto-2001-03-04.
daml

3 The Ontology Version Detector Algorithm

As shown in the previous section, there is no official and implemented standard or
canonical form to represent version information through the URIs. However, the
ontology engineers use ”semi-rational” criteria to rename new versions, leading
to the emergence of common patterns. The goal of the OVD algorithm is to
provide a general mechanism to detect such patterns.

3.1 Overview

A general oververview of OVD is described in Figure 1. There are two main
steps to the process: the Selector component compares URIs to extract sets
of numerical differences between them, and the Recognizer component detects
known patterns in these differences, encoded as a set of rules to generate version-
ing relations between ontologies. In this paper, we focus on particular versioning
patterns. In particular, the ones in which the versioning information is codified
by single number or date with two-digit and three-digit format.

20.pdf

Fig. 1. The main steps of OVD.

The Selector components takes as input a set {URI1, URI2, ..., URIn} of
URIs of ontologies and returns of set of numerical differences between pairs of
URIs. More precisely, to a pair of URIs (URIi, URIj), the Selector associate an
ordered list of numerical differences represented as pairs (nik, njk) where nik is
a number part of URIi and njk is a number which replaces nik in URIj . Pairs
of URIs for which differences appear in other parts than numbers are simply
discarded.

To realize this task, the Selector first sequences each URIs in a chain of
sections, separating parts that represents numbers from the ones that represent
other elements. If two URIs contain the same number of number sections and
non-number sections, and if all the non-number sections are equal, the numerical
differences are straightforwardly extracted from comparing the number sections
of the two URIs with each other. For example, the URIs:

– http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata
– http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata

are sequenced in the following way:

– http://loki.cae.drexel.edu/~wbs/ontology/ ‖ 2003 ‖ / ‖ 10 ‖ /iso-metadata

– http://loki.cae.drexel.edu/~wbs/ontology/ ‖ 2004 ‖ / ‖ 01 ‖ /iso-metadata

Since all the non-number sections are equal and all the number sections are
different, the generated differences correspond to the list of pairs of number sec-
tions: [(2003, 2004); (10, 01)]. It is important to notice here that the number of
digits used to represent each number needs to be kept in the representation.
Indeed, this information is used as part of the pattern recognition and, for ex-
ample, ‘1’ should not be considered equivalent to ‘’01’. We use the notation |n|
to indicate the number of digits used in the string representation of the number
n in a set of differences.

The second step of the process, the Recognizer component, takes as input the
list of differences between pairs of URIs and derive from them versioning relations
that should hold between the corresponding ontologies. Versioning relations are
represented here as (ordered) pairs of URIs, with [URIi, URIj] meaning that
URIj is a more recent version of URIi. To realize this task, the Recognizer rely
on a set of rules that detect specific patterns in the differences, such as the ones
identified in Section 2. Below, we detail the set of rules we have defined from
our anlysis of the Watson repository.

3.2 Versioning Relation Detection Rules

The Recognizer implements a set of rules which are designed to cover the different
way that are used to rename a new version, that is, the version information
patterns. The rules presented here reflect the main characteristics of the classes
of URIs discussed in Section 2, but can be easily extended for additional patterns
(many of them being easily derived from the existing rules) but are ignored here
as they do not appear in the considered collection of ontologies (e.g., cases where
the year is represented with 2 digits, where the date is represented in middle
endian form, or the version number is represented with 3 components–x.y.z).
Each rule considers a pair of URIs (URIi, URIj) and the corresponding list of
differences Dij = [(ni1, nj1), ...] to derive a probable versioning relation between
URIi and URIj .

Class A As indicated before, Class A corresponds to the most straightforward
case: there is only one numerical difference between two URIs (i.e. the cardinality
|Dij | of Dij is 1). In this case, we only need to compare the number in question
to derive which version came first.

R1 IF (|Dij | = 1) THEN
IF (ni1 < nj1) THEN

[URIi, URIj]
ELSE

[URIj , URIi]

The rule R1 addresses the cases such as the ones shown in Example 1 and
Example 2.

Class B Class B is a more complicated example, as it corresponds to the cases
where two numbers differ from one URI to the other. Therefore, to realize an
appropriate comparison, it is first needed to find which number is the most sig-
nificant. We distinguish two main cases: 1- the version information corresponds
to a version number, in which case the number on the left is more significant, or
2- the version information corresponds to a date including the year and month,
in which case, the year is more significant.

Therefore, in order to distinguish these different situations, we need to be
able to recognize and year and a month from any other number. We define the
following 2 predicates, year(n) and month(n), with return true if the number n
can be a year or a month respectively:

year(n) :: |n| = 4 and 1995 ≤ n ≤ current year

month(n) :: |n| = 2 and 01 ≤ n ≤ 12

These conditions assume that ontologies can only have been created from 1995
to the present year, that months are always represented with 2 digits and years
with 4 digits. While these assumptions might appear restrictive, they reflect
our observations on the Watson collection of ontologies and help in avoiding
unnecessary noise.

Based on year(n) and month(n), we can derive the following predicates that
indicate if 2 numbers, n1 and n2 can represent a date, either in big endian or in
little endian forms:

dateLE(n1, n2) :: month(n1) and year(n2)
dateBE(n1, n2) :: year(n1) and month(n2)

Finally, using these conditions, we can define the three following rules: R2
for cases where 2 numbers differ but don’t correspond to a date (in which case
the number on the left is assumed to be the most significant), R3 for cases where
a date in little endian form is used, and R4 for cases where a date in big endian
form is used.

R2 IF (|Dij | = 2) THEN
IF (NOT (dateLE(ni1, ni2) AND dateLE(nj1, nj2))

AND NOT (dateBE(ni1, ni2) AND dateBE(nj1, nj2))) THEN
IF (ni1 = nj1) THEN

IF (ni2 < nj2) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

ELSE
IF (ni1 < nj1) THEN

[URIi, URIj]
ELSE

[URIj , URIi]

R3 IF (|Dij | = 2) THEN
IF (dateLE(ni1, ni2) AND dateLE(nj1, nj2))

IF (ni2 = nj2) THEN
IF (ni1 < nj1) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni2 < nj2) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

R4 IF (|Dij | = 2) THEN
IF (dateBE(ni1, ni2) AND dateBE(nj1, nj2))

IF (ni1 = nj1) THEN
IF (ni2 < nj2) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni1 < nj1) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

Class C Finally, Class C corresponds to the cases where 3 numerical differences
exist between the considered URIs. As for class B, it is important in that case to
first detect which is the most significant of these numbers. However, we haven’t
encountered examples other than the representations of dates using 3 numbers.
Therefore, we only define the rules corresponding the dates, either in big endian
or in little indian form. We define a new predicate, day(n) which indicates if a
number could be a day of a month:

day(n) :: 01 ≤ n ≤ 31

as well as the conditions to recognize dates with 3 numbers

dateLE(n1, n2, n3) :: day(n1) and month(n2) and year(n3)
dateBE(n1, n2, n3) :: year(n1) and month(n2) and day(n3)

Rules R5 and R6 corresponds to the two cases of dates with 3 numbers, in
little endian and big endian forms respectively.

R5 IF (|Dij | = 3) THEN
IF (dateLE(ni1, ni2, ni3) AND dateLE(nj1, nj2, nj3))

IF (ni3 = nj3) THEN
IF (ni2 = nj2) THEN

IF (ni1 < nj1) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

ELSE
IF (ni2 < nj2) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni1 < nj1) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

R6 IF (|Dij | = 3) THEN
IF (dateBE(ni1, ni2, ni3) AND dateBE(nj1, nj2, nj3))

IF (ni1 = nj1) THEN
IF (ni2 = nj2) THEN

IF (ni3 < nj3) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

ELSE
IF (ni2 < nj2) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni1 < nj1) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

4 Experiment and Evaluation

OVD is based on particular patterns which have been identified by manually
analyzing Watson’s repository and are not formally specified. Consequently, an
empirical evaluation is crucial to verify the correctness (i.e., the precision) of
OVD. In addition, such an evaluation gives us an insight on the way URIs are
effectively used to encode version information, and on how we could improve
OVD.

4.1 Experiment data

Here, we experiment with 4 sets of ontologies of increasing sizes extracted from
the Watson collection (see Table 1). Queries 1 to 3 correspond to the OWL on-
tologies returned with the queries ”student”, ”man”, and ”person” respectively.
Query 4 corresponds to a set of nearly 7000 OWL ontologies not corresponding
to any particular query.

QueryName QueryPhrase Number of Ontologies
Query1 Student 90
Query2 Man 115
Query3 Person 875
Query4 * 6898

Table 1. Queries and corresponding ontology collections.

We ran the OVD algorithm on these 4 sets of ontologies to discover ver-
sioning links between the ontologies they contain, separating the results from
the different rules, in order to allow evaluating each rule separately2. Table 2
shows the number of pairs of ontologies which OVD has detected a versions of
each other (see 3rd column) for each set of ontologies and each rules. In total,
155,589 pairs of ontology potential ontology versions have been detected. As can
be seen, patterns corresponding to R1 and R2 seem to be the most applied to
represent version information, with a clear different for R2 in the case of Query 4.
We can also remark that R3 and R5 were never triggered in our datasets. One
corresponds to dates of the form mm/yyyy and the other, to dates of the form
yyyy/mm/dd.

4.2 Computing chains of ontology versions

While individual versioning relations are interesting to consider, many of these
relations are parts of sequences of successive versions. We define and compute
such chains of ontologies as the connected paths in the graph formed by the
versioning relations detected by OVD. More formally,

Definition 1 Given set of pairs of ontologies {(Oi, Oj)}), an ontology chain is
defined as a sequence of ontologies, O1, O2, ..., On−1, On, such that Oi is the
previous version of Oi+1.

For example, using the abbreviation A for http://oaei.ontologymatching.
org/2004/Contest/ we can compute the chain of ontology versions: [A/testbed_
v1_1.owl, A/testbed_v1_3.owl, A/testbed_v1_4.owl]

The 4th column of Table 2 shows for each rule in each dataset the number
of chains of ontologies that can be computed from the result of OVD.
2 It is worth mentioning that this computation took under 5 minutes on a Mac Laptop

QueryName Rule Detected Pairs Number Of Chains

Query1 R1 16 5
R2 0 0

R3/5 0 0
R4 0 0
R6 0 0

Query2 R1 16 6
R2 0 0

R3/5 0 0
R4 11 5
R6 0 0

Query3 R1 41 10
R2 4 3

R3/5 0 0
R4 10 2
R6 0 0

Query4 R1 17334 511
R2 138119 843

R3/5 0 0
R4 38 7
R6 10 4

Table 2. Results of running OVD on sub-sets of the Watson collection of ontologies.

4.3 Evaluation

In order to evaluate the results of OVD, we manually checked the correctness of
the chains obtained for each rule in each of our datasets. Here, we assume that if
one of the versioning relation in a chain is incorrect, the entire chain is incorrect.
For the dataset corresponding to Query 4, we only evaluated a sample of 10
chains in the case of R1 and 18 chains in case of R2. We chose these samples
randomly, but trying to get examples coming from different sites in order to
evaluate different conventions.The third and fourth columns of Table 4 show the
result of this evaluation.

Using the usual measure of precision, we can evaluate the overall performance
of the OVD algorithm (51.2%), as well as the individual performance of each rule.
The results are presented in Table 4. Looking at the incorrect results, we can
draw a number of conclusions concerning the way we can improve OVD. Indeed,
for example, it can seen that some of the rules provide more accurate information
than others. Also, it can be seen that longer chains tend to be incorrect. On of
the reasons is that many incorrect results come from automatically generated
ontologies, which uses numbers not to represent version information, but record
numbers. Using such information, we can compute different levels of confidence
for the results. Finally, successive versions of ontologies tend to be similar to
each other. Using a measure of similarity can help us in sorting out the correct

Query Rule Correct Chains Incorrect Chains Average Length Max Length
Query 1 R1 3 2 2.6 3

R2 0 0 0 0
R4 0 0 0 0
R6 0 0 0 0

Query 2 R1 4 2 2.3 3
R2 0 0 0 0
R4 4 1 2.6 3
R6 0 0 0 0

Query 3 R1 6 4 1.8 3
R2 3 0 2.3 3
R4 0 2 2.5 3
R6 0 0 0 0

Query 4 R1 5 5 89.05 230
R2 9 9 71.13 154
R4 4 3 2.2 3
R6 2 2 2.75 3

Table 3. Result of the evaluation of OVD

Total R1 R2 R4 R6
Precision 51.2% 50% 50% 57% 50%

Table 4. Precision OVD’s results.

results from the incorrect ones. Finally, some incorrect results come from RDF
documents describing dated events (e.g., ESWC2006 and ESWC2007). Checking
if the ontology describes dated element can also give indication that the result
should be seen as incorrect.

5 Conclusion and Future work

In this paper, general patterns which convey ontology version information di-
rectly into their URIs have been investigated, in the context of large ontology
repositories such as Watson. In particular, we have identified 6 patterns which
have been formalized by 6 rules. Informally, those rules describe regular sequence
of characters discernible as part of the URI which hold the version information
and can be used to derive versioning relations between ontologies.

Based on these rules, we described and designed OVD (Ontology Versioning
Detector), which is an algorithm for detecting different versions of ontologies in
large ontology repositories. It is based on two main steps: the Selector which
compares URIs to extract sets of numerical differences between them, and the
Recognizer which identifies the well-known pattern and try to figure out which

ontology comes first. OVD has been evaluated over Watson’s ontology collec-
tion, providing useful and relevant results. Indeed, the information derived from
this algorithm helps us to understand how the versioning information is encoded
in URIs and how ontologies evolve on the Web, ultimately supporting users in
better exploiting the content of large ontology repositories. The current imple-
mentation of OVD detects different versions of the ontologies when the versioning
information is expressed by single number or date-pattern. In other case OVD
does not detect. But, we want to extend this work considering different direc-
tions. First, new patterns not exclusively based on numbers could be detected,
such as ”October-2006”; new patters based on more than four numbers. Second,
according to [3] the modification of an ontology can lead to a new version which
is completely different from the original one. Although in practice, by analyzing
Watson’s ontology repository, we can see that it is very likely fro 2 versions of
the same ontology to be similar. We can use such information to increase the
precision of OVD. Finally, we can also exploit explicit version information en-
coded using OWL primitives and consider the overlap with information encoded
in URIs.

References

1. J. Hartmann, R. Palma, and et al. Ontology metadata vocabulary and applications.
pages 906–915, OCT 2005.

2. Jeff Heflin and James A. Hendler. Dynamic ontologies on the web. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth Con-
ference on Innovative Applications of Artificial Intelligence, pages 443–449. AAAI
Press / The MIT Press, 2000.

3. M. Klein and D. Fensel. Ontology versioning on the semantic web. Proc. of the
Inter. Semantic Web Working Symposium (SWWS), pages 75–91, 2001.

4. A. Kleshchev and I. Artemjeva. An analysis of some relations among domain on-
tologies. Int. Journal on Inf. Theories and Appl, 12:85–93, 2005.

5. F. Zablith. Evolva: A comprehensive approach to ontology evolution. In: Proceedings
of 6th European Semantic Web Conference (ESWC) PhD Symposium LNCS 5554.
eds. L. Aroyo et al., Springer, pages 944–948, 2009.

