
Change Management Patterns (CMP) for Ontology

Evolution Process

Rim Djedidi1, and Marie-Aude Aufaure2

1 Computer Science Department, Supélec Campus de Gif

Plateau du Moulon – 3, rue Joliot Curie – 91192 Gif sur Yvette Cedex, France

rim.djedidi@supelec.fr

2 MAS Laboratory, SAP Business Object Chair –Centrale Paris

Grande Voie des Vignes, F-92295 Châtenay-Malabry Cedex, France

marie-aude.aufaure@ecp.fr

Abstract. Ontology evolution is an essential research area for the widespread

use of ontologies in industrial and academic applications. In this paper, we

present Change Management Patterns CMP defining three kinds of patterns:

Change Patterns, Inconsistency Patterns and Alternative Patterns. CMP

patterns are proposed to guide ontology evolution process by driving and

controlling change application while maintaining consistency of the evolved

ontology.

Keywords: Ontology Evolution, Change Management, Pattern Modeling,

Inconsistency Resolution, OWL DL.

1 Introduction

Ontology development is a dynamic process starting with an initial rough ontology,

which is later revised, refined and filled in with the details [1]. Even during ontology

usage, knowledge of the modeled domain can change and develop. Changes generally

aim to make the ontology more accurate or adequate with respect to the domain of

discourse, the consistency model of the ontology language and ontology design

practices.

Ontology evolution is a complex problem. In our work1, we focus on issues related

to ontology change management in a local context and particularly on consistency

maintenance. To guide ontology evolution, we have defined Change Management

Patterns CMP. The patterns model the three dimensions: Change, Inconsistency and

Resolution Alternative. Based on the modeled patterns and the conceptual links

between them, we propose an automated process driving change application while

maintaining consistency of the evolved ontology.

1 This work is founded by the French National Research Agency ANR, as a part of the project

DAFOE: Differential and Formal Ontology Editor.

 2

The paper is organized as follows: in section 2, we detail the application context of

Change Management Patterns (CMP) which are described and illustrated in section 3.

Application of CMP to guide change resolution is presented in section 4. Before

concluding and discussing further developments of this work, we report on related

work in section 5.

2 CMP as a Meta-layer on Top of an Ontology Evolution Process

CMP patterns are proposed as “meta-layer” of an ontology evolution approach –

OONNTTOO--EEVVOO
AA
LL – guiding the change management process at three key phases:

change specification, change analysis and change resolution (Fig. 1). Three categories

of patterns are modeled: Change Patterns classifying types of changes, Inconsistency

Patterns classifying types of logical inconsistencies and Alternative Patterns

classifying types of inconsistency resolution alternatives.

The starting point of OONNTTOO--EEVVOO
AA
LL process is the specification of the required

change by formally describing its semantics (intermediate changes composing it –if

any– and their order, involved entities, change values, etc.). This is guided by the

instantiation of the corresponding Change Pattern, resulting in an explicit change

signature. The following phase aims to analyze change impact by explaining and

localizing caused inconsistencies. Detected inconsistencies are classified according to

the corresponding Inconsistency Patterns. In the change resolution phase, the

instantiation is not made from process level to pattern level, but rather in the other

way i.e. by generating alternative instances from the conceptual links between

inconsistency patterns –instantiated in the previous phase– and Alternative Patterns

resolving them (Section 3). Resolution alternatives represent additional and/or

substitutive changes to implement to maintain ontology consistency.

Fig. 1. CMP as a Meta-layer on Top of an Ontology Evolution Process.

Change

Specification

Change
Resolution

Change

Application

Required Required

ChangeChange

Initial

Ontology

Initial

Ontology

Change

Analysis

Evolution Evolution

ResultsResults

Evolved

Ontology

Evolved

Ontology

Change Signature Detected Inconsistencies Resolutions

Change

Patterns

Change

Patterns
Inconsistency
Patterns
Inconsistency
Patterns

Alternative

Patterns

Alternative

Patterns

Evolution Log

Historic Level

Process Level

Pattern Level

Evaluation Module

Impact of

Resolutions

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

NRCNCC NPC NCR NMH-IsA PMoy P rec Rapp CA RA NTC

P 1 P2 P 3 P 4 P5 P6 P7 P8

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

NRCNCC NPC NCR NMH-IsA PMoy P rec Rapp CA RA NTC

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

Evalu ation Result

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité Cohesion ModularityTaxonomy Abstraction Completenes s ComprehensionComplexity

NRCNRCNCCNCP NPCNPC NCRNRtC NMNMH-IsAH-IsA DA P recP REC RappREC CAAC RAAR NTCNTC

P 1P 1 P2P2 P 3P 3 P 4P 4 P5P5 P6P6 P7P7 P8P8

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

NRCNCC NPC NCR NMH-IsA PMoy P rec Rapp CA RA NTC

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

NRCNRCNCCNCC NPCNPC NCRNCR NMNMH-IsAH-IsA PMoyPMoy P recP rec RappRapp CACA RARA NTCNTC

P 1P 1 P2P2 P 3P 3 P 4P 4 P5P5 P6P6 P7P7 P8P8

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

NRCNRCNCCNCC NPCNPC NCRNCR NMNMH-IsAH-IsA PMoyPMoy P recP rec RappRapp CACA RARA NTCNTC

Résultat d’évaluation

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité

Evalu ation ResultEvalu ation Result

Structure Usage

Cohés ion ModularitéTaxonomie Abstraction Complétude CompréhensionComplexité Cohesion ModularityTaxonomy Abstraction Completenes s ComprehensionComplexity

NRCNRCNCCNCP NPCNPC NCRNRtC NMNMH-IsAH-IsA DADA P recP REC RappREC CAAC RAAR NTCNTC

P 1P 1 P2P2 P 3P 3 P 4P 4 P5P5 P6P6 P7P7 P8P8

In
s
ta

n
ti
a
ti
o
n

In
s
ta

n
ti
at

io
n

In
s
ta

n
ti
a
ti
o

n

Quality Model

L
e

a
rn

in
g

 M
o

d
u

le

Final Changes

Change Management Patterns (CMP)

 3

In addition, the process includes a Quality Evaluation Module assessing the impact

of proposed resolutions on ontology quality. The goal of the evaluation module is to

help selecting the resolution that preserves ontology quality. If quality level is

maintained, required change and its derived changes are directly applied and the

ontology evolves. In the case that all the proposed resolutions have negative effect on

ontology quality, the results of the different phases are presented to ontology engineer

–as a complement to his expertise– so that he can decide about the changes.

All the results of the process are saved in the evolution log to keep ontology

evolution historic. Besides controlling ontology evolution, revoking or justifying

changes, the evolution log facilitates learning new change management patterns. For a

detailed description of OONNTTOO--EEVVOO
AA
LL evolution process, the reader can refer to [2].

3 Change Management Patterns (CMP) Description

In this section, we want to highlight the role of CMP in guiding the evolution process

and more precisely change specification, analysis and resolution phases. CMP are

proposed as a solution looking for invariances in change management that repeatedly

appear when evolving ontologies. Three categories of patterns are distinguished:

Change Patterns, Inconsistency Patterns and Alternative Patterns. The goal of CMP

modeling is to offer different levels of abstraction, to establish conceptual links

between these three categories of patterns (Fig. 2) determining the inconsistencies that

could be potentially caused by a type of change and the alternatives that possibly

resolve a kind of inconsistency and thus, to guide an automated change management

process.

Fig. 2. CMP Conceptual Model.

CMP classify categories of changes based on OWL meta-model, categories of

logical inconsistencies considering OWL DL constraints and categories of

inconsistency resolution alternatives. To describe the three categories of patterns and

Change Management Pattern

CMP

Change Pattern

Basic
Change

Inconsistency

Pattern

Alternative Pattern

Complex

Change

1

Resolution

Type: {Additional, Substitutive}

1 1

0..* Resolved Potentially by

1..*

1..*

1..*

Cause Potentially

 4

explain theirs relations, we illustrate step-by-step the instantiation of the patterns

based on a simple example given as a thread.

Let’s consider the OWL ontology O defined by the following axioms:

{Animal ! Fauna-Flora, Plant ! Fauna-Flora, Carnivorous-Plant

! Plant, Plant ! !Animal}

And let’s consider a required change Ch1 defining Carnivorous-Plant class as a

sub-class of class Animal.

CMP are modeled as an OWL DL ontology describing CMP catalogue. In addition,

a simplified representation is used. It extends the representation of Ontology Design

Patterns ODP [3] adopted from a common and accepted format describing design

patterns in software engineering [4].

CMP are described by a general template containing the following slots:

! General Properties: General Information about the pattern, and Use Case of the

pattern;

! Specific Properties related to CMP abstraction level including general properties of

Pattern Description (some independent from pattern category and others extended

to the different kind of CMP patterns), Graphical Representation of the pattern

represented in UML format, and Implementation of the pattern in OWL DL

language (not presented in this paper for page limit reason);

! Properties about Relationships of the pattern with other patterns including

Relations to Other CMP.

These slots are presented in the following tables (Tab. 1) (Tab. 2) (Tab. 3) (Tab. 4).

3.1 Change Patterns

 Change patterns aim to categorize changes, formally define their signification, their

scope and their potential implications. Two categories of OWL changes are

distinguished in the literature [5]: basic changes and complex changes. Change

patterns cover all OWL basic changes and a first core of complex changes.

Basic change patterns describe all OWL basic changes derived from OWL meta-

model. They model simple and indivisible OWL changes. To extend the set of defined

OWL basic operations with composite and specific change operations, we define

complex change patterns. They correspond to composite OWL changes grouping

logical sequences of basic and composite changes (e.g. enlarging the range of an

object property to its super-class or merging two classes).

Considering the example given above, the change Ch1 instantiate the basic change

pattern: Add a sub-class. The description and the instantiation of the pattern are given

by the following table (Tab. 1).

Table 1. Basic change pattern: add a sub-class.

Basic change Pattern Example

General Properties

General Information

Name* Add a sub-class.

Identifier* BChP_AddSubClass.

 5

CMP Type* Change Pattern.

Use Case

Problem Define a sub-class relation between two classes.

Examples Suppose that we need to express that the class Carnivorous-

Plant is a sub-class of the class Animal.

CMP Abstraction Level

Pattern Description

Intent The pattern models an indivisible change that defines a sub-

class relation between two classes and notifies if there is any

constraint on this subsumption so that it does not affect the

logical consistency of the ontology.

Consequences The pattern defines a subsumption between two classes and

notifies that the super-class and the sub-class should not be

disjointed.

Scenarios Define the class Carnivorous-Plant as a sub-class of the class

Animal.

Notify that the constraint: {class Carnivorous-Plant and class

Animal should not be disjointed} has to be verified.

Change Abstraction Level

Pattern Description

Change Pattern

Type*

Basic Change Pattern.

Object Type* Class.

Involved Entity

Type*

Class, Class

Arguments*

Object* ID of the sub-class (sub_classID).

Example Carnivorous-Plant.

Referred Entities*

Sub-Class ID ID of the sub-class (sub_classID).

Super-Class ID ID of the super-class (super_classID).

Examples

Sub-Class ID Carnivorous-Plant.

Super-Class ID Animal.

Constraints

Constraints !(sub_classID disjointWith Super_classID).

Examples !(Carnivorous-Plant disjointWith Animal).

Graphical Representation

Diagram Super-Class

Sub-Class

{Super-Class Not Dis joint w ith Sub-c lass}

 6

Diagram Examples

Relationships

Relations to other CMP

Inconsistency

Patterns

Inconsistency disjointness related to subsumption.

3.2 Inconsistency Patterns

After applying temporary the required change, inconsistencies detected using an

ontology reasoner, are classified according to inconsistency patterns. Inconsistency

patterns model a sub-set of OWL DL logical inconsistencies: disjointness

inconsistencies related to subsumption and instantiation; inconsistencies related to

equivalence and complement, inconsistencies related to equivalence and disjointness,

inconsistencies related to value restrictions and inconsistencies related to cardinality

restrictions.

Reconsidering the example given as a thread, the pattern corresponding to the

disjointness inconsistency detected and its instantiation are described by the following

table (Tab. 2).

Table 2. Inconsistency pattern: inconsistency of disjointness related to subsumption.

Inconsistency Pattern Example

General Properties

General Information

Name* Inconsistency disjointness related to subsumption.

Identifier* InconsP_DisjSub.

CMP Type* Inconsistency Pattern.

Use Case

Problem Analyze and delineate a disjointness inconsistency related to a

subsumption relation between two classes.

Examples Suppose that we need to explain and track a disjointness

inconsistency caused by a subsumption relation between the

class Carnivorous-Plant and the class Animal.

CMP Abstraction Level

Pattern Description

Intent The pattern models explicitly the analysis of a disjointness

inconsistency related to a subsumption relation between two

classes of an ontology.

Consequences The pattern explains a disjointness inconsistency related to a

subsumption relation and gives details on its analysis and

localization.

 Animal

Carnivorous-Plant

{Animal Not Disjoint w ith Carnivorous-Plant}

 7

Scenarios Explain disjointness inconsistency caused by a subsumption

relation between the class Carnivorous-Plant and the class

Animal by tracking the classes concerned by this inconsistency

and specifying the axioms causing it.

Inconsistency Abstraction Level

Pattern Description

Arguments*

Implicated Entities*

ID SuperClass1 ID of a first super-class (super_class1ID).

ID SuperClass2 ID of a second super-class (super_class2ID).

ID SubClass ID of the sub-class (sub_classID).

Examples

ID SuperClass1 Plant.

ID SuperClass2 Animal.

ID SubClass Carnivorous-Plant.

Involved Entities*

ID SuperClass2 ID of the involved super-class (super_class2ID).

ID SubClass ID of the sub-class (sub_classID).

Examples

ID SuperClass2 Animal.

ID SubClass Carnivorous-Plant.

Axioms*

Involved Axioms (super_class1ID disjointWith super_class2ID),

(sub_classID ! super_class1ID).

Examples (Plant ! !Animal),

(Carnivorous-Plant ! Plant).

Responsible Axioms (sub_classID ! super_class2ID).

Examples (Carnivorous-Plant ! Animal)

Graphical Representation

Diagram

 super_class1IDsuper_class2ID

sub_classID

{Disjoint}

Diagram Examples

 Fauna-Flora

Animal

Carnivorous-Plant

Plant

{Disjoint}

 8

Relationships

Relations to other CMP

Change Patterns Add a sub-class, …

Alternative Patterns - Define Hybrid Class for Resolving Disjointness Subsumption,

- Enlarge Class Definition for Resolving Disjointness

Subsumption.

3.3 Alternative Patterns

Change resolution is based on the conceptual N-ary relation-class Resolution defined

between change, inconsistency and alternative patterns (Fig. 2). For each detected

inconsistency, based on the corresponding inconsistency pattern instance and the

instantiated change pattern specifying the required change, potential alternative

patterns are generated and instantiated. An alternative pattern represents an additional

change (applied jointly to the required change) or a substitutive change to apply

(replacing the required change) so that a logical inconsistency can be resolved. It is

described as a change (basic or complex) and it inherits and extends change pattern

properties (Fig. 2).

Several resolution alternatives can be proposed for an inconsistency. To resolve the

inconsistency described above in the example, two alternatives can be proposed: the

first one (Tab. 3) is a substitutive resolution extending a complex change. The second

one is a substitutive resolution extending a basic change (Tab.4).

Table 3. Alternative pattern: define hybrid class for resolving disjointness related to

subsumption.

Alternative Pattern Example

General Properties

General Information

Name* Define Hybrid Class for Resolving Disjointness_Subsmption.

Identifier* AltP_DefHybClsResolDisjSubs

CMP Type* Alternative Pattern.

Use Case

Problem Resolve disjointness –related to a subsumption– by defining a

hybrid class.

Examples Suppose that we need to resolve a disjointness inconsistency

caused by subsuming the class Animal by the class

Carnivorous-Plant.

CMP Abstraction Level

Pattern Description

Intent The pattern models a resolution alternative resolving

disjointness inconsistency –related to a subsumption– by

creating a hybrid class.

Consequences The pattern resolves a disjointness inconsistency –related to a

subsumption–by defining a hybrid class based on the definition

of disjoint classes implicated in the inconsistency, and

redistributing correctly sub-class relations between classes

implicated in the inconsistency, the hybrid class, and the most

 9

specific common super-class of the disjoint classes implicated.

Scenarios Define a hybrid class Animal_Plant based on the definition of

the two disjoint classes involved in the inconsistency: Animal

and Plant.

Then, create a sub-class relation between the hybrid class

created and a the most specific common super-class of the

classes Animal and Plant.

And finally, substitute the sub-class relation between the classes

Animal and Carnivorous-Plant by a subsumption between the

classes Carnivorous-Plant and Animal_Plant.

Alternative Abstraction Level

Pattern Description

Process 1) The pattern defines a hybrid class as a union of the

definitions of the disjoint classes implicated in the inconsistency

to be resolved;

2) The pattern defines a subsumption between the most specific

common super-class of the disjoint classes implicated in the

inconsistency and the hybrid class created;

3) The pattern defines a subsumption between the hybrid class

and the sub-class involved in the inconsistency.

Examples 1) The pattern defines a class Animal_Plant as a union of the

definitions of the disjoint classes Animal and Plant;

2) The pattern defines a subsumption between the most specific

common super-class of the disjoint classes Fauna-Flora and the

hybrid class created Animal_Plant;

3) The pattern defines a subsumption between the defined

hybrid class Animal_Plant and the sub-class Carnivorous-Plant

involved in the inconsistency.

Change Abstraction Level

Pattern Description

Change Pattern

Type*

Complex change pattern.

Object Type* Class.

Involved Entity Type* Class, Class, Class.

Arguments*

Object* ID of the hybrid class (HybridClassID).

Example Animal_Plant.

Referred Entities*

Sub-Class ID ID of the sub-class (sub_classID).

1st Disjoint Class ID ID of a first disjoint class (Disjoint_Class1ID).

2sd Disjoint Class ID ID of a second disjoint class (Disjoint_Class2ID).

Examples

Sub-Class ID Carnivorous-Plant.

1st Disjoint Class ID Animal.

2sd Disjoint Class ID Plant.

Intermediate Entities*

Common Super-Class

ID

ID of the most specific common super-class of the disjoint

classes implicated (Common_super_classID).

Examples Fauna-Flora.

Complex Change Abstraction Level

Pattern Description

 10

Sequence* 1) BChP_AddClass (HybridClassID,

Collection(Disjoint_Class1ID, Disjoint_Class2ID),

Operator(Union)) ;

2) BChP_AddSubClass (HybridClassID,

Common_super_classID)

3) BChP_AddSubClass (sub-ClassID, HybridClassID)

Examples 1) BChP_AddClass (Animal_Plant, Collection(Animal, Plant),

Operator(Union)) ;

2) BChP_AddSubClass (Animal_Plant, Fauna-Flora)

3) BChP_AddSubClass (Carnivorous-Plant, Animal_Plant)

Graphical Representation

Diagram

Diagram Examples

Relationships

Relations to other CMP

Change Patterns Add a class, Add a sub-class.

Inconsistency

Patterns

Inconsistency disjointness related to subsumption.

Table 4. Alternative pattern: enlarge class definition for resolving disjointness related to

Subsumption (Synthetic version)

Alternative Pattern Example

General Properties

General Information

Name* Enlarge Class Definition for Resolving

Disjointness_Subsumption.

Identifier* AltP_EnlarClsDefResolDisjSubs.

CMP Type* Alternative Pattern.

Use Case

Problem Resolve disjointness –related to a subsumption– by enlarging a

class definition.

Examples Suppose that we need to resolve a disjointness inconsistency

caused by subsuming the class Animal by the class Carnivorous-

Plant.

CMP Abstraction Level

 Common_Super_Class

Disjoint_Class 1

Sub_Class

Disjoint_Class 2

{Disjoint}

HybridClass

 Fauna-Flora

Animal

Carnivorous_Plant

Plant

{Disjoint}

Animal_Plant

 11

Pattern Description

Intent The pattern models a resolution alternative resolving

disjointness inconsistency –related to a subsumption– by

enlarging the definition of a class.

Consequences The pattern resolves a disjointness inconsistency –related to a

subsumption–by enlarging the definition of the sub-class

involved in the inconsistency, based on the definition of disjoint

classes implicated in the inconsistency.

Scenarios Enlarge the definition of the class Carnivorous-Plant based on

the definition of the classes Animal and Plant.

Alternative Abstraction Level

Pattern Description

Process 1) The pattern enlarges the definition of the sub-class involved

in the inconsistency by adding –in its description– a union of the

definitions of disjoint classes implicated in the inconsistency.

Examples 1) The pattern enlarges the definition of the sub-class

Carnivorous-Plant by adding –in its description– a union of the

definitions of the disjoint classes implicated in the

inconsistency: the classes Animal and Plant.

Change Abstraction Level

Pattern Description

Change Pattern

Type*

Basic change.

Object Type* Class.

Involved Entity

Type*

Class, Class Description.

Arguments*

Object* ID of the class to enlarge (classID).

Example Carnivorous_Plant.

Referred Entities*

ID Class ID of the class to enlarge (classID).

ID(s) Collection ID(s) of the classes of the collection (Disjoint_Class1ID,

Disjoint_Class2ID).

Examples

ID Class Carnivorous-Plant.

ID(s) Collection Animal, Plant.

Operator*

Operator Union

Graphical Representation

Diagram

Common_Super_Class

Disjoint_Class 1 Disjoint_Class 2

{Disjoint}

EnlargedClass

+ Union of (Disjoint_class 1, Disjoint_class 2)

 12

4 Change Resolution Guided by CMP Application

The primary objective of ontology pattern modeling is to provide shared and reusable

guidelines [3], it is therefore necessary to use a readable and understandable

formalism to present CMP patterns (Section 3). However, to fulfill the purpose of

providing a meta-layer for ontology evolution process guiding change management in

an automated way, CMP have to be formally specified in a well expressive language

to facilitate explicit interpretation of their semantics. For this reason, we have

formalized CMP patterns as an OWL DL ontology. Applying CMP in OONNTTOO--EEVVOO
AA
LL

process is thus, based on the identification of class, property and axiom matching

according to given change and inconsistencies.

In the change specification phase (Fig. 1), an appropriate change pattern is selected

and instantiated to specify explicitly a required change. The temporary application of

the change is then, analyzed to detect caused inconsistencies. This phase is performed

by employing Pellet Reasoner [6]. Pellet supports both terminological level TBox

(classes and properties) and assertional level ABox (individuals) of OWL DL and

provides entailment justifications. However, it does not precise axioms that cause

inconsistencies neither how to resolve the detected inconsistencies. Inconsistency

localization is driven as a black-box approach [7]. Localization algorithm is

implemented as a top layer, independent from the reasoner, calling it a linear number

of times. Localization algorithm extends the algorithm presented in [8], determining

the minimal inconsistent sub-ontology O’ as O’" O (O the analyzed ontology) and

#O!$ O’, O! is a consistent sub-ontology in O. The principle is to start by OWL DL

axioms corresponding to the instantiated change pattern, as an input of a selection

function called iteratively to select a larger sub-set of axioms and constitute the

minimal inconsistent sub-ontology. Axiom selection is based on structural

connectedness defined in [8].

Inconsistency detection and localization prepare inconsistency pattern selection

and instantiation. Localized inconsistencies are matched to inconsistency patterns to

be classified. The matching process consists in identifying correspondences by

considering inconsistency pattern type and structure, and also the semantics of pattern

arguments and axioms (Tab. 2), which define the pattern interface that has to be

instantiated. Guided by the instantiated change pattern and its constraints (Tab. 1), the

matching process targets firstly, inconsistency patterns that could be potentially

caused (Fig. 2). Two types of indicator are considered: structural information

(matching of sub-hierarchies), and axiomatic information related to localized

inconsistencies (localization context, entities declared as inconsistent, axioms related

to these entities, etc.).

Once localized inconsistencies are classified, potential alternative patterns are

identified and generated based on N-ary relation classes – Resolution – defining

semantic resolution relations between instantiated, change and inconsistency patterns.

Then, the instantiation of the generated alternative patterns is adapted to the sub-

ontology concerned by its application.

Alternative instances proposed for the different inconsistencies are combined to

derive global potential resolutions for the required change. Each resolution defines a

set of derived changes but should not cause other inconsistencies. Therefore, all

 13

derived global resolutions are verified using Pellet reasoner, and only consistent ones

are accepted for the evaluation step (Fig.1).

5 Discussion and Related Work

Discussion with related work is tackled through three parts: pattern modeling,

ontology evolution approaches, and inconsistency diagnosis and repair.

Pattern modeling was adopted in web ontology design to propose guidelines and

provide reusable ontological component catalogue2. CMP patterns are close to

Ontology Design Patterns3 ODP, particularly Logical Ontology Patterns LOP and

Content Ontology Patterns COP [9]. Change Patterns of CMP can be considered as

COP patterns for ontology domain i.e. ontology design patterns solving modeling

problems of the domain ‘ontology’. Alternative Patterns of CMP can be defined as an

LOP pattern resolving a problem of logical inconsistency.

Concerning OWL ontology evolution approaches, in [10], a pattern-driven

approach was adopted for ontology evolution. The patterns determine the evolution

operation to be performed: population (adding new instances) or enrichment

(extension by new concepts and properties). In [8], authors have introduced resolution

strategies based on OWL Lite model. The resolution is limited to the identification of

axioms that should be removed to resolve inconsistencies and, their presentation to

the user. In OONNTTOO--EEVVOO
AA
LL approach, we tend to minimize axiom removing solutions

by proposing alternatives that merge, divide, generalize or specialize classes and

properties and redistribute instances to preserve existent knowledge.

Concerning inconsistency diagnosis and repair, several debugging services and

strategies are proposed in the literature [11] [12] [13] [14] [7]. They provide support

to ontology developers by explaining the main causes for unsatisfiable classes or

contradictions. However, they provide little support for proposing solutions for them.

Solutions are always limited to two choices: removing part of the existing axioms or

replacing a class by one of its super-classes. We claim that it is possible to provide

additional support to ontology developers, based on the identification and modeling of

common patterns of inconsistencies caused when applying some types of changes,

and the proposition of some typical alternatives that could potentially resolve them,

which can be combined with the use of existing reasoning tools in order to make this

task more effective.

6 Conclusion and Future Work

In this paper, we have presented CMP patterns proposed as “meta-layer” of an

ontology evolution approach – OONNTTOO--EEVVOO
AA
LL – to guide and control the change

management process at three key phases: change specification, change analysis and

change resolution.

Currently, we are developing a learning module enriching and enhancing CMP by

considering evolution log information, new change compositions not yet supported by

2 Example: http://sourceforge.net/projects/odps/
3 http://ontologydesignpatterns.org/

 14

Change Patterns, detected inconsistencies not yet classified by Inconsistency

Patterns, new potential resolution alternatives not yet modeled by Alternative

Patterns, and also new possible relation instantiations between CMP.

References

1. Noy, N. F., McGuinness, D.: Ontology development. 101: a guide to creating your first

ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and

Stanford Medical Informatics Technical Report SMI-2001-0880, (2001).

2. Djedidi, R., Aufaure, M-A.: Ontology Change Management. In: A. Paschke, H. Weigand,

W. Behrendt, K. Tochtermann, T. Pellegrini (Eds.), I-Semantics 2009, Proceedings of I-

KNOW ’09 and I-SEMANTICS ’09, ISBN 978-3-85125-060-2, pp. 611--621, Verlag der

Technischen Universitt Graz. (2009)

3. Gangemi, A., Gomez-Perez, A., Presutti, V., Suarez-Figueroa, M.C.: Towards a Catalog of

OWL-based Ontology Design Patterns, CAEPIA 07, Neon project publications

(http://www.neon-project.org), (2007).

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, MA, (1995).

5. Klein, M.: Change Management for Distributed Ontologies. Ph.D. Thesis, Dutch Graduate

School for Information and Knowledge Systems, (2004).

6. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

reasoner. Journal of Web Semantics, 5(2), (2007).

7. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P. A Modularization-based Approach to Finding

All Justifications for OWL DL Entailments. ASWC’08. (2008).

8. Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies, In Gomez-Perez, A.,

Euzenat, J. (Eds.) ESWC 2005. LNCS, vol.3532, pp. 182--197. Springer, Heidelberg,

(2005).

9. Presutti V., Gangemi A., David S., Aguado De Cea G., Suarez-Figueroa M., Montiel-

Ponsoda E., Poveda M.: Library of design patterns for collaborative development of

networked ontologies. Deliverable D2.5.1, NeOn project, (2008).

10. Castano, S., Espinosa, S., Ferrara, A., Karkaletsis, V., Kaya, A., Melzer, S., Moller, R.,

Montanelli, S., Petasis, G.: Ontology Dynamics with Multimedia Information: The

BOEMIE Evolution Methodology. In Proceedings of International Workshop on Ontology

Dynamics (IWOD-07), ISWC 2007 Conference, (2007).

11. Schlobach, S. Debugging and Semantic Clarification by Pinpointing. ESWC 2005. LNCS

Vol. 3532, pp: 226-240. (2005).

12. Wang, H., Horridge, M., Rector, A., Drummond, N., & Seidenberg, J. Debugging OWL-DL

ontologies: A heuristic approach. In Y. Gil, E. Motta, V. R. Benjamins, & M. A. Musen

(Eds.), LNCS: Vol. 3729. The Semantic Web – ISWC 2005 (pp. 745-757). Berlin, Germany:

Springer. (2005).

13. Qi, G., Liu, W., Bell, D. A revision-based approach to handling inconsistency in description

logics. Journal of Artificial Intelligence Review, 26(1-2): 115-128. (2006).

14. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E. Finding All Justifications of OWL DL

Entailments. Proceedings de ISWC/ASWC'2007. LNCS, Vol. 4825. pp: 267-280. (2007).

