
REACTIVE: A Rule-based Framework to Process
Reactivity

Elsa Tovar1,2 and Marı́a-Esther Vidal1

1 Universidad Simón Bolı́var
Caracas, Venezuela

{elsa,mvidal}@ldc.usb.ve
2 Universidad de Carabobo, Venezuela

eltovar@uc.edu.ve

Abstract. Ontologies have been successfully used to model data and knowledge
that conceptualize a particular domain. However, in the real-world, resource prop-
erties can be affected by events, and ontology formalisms need to be able to rep-
resent the conditions that fire these events as well as their consequences. In this
paper we define the framework REACTIVE that provides the basis to specify
active ontologies and to process reactivity efficiently. In REACTIVE, active on-
tologies are specified in ActRDFS and queries are expressed in ActSPARQL;
these languages respectively extent RDFS and SPARQL to specify data reactive
behavior. To efficiently process reactivity, REACTIVE implements an optimiza-
tion technique named Intersection of Magic Rewritings (IMR), which is able to
identify the minimal set of changes of the resource properties that are fired by a
set of events in a query. We have conducted an experimental study for process-
ing reactivity on a variety of datasets, and we have observed that IMR is able to
reduce by at least a half the reactive processing time w.r.t. non-optimized queries.

1 Introduction

In the context of the Semantic Web, ontologies are extensively used to conceptualize a
particular domain in terms of the static properties that characterize relevant resources.
Existing formalisms only allow the representation of static properties, i.e., they express
information about data and metadata that do not react when events occur; for exam-
ple, classes and properties of RDF/RDFS and OWL. However, the values of resource
properties may change when certain events are fired. For example, the intensity of an
earthquake depends on its focal depth; thus, when the focal depth is less than 70 km,
the earthquake is highly destructive and its intensity is very high. Furthermore, when
the earthquake intensity increases, a natural disaster occurs and some actions need to
be taken in place. From an ontological point of view, earthquake and natural disaster
can be modeled as classes, intensity and focus depth are properties, and events that
fire the earthquake and the natural disaster are concepts related by a subsumption re-
lationship. However, none of the existing ontological languages are tailored to express
properties or relationships between events at the same level as properties and classes; in
consequence, reactivity is managed outside of ontologies and the effects of events may
not always be used to infer new knowledge. In this paper we present an infrastructure



named REACTIVE (pRocEssing of ACTIVE ontologies) to efficiently processing re-
activity. Our approach is comprised of: an ontological formalism name ACTION [24]
that is able to express classes, properties and events as concepts to implement active
ontologies; a formalization of active ontologies as a deductive database to construct a
rule-based framework which supports reactivity using static and active knowledge dur-
ing the reasoning tasks; a query processing technique to efficiently evaluate the reactive
behavior of ontological data [24]; a dialect of RDFS to represent active ontologies;
and an extension of SPARQL that provides operators to specify a set of events which
can be fired in sequence or in parallel during the reactive processing task. This paper
comprises five additional sections. The next section summarizes the related work. In
section 3, our approach is described. Section 4 presents extensions of the SPARQL and
RDFS languages. The experimental study is reported in section 5. Finally, in section 6,
conclusions are pointed out.

2 Related Work

Existing active ontological approaches follow a hybrid representation model, where
reactivity is represented by active rules which have the syntactical structure and the
semantics of the event-condition-action rules (ECA rules paradigm) [20]. Different ap-
proaches that combine XML data with ECA rules to process reactivity have been pro-
posed [1–4, 6, 8–11, 19, 22], and ontologies with ECA rules [13, 21, 25] . However, in
these approaches, events are not represented as part of the universe of discourse, and
active knowledge is not used in conjunction with static data to infer new knowledge
when reactivity is processed. Active knowledge, classes and roles are also treated inde-
pendently.

In [6], ECA rules are combined with algebras of processes to manage reactive be-
havior. This approach is a model and architecture for ECA rules that uses heterogeneous
event, query, and action languages. Different parts of ECA rules are handled by spe-
cific services that implement the respective languages. Rules are specified in a markup
language RuleML that expresses simple and complex events, as well as, reactive pro-
cessing [7]. Active knowledge coded in rules is associated with domain ontologies, but
events are not represented as part of the domain. Similarly, in [1] reactive behavior is
modeled by using ECA rules, and a foundational ontology is proposed to represent the
language needed to specify these rules; in addition, this formalism is used to represent
reactive policies in [2]. Although these ECA-based approaches are able to deal with
reactivity, active knowledge is not used in conjunction with static data during the query
processing and reasoning tasks.

[13] propose an approach to manage data changes over time. This approach consists
of a logical framework for representing activities, states, and time within an ontology
in First Order Logic and reasoning regarding occurrence of actions by means of intelli-
gent agents. Although this approach categorizes static and active knowledge at the same
level, it does not augment the expressive power of the formalism by using the reactive
behavior represented in the active knowledge. Recently, an ontology-based information
integration approach [25] was presented for distributed sources. Ontologies are used to
express information about frequent changes of metadata and overlapping pieces of in-



formation in distributed and heterogeneous sources. In [17, 18] a dynamic logic-based
formalism [15] to represent a multi-version ontology reasoning system is described. In
this approach different versions of an ontology are represented as spaces of the logic
semantic model, and relationships between versions are modeled by sequence-based
operators. In a similar way, our ontology framework ACTION can be formalized by us-
ing a dynamic logic; however, in order to efficiently manage reactivity, the REACTIVE
system does not store the different spaces of an ontology. In addition, REACTIVE pro-
vides tailored methods to minimize the changes required to move from one space to the
next space when events are fired.

To enhance the expressiveness of ontology languages, hybrid rule-based systems
like SWRL, have been defined [16, 21]. In [16], Horn clause rules were added to
OWL-DL. However, SWRL extends OWL with the most basic kind of Horn rules where
predicates are limited to being OWL classes and properties. Relations between values of
properties and events cannot be represented; thus, it is not possible to express how on-
tological data react to the events that affect them. Furthermore, in hybrid systems, rules
are used to augment the knowledge represented in ontologies; but, neither ontologies
nor rules are able to represent reactivity or use the changes induced by the reactivity to
infer new active knowledge at the ontology level.

In conclusion, although ECA rules are the most widely used approach to process
reactive behavior, in general relationships between active rules and ontologies are mod-
eled in an operational way, and active knowledge, classes and roles are treated indepen-
dently. To overcome this limitation, we propose an alternative processing scenario and
an active ontological formalism to model the information required to represent reactiv-
ity.

3 Our Approach

3.1 Background

In a previous work, we presented the active ontology formalism called ACTION [24],
aiming at enriching the Semantic Web with active specification to express reactive be-
havior. ACTION formalism represents the active ontology canonical form to which can
be traduced any ontological language.

An ACTION ontology is defined as a 7-tuple
Oa =< C, E, Ps, Pa, F, f r, I >, where:

– C: a set of classes or basic data types.
– E: a set of events.
– Ps: a set of static properties; each property corresponds to a function from C ∪ E

to C ∪ E.
– Pa: a set of active properties; each property corresponds to a function from C to C.
– F: a set of predicates representing instances of the classes, properties and events.
– f r a function, s.t., f r : F × Pa × E → F; fr defines the reactive behavior in Oa.
– l: a set of axioms that describe the properties of the ontological language built-in

properties.



The set of static properties Ps is comprised of properties that may induce a hierarchy
of events, or a hierarchy of classes, and there will be a deductive rule indicating that the
built-in predicate isSubEventOf is transitive in the set of axioms I of the ACTION ontol-
ogy. Similarly, there are some other rules that establish the properties of the predicates
isSubClassOf and isSubPropertyOf. Thus, event, classes and properties are considered
as first-class citizens and are undistinguished treated by the reasoning engine. Similar
to the approach presented in [23], ACTION ontologies are represented as deductive
databases ADOBs. An extensional deductive database for an ACTION ontology Oa is
comprised of meta-level predicates that model the knowledge explicitly represented by
sets C, E, Ps, Pa, and F, while the intensional component of ADOB is composed of the
rules that define the semantics of the knowledge represented in the extensional predi-
cates and modeled by the axioms in I. We have defined a set of meta-level predicates to
represent the reactive behavior of the data. Some of the meta-level predicates are as fol-
lows: isEvent(E) where E is a name event, the built-in predicate isSubEventOf(E1,E2)
defines that the event name E1 is a sub-event of the event name E2, and the inten-
sional meta-level predicate areSubEvents(E2,E1) is specified by a deductive rule that
states that the predicate isSubEventOf(E1,E2) is transitive. Furthermore, the meta-level
predicate activeProperty(AP,T,D,R) defines an active property AP in terms of its type
T (not the same as rdf:type), domain D and range R; and the predicate reactiveBehav-
ior(AP,E1,BE,V), specifies the reactive behavior of an active property AP that takes the
value V when an event E1 occurs and the Boolean expression BE holds. BE is a Boolean
expression over the properties in Ps and Pa. As usual, an active ontology query is a rule
q : Q(X) → ∃YB(X,Y) where B is a conjunction of predicates. No free variables exist
in the ontology, and our approach is based on the Closed-World assumption.

3.2 Motivating Example

Consider the domain of natural disasters. Natural phenomena are caused by nature, e.g.,
earthquakes, hurricanes and volcanic eruptions, etc. Each of them has its own features,
e.g., an earthquake is generated at certain depth of its foci, and it produces a seismic
wave whose amplitude expresses the earthquake power; and the wind speed is the main
property of a hurricane. Phenomena have different names according to the environ-
ment where they occur, e.g., hurricanes are named typhoons in the Pacific Ocean. All
these concepts can be modeled by RDF/RDFS, e.g., NaturalPhenomenon, Earthquake,
Hurricane and Typhoon classes can be defined. Properties such as the intensity of an
earthquake and the category of a hurricane can also be expressed. Furthermore, it could
be asserted that Earthquake, Hurricane and Typhoon are subclasses of NaturalPhe-
nomenon. However, it is not possible to represent that if the depth of an earthquake
foci is shallow focus, i.e., if it is less than 70 km depth, then the intensity is very high,
the earthquake is very destructive, and it needs to be considered as a natural disaster
of great magnitude; thus, particular actions need to be taken, for example, evacuation
scale has to be full and recovery fund needs to be equal to 1 Billion.

ACTION static and active properties can be used to differentiate between the charac-
teristics that describe the above described reactive behavior, e.g., foci depth, earthquake
intensity, evacuation scale and recovery fund. Events specify when and how the active



properties are affected, e.g., if foci depth is less than 70 km depth, the earthquake inten-
sity is very high and the events of a very destructive earthquake and natural disaster of
great magnitude are fired. Finally, hierarchies of events can conceptualize subsumption
relationships between events, e.g., the event very destructive earthquake is a sub-event
(e1) of the event natural disaster of great magnitude (e3) - e1 and e3 are hexagons in
Figure 1.

In order to support the discovery tasks required to identify the effects of a given set
of fired events, we have incorporated evaluation techniques into the REACTIVE query
and reasoning engine. These techniques are able to identify the minimal set of changes
that need to be performed to the active properties, when some events are triggered and
they may activate the same changes multiple times. To illustrate this problem consider
the hierarchy of events presented in Figure 1, when events e1 and e2 are simultane-
ously fired, and the effects of the common super-events need to be evaluated several
times (events inside the highlighted circle). Properties p1 and p2 (circles) are affected
by these events, and in a similar way, all the super-properties are considered several
times, (properties inside the highlighted oval). Our proposed optimization technique In-
tersection of Magic Rewritings (IMR), identifies the events and properties that need to
be considered multiple times, and constructs the minimal set of rules that will produce
the same result, but that will avoid duplicates.

e3
e2

e1

p2p1

Fig. 1. An ACTION ontology

3.3 The REACTIVE Architecture

REACTIVE is a rule-based framework that supports reactive processing of active on-
tologies. The REACTIVE architecture is showed in Figure 2. Active ontologies are
specified in ActRDFS an extension of RDFS, and they are translated into an Active
deductive database (ADOB). ActSPARQL queries are decomposed by the Query De-
composer into a traditional SPARQL query, and an Active Query. The SPARQL query
will be evaluated by an SPARQL query engine on the ontology produced as the result
of processing the reactive behavior fired by the active query. Next, an Active Query
Preprocessor receives the Active Query and produces an Adorned Magic Set Rules pro-
cessing query in three steps. First, it aggregates sub-goals of the Active Query accord-
ing to the aggregation criteria that will be presented in the next section. After, an Event



Planner generates all super-events of the aggregated sub-goals. The process above im-
plies generating not only the super-events (with no repetitions), but it also checks if
the Boolean conditions of the events, do not have active properties. In this case, a re-
ordering of events must be done, due to the fact that if two events affect the same active
properties only the last event must be processed. However, if there are active properties
in the Boolean conditions, the IMR Query Writer must generate the Adorned Magic Set
Rules according to a concurrent study producing a set of rules to process reactivity of
a set of events that guarantees termination. Finally, a Rule-based engine evaluates the
Adorned Magic Set Rules in conjunction with the rule-based representation of the input
ontology, and produces a new static ontology. This static ontology and the SPARQL
query are sent to a SPARQL engine, to produce the query answer.

Active DOB

Process

Sub-Goal Aggregator

Event Planner

IMR Query Rewriter

Adorned Magic Set Rules + Ontology 

Rules-based representation

Rule-based engine

Static Ontology

SPARQL

engine

Query Answer

Query Decomposer

ActSPARQL 

Query

Active 

Query

SPARQL 

Query

Aggregated 

Sub-Goals

Events

Active Query Preprocessor

REACTIVE

ACTION Ontology

ActRDFS Documents

Fig. 2. The REACTIVE Architecture

3.4 Processing Reactivity

We present a general algorithm to process reactive behavior triggered by an event E
occurring on concept C [24]. This algorithm receives the minimal model MM of a
canonical deductive database ADOB of an ontology Oa, and it determines the individ-
uals in the set C that are affected by the event E and all its super-events. The algorithm
is based on the following assumptions:



– if an active property AP is affected by an event E, then all the super-properties of
AP are also affected.

– if an event E affects an active property AP when the property P takes the value V ,
then E affects AP when any sub-property of P has the value V .

To compute the minimal model MM the following predicates are evaluated: are-
SubEvents(F, E), areSubProperties(AP, PA), areStatements(Ii, PA, V1), areReactiveBe-
havior(PA, F, P, BC, V2). It must be pointed out that this algorithm alters extensional
knowledge but it does not alter metadata or intensional predicates. Thus, there is not
possibility to generate inconsistencies between ontological definitions and data pro-
duced during the reactive processing. The time complexity of the active algorithm is
bound by the time complexity of the transitive closure [12]. Thus, the complexity of
the active algorithm is O(n3 × M), where n is the number of instances of the predi-
cates isS ubEventO f , and M is the number of active property predicates to be changed.
The number of derived facts polynomially depends on the number and relationships of
the events and the same evaluations may be fired by different events (details in [24]).
Thus, this enrichment of expressiviness can negatively impact the complexity of the
reasoning task implemented by the active algorithm; hence efficient query evaluation
techniques are necessary. A naive solution is to follow a bottom-up evaluation. This
strategy computes the minimal model and each fact is inferred once but a large number
of irrelevant facts may be inferred. On the other hand, top-down evaluation only com-
putes the relevant facts but the same fact can be inferred several times (repeated infer-
ences). Thus, unnecessary inferences can be performed. To overcome these limitations,
Magic Set techniques can be applied hence they reduce repeated and unnecessary infer-
ences; magic predicates are introduced to represent bound arguments in the fired events;
and supplementary predicates represent sideways-information-passing in the deductive
database rules [5].

Our current version of the query engine algorithm is able to process a set of events
that affect a particular class. Additionally, we consider that Boolean conditions associ-
ated with events can be comprised of static and active properties, i.e., there exists no
restriction about the kind of properties that can be used in the Boolean conditions. This
characteristic impacts on the complexity of the reactive processing task; this is because
an active property ap1 affected by an event e1 could depend on the changes of another
active property ap2 which is affected by another event e2, when e1 and e2 are processed
simultaneously. Thus, criteria to detect when reactive processing will terminate is re-
quired. Finally, we consider that a collection of events on a particular class can be serial,
i.e., events occur one after another; and parallel, i.e., events occur at once. In this work
the IMR method presented in [24] has been extended to process reactivity in these two
scenarios.

To deal with serial and parallel sets of events, we have introduced the notion of
processing schedule that indicates the order in which events that appear in an input
active query, must be processed. The rules that define the processing schedule for an
active query are as follows:

– If events on class C occur in parallel, and:



• there are no active properties in any Boolean condition associated with the
events, then the order in which events appear in the processing schedule can be
the same as the order in which they appear in the input active query;
• there are active properties in at least one Boolean condition associated with

the events, then the events of the processing schedule have to be partially or-
dered. Events with static properties in their Boolean conditions must appear in
any order at the beginning of processing schedule, but a subset of events with
active properties must appear according to the dependencies among the active
properties.

– If events on class C occur in serial mode, and:
• there are not active properties in any Boolean conditions associated with the

events, then the order in which events appear in the processing schedule must
be the same as the order in which they appear in the input active query;
• there are active properties in at least one Boolean condition associated with the

events, then the order of the events must not be altered. If an event in the input
active query depends on the change of an active property affected by another
event that appears after in the input active query, then the execution of reactive
processing is aborted.

Additionally, before the processing schedule is constructed, a preprocessing of the
input active query can be done. This preprocessing consists on the aggregation
of the query sub-goals in order to minimize the size of query, according to the
following criteria:
• events that affect a class under the same mode - serial or parallel - are aggre-

gated in only one sub-goal;
• when the set of events affect a class following the parallel mode, duplicated

events are deleted from the input active query;
• otherwise, sub-goals remain the same as they were in the input query.

4 ActSPARQL and ActRDFS

In this section we present the extensions of SPARQL and RDFS to express and process
reactivity. We extend the SPARQL query language with the when clause to specify
the events that fire reactive process. Table 1 specifies the syntax of the ActSPARQL
language.

We illustrate the proposed extension of SPARQL with the following query. It uses
two execution modes: serial to represent events that occur is sequence, and parallel for
events that occur simultaneously.

PREFIX act: < http:// facyt.uc.edu/action1.0/>
PREFIX nd: < http://funvisis.gov.ve/naturalDisaster/ >
SELECT ?rv
WHERE { ?x nd:evacuationScale ?rv }
{{{?e act:event ?o. ?ap act:reactiveBehavior ?e .?ap act:activeProperty ?c .
Filter (?e = naturalDisaster_ocurrs && ?c=Phenomenan) }

SERIAL
{?e act:event ?o.?ap act:reactiveBehavior ?e .?ap act:activeProperty ?c .



Filter (?e = wind_goes_up && ?c=Hurricane) } }.
{{?e act:event ?o.?ap act:reactiveBehavior ?e.?ap act:activeProperty ?c .

Filter (?e = tsunamiGenerated && ?c=IndonesiaIslands) } }
PARALLEL
{?e act:event ?o.?ap act:reactiveBehavior ?e.?ap act:activeProperty ?c .
Filter (?e = shallowEpicenter && ?c=Earthquake) } }}

Table 1. The ActSPARQL Syntax (BNF format)

<ActSPARQL query> ::= <SPARQL query><When-clause>
<When-clause> ::= <EventBasicPattern>|

<EventBasicPattern><Oper><When-clause>
<Oper> ::= SERIAL | PARALLEL
<EventBasicPattern> ::= {<BasicPattern><FILTER>}
<BasicPattern> ::= <VAR> action:event < VAR>.

<VAR>action:reactiveBehavior <VAR>.
<VAR> action:activeProperty <VAR>.

<FILTER> ::= Filter (<VAR> = <ClassRDF> && <VAR> = <ClassRDF>) .

The above query retrieves evacuation scale of all members of Phenomenan, Hurri-
cane, IndonesiaIslands and Earthquake classes after is fired the execution of the reac-
tive processing of the events naturalDisaster ocurrs, wind goes up, tsunamiGenerated,
shallowEpicenter, respectively. The ActSPARQL engine receives two requests. First,
to execute the event wind goes up on the class Hurricane after the execution of the
event naturalDisaster ocurrs on the class Phenomenan, two sets of rules are evaluated.
Second, to execute in parallel, events tsunamiGenerated, shallowEpicenter on classes
IndonesiaIslands and Earthquake, the reactive process evaluates one set of rules. The
query engine interprets the active clause when of the query, and processes the reactive
behavior of the data in the ontology O. Thus, for example, if the value of the property
evacuationScale is Null before the event tsunamiGenerated occurs, then the execution
of the when clause alters the value of property evacuationScale changing this value
to Full. Once the reactive processing is evaluated on ontology O, the engine returns
ontology O′, which can be queried using any SPARQL query engine.

Additionally, we propose a dialect of RDFS to express ACTION ontologies. Some
of the new properties are listed in Table 2. Predicate isSubEvent is transitive and its
semantics is implemented at the deductive database level as an implicit predicate.

5 Experimental Study

In this section we present the results of our experimental study on the performance of
the proposed evaluation techniques. We report on the evaluation time and on the num-
ber of derived facts. We compare the bottom-up evaluation of the IMR rewritings to



Table 2. Some of the ActRDFS Property Descriptions

RDFS property Description
(e action:event) e is an event of ontology o
(e1 action:isSubEvent e2) e1 is a sub-event of e2
(p rdf:type activeProperty) p is an active Property
(p action:activeProperty e) p is an active of event e
(bc action:BooleanExpression e) bc is the Boolean expression of event e
(p action:changedTo v) active property p changes to v

the bottom-up evaluation of the program rewritten by using traditional Magic Sets tech-
niques. We present the performance of the IMR method with and without the reordering
of sub-goals of active queries.

5.1 Experiment Configuration

Dataset: The experimental study was conducted on the Lehigh University Benchmark
(LUBM) [14]. We have extended the instance generator LUBM to insert active
properties and events. The univ num parameter (number of universities to generate)
of the generator program, was used to construct the different dataset sizes. Once
the instances of the repositories were generated as RDF/RDFS/XML documents,
this information was translated into meta-level predicates of ADOB by means of
Prologs DCG (Definite Clauses Grammars). To compare IMR (with and without
the reordering of sub goals) versus classic magic set evaluation [5], we consider
a dataset with three kinds of repositories: small (information of five university),
medium (twenty universities) and large (fifty universities). Ten different reactive
goals (queries) were posed to each kind of repository; each of them evaluated using
classic magic set evaluation and IMR. In Table 3, the generated repositories are
described in terms of the number of classes, static and active properties.

Hardware and Software: The experiments were evaluated on a Solaris machine with
Sparcv9 1281 MHz processor and 16GB of RAM. The proposed algorithms have
been implemented in SWI-Prolog, Version 5.6.54.

Metrics: We report on the following metrics:
– Total Number of Derived Facts (TNDF): the cost of the tasks of reasoning and

query evaluation are measured in terms of the number of derived facts needed
for the reactive processing. The TNDF corresponds to the size of the minimal
model.

– TIME: measures the time in seconds required to achieve the reactive process-
ing.

Transformations: We study the performance of our approach on different active datasets.
We apply two kinds of transformations to the event hierarchy of the documents: Ad-
dBind and Bind.
AddBind Transformation: each AddBind transformation Ti adds three isS ubEventO f

relationships to the event hierarchy generating a more densed hierarchy. These
transformations augment intersections between events.



Bind Transformation: each Bind transformation Ti adds one reactiveBehavior re-
lation to three events which are randomly chosen, and increases the number
of active properties that are affected by these events. Bind transformations in-
crease the complexity of the Boolean condition to be evaluated in the reactive
processing.

Table 3. DataSet Description

#Univ #Class-Inst # Prop-Inst #ActProp-Inst MB
5 91,408 325,429 69,441 33.5
20 414,194 1,305,736 278,876 151.0
50 978,764 4,212,872 741,150 379.9

5.2 Results

We considered ten queries. Each query consists of three to nine sub-goals, one to ten
events affecting one class, one to five different affected classes in the query, and one
random execution scheduler per sub-goal - serial or parallel. Figure 3 shows the average
TIME and TNDF for the bottom-up evaluation of ten input programs with Classical
Magic Sets rewritings (CMS) that represent the reactive processing versus the bottom-
up evaluation of the IMR rewriting of the same programs. In Figure 3(a) we observe
that non-ordering sub-goals IMR method (NOrdIMR) speeds up the tasks of reasoning
and query evaluation by 55% w.r.t. CMS, while the ordering sub-goal IMR method
(OrdIMR) reduces evaluation time by 72% w.r.t. CMS. Figure 3(b) also shows that both
versions of IMR outperform CMS by four orders of magnitude (TNDF). The reason is
that the IMR method avoids duplicate inferences when it processes a set of events. In
contrast, the classic Magic Sets method makes all inferences for each event of the set.

Figures 4(a) and 4(b) respectively compare values of TIME and TNDF for the
bottom-up evaluation of Magic Sets rewritings (ordered versus non-ordered sub-goals)
of ten queries when AddBind transformations are applied. In Figure 4(a) we observe
that OrdIMR always requires less TIME to process reactivity. This is because this
method reduces the number of query sub-goals, i.e., original sub-goals are aggregated.
In Figure 4(b) values of TNDF are similar in both techniques because AddBind trans-
formations do not increase the number of events.

Figure 5 compares values of TIME and TNDF for ten queries when Bind trans-
formations were applied. In Figure 5(a) we observe that the ordering sub-goal IMR
method requires, in average, 10% less TIME to process reactivity. The difference be-
tween TNDF in both techniques is 5% (Figure 5(b)); this may be because, Bind trans-
formations augment the number of active properties affected by each event, and the
event hierarchy is always the same. Thus, the ordering sub-goal IMR method consumes
less TIME and TNDF because it processes queries with a small number of sub-goals;
however, the difference is small because the number of events remains the same.



Reactivity Time: IMR 

versus Classic MS 

Ord-
IMR

NOrd
IMR

CMS

0

10

20

30

Algorithm of Evaluation Engine

T
im

e
 (

s
e
c
s
)

(a)

Reactivity TNDF: IMR 

versus Classic MS

Ord
IMR

NOrd
IMR

CMS

0

2

4

6

8

Algorithm of Evaluation Engine

L
o
g
(
T

N
D

F
)

(b)

Fig. 3. Cost of ordering sub-goals IMR method(OrdIMR), non-ordering sub-goals IMR
method(NOrdIMR), Classical Magic Sets (CMS): a) TIME (secs) b) TNDF(log-scale)

Reactivity TIME in Large Datasets

0

50

100

150

200

250

300

350

400

450

500

T1 T2 T3 T4
AddBind Transformations

T
I
M

E
(
S

e
c
s
)

OrdIMS
NOrdIMS

(a)

Reactivity TNDF in Large Datasets

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

T1 T2 T3 T4
AddBind Transformations

T
N

D
F

OrdIMS
NOrdIMS

(b)

Fig. 4. Cost of ordering sub-goals IMR method(OrdIMR) and non-ordering sub-goals IMR
method-AddBinds Transformations:a) TIME-secs; b) TNDF



Reactivity TIME in Large Datasets

0

100

200

300

400

500

600

700

T1 T2 T3 T4
Bind Transformations

T
I
M

E
(
s
e
c
s
)

OrdIMS
NOrdIMS

(a)

Reactivy TNDF in Large Datasets

3150000

3200000

3250000

3300000

3350000

3400000

3450000

3500000

T1 T2 T3 T4

Bind Transformations

T
N

D
F

OrdIMS

NOrdIMS

(b)

Fig. 5. Cost of ordering sub-goals IMR method(OrdIMR) and non-ordering sub-goals IMR
method(NOrdIMR)-Bind Transformations:a) TIME-secs; b) TNDF

6 Conclusions and Future Work

ACTION ontologies extend the expressiveness of ontological languages in order to in-
corporate events as first-class concepts, and make use of traditional deductive reasoning
tasks to manage reactivity. In order to efficiently process reactive behavior the REAC-
TIVE architecture was proposed. This platform integrates ActRDFS and an extension
of SPARQL namely ActSPARQL that allows expressing a set of events that occur in se-
quence or in parallel; in addition, an evaluation engine to efficiently manage the reactive
behavior of ontological data was developed. Results of the conducted empirical study
indicate that our approach is an alternative - declarative - way to express and process
reactivity. In the future we plan to integrate REACTIVE to existing SPARQL query
engines.

References

1. J. J. Alferes and R. Amador. r 3- a foundational ontology for reactive rules. In OTM Con-
ferences (1), pages 933–952, 2007.

2. J. J. Alferes, R. Amador, P. Kärger, and D. Olmedilla. Towards reactive semantic web poli-
cies: Advanced agent control for the semantic web. In International Semantic Web Confer-
ence (Posters & Demos), 2008.

3. J. Bailey. Transformation and reaction rules for data on the web. In ADC ’05: Proceedings of
the 16th Australasian database conference, pages 17–23, Darlinghurst, Australia, Australia,
2005. Australian Computer Society, Inc.

4. J. Bailey, G. Papamarkos, A. Poulovassilis, and P. T. Wood. An Event-Condition-Action
Language for XML. In Web Dynamics, pages 223–248. 2004.



5. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic Sets and Other Strange Ways to
Implement Logic Programs. In PODS, pages 1–15, 1986.

6. E. Behrends, O. Fritzen, W. May, and F. Schenk. Embedding Event Algebras and Process
for ECA Rules for the Semantic Web. Fundam. Inform., 82(3):237–263, 2008.

7. Y. Biletskiy, D. Hirtle, and O. Vorochek. Toward the Identification and Elimination of Se-
mantic Conflicts for the Integration of RuleML-based Ontologies. In CSWWS, pages 135–
142, 2006.

8. A. Bonifati, S. Ceri, and S. Paraboschi. Active rules for XML: A new paradigm for E-
services. VLDB J., 10(1):39–47, 2001.

9. A. Bonifati and S. Paraboschi. Active XQuery. In Web Dynamics, pages 249–274. 2004.
10. D. Braga, A. Campi, D. Martinenghi, and A. Raffio. ActiveXQBE: A Visual Paradigm for

Triggers over XML Data. In EDBT Workshops, pages 865–875, 2006.
11. F. Bry, M. Eckert, H. Grallert, and P.-L. Patranjan. Evolution of Distributed Web Data: An

Application of the Reactive Language XChange. In ICDE, pages 1517–1518, 2007.
12. E. Cohen. Estimating the Size of the Transitive Closure in Linear Time. In FOCS, pages

190–200, 1994.
13. M. Fox and M. Gruninger. On Ontologies and Enterprise Modelling. The AI Magazine,

pages 109–121, 1997.
14. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems. J.

Web Sem., 3(2-3):158–182, 2005.
15. D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In Handbook of Philosophical Logic,

pages 497–604. MIT Press, 1984.
16. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission,
21 May 2004. Available at http://www.w3.org/Submission/SWRL/.

17. Z. Huang, S. Schlobach, F. van Harmelen, N. Casellas, and P. Casanovas. Dynamic aspects
of opjk legal ontology. In Computable Models of the Law, Languages, Dialogues, Games,
Ontologies, pages 113–129. 2008.

18. Z. Huang and H. Stuckenschmidt. Reasoning with multi-version ontologies: A temporal
logic approach. In International Semantic Web Conference, pages 398–412, 2005.

19. M. Levene and A. Poulovassilis. Special issue on Web dynamics. Computer Networks,
50(10):1425–1429, 2006.

20. M. Morgenstern. Active Databases as a Paradigm for Enhanced Computing Environments.
In VLDB, pages 34–42, 1983.

21. M. O’Connor, R. Shankar, and A. Das. An Ontology-Driven Mediator for Querying Time-
Oriented Biomedical Data. In CBMS ’06: Proceedings of the 19th IEEE Symposium on
Computer-Based Medical Systems, pages 264–269, Washington, DC, USA, 2006. IEEE
Computer Society.

22. A. Poulovassilis, G. Papamarkos, and P. T. Wood. Event-Condition-Action Rule Languages
for the Semantic web. In EDBT Workshops, pages 855–864, 2006.

23. E. Ruckhaus, E. Ruiz, and M. Vidal. Query Evaluation and Optimization in the Semantic
Web. TPLP, 2008.

24. E. L. Tovar and M.-E. Vidal. Magic Rewritings for Efficiently Processing Reactivity on Web
Ontologies. In OTM Conferences (2), pages 1338–1354, 2008.

25. W. Xing, O. Corcho, C. Goble, and M. Dikaiakos. Active Ontology: An Information In-
tegration Approach for Highly Dynamic Information Sources. In European Semantic Web
Conference 2007 (ESWC-2007), Innsbruck, Austria, June 2007. Poster.


