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Abstract. In this paper we present our current experience of aggregat-
ing user data from various Social Web applications and outline several
key challenges in this area. The work is based on a concrete use case:
reusing activity streams to determine a viewer’s interests and generating
television programme recommendations from these interests. Three sys-
tem components are used to realise this goal: (1) an intelligent remote
control: iZapper for capturing viewer activities in a cross-context televi-
sion environment; (2) a backend: BeanCounter for aggregation of viewer
activities from the iZapper and from different social web applications;
and (3) a recommendation engine: iTube for recommending relevant tele-
vision programmes . The focus of the paper is the BeanCounter as the
first step to apply Social Web data for viewer and context modelling on
the Web. This is work in progress of the NoTube project®.

1 Introduction: Television Meets the Social Web

Television watching has always been a social activity, but as channels and deliv-
ery mechanisms multiply, the enablers of social watching - simultaneous broad-
cast times for everyone and limited choice - are decreasing[7]. There is a trend
towards watching television or using television-related services[1] such as Elec-
tronic Programme Guides (EPGs) on PC, handheld or other networked device.

At the same time, other Web-based opportunities for social interaction are
increasing. The next generation television audience usually has a substantial
online presence through social networking and other online services. In those
environments, users are typically represented by their user profiles (explicitly
filled in) and the log of their online activities, e.g. “Jane uploaded a photo”, “Bob
is listening to French rap music”. Such data can be (in)directly useful for deriving
specific user interests in various domains. Most of this data, however, is still
locked within a single application, or is only partially reused across applications,
e.g., usernames and basic personal data. Moreover, much of this personal data

* http://www.notube.tv



2 The NoTube BeanCounter

is also duplicated across the various social sites. The user is left with multiple
user profiles, which are not or weakly related (syntactically only) to each other.

Maintaining rich profiles of a wide variety of content (in various formats and
areas) is critical for providing adequate personalisation services. Recommenda-
tion services are a typical example of applying such rich user profiles. However,
most approaches today are still limited to simple recommendations (“Take a
look at this programme”), similarity-based recommendations ( “if you watch this
programme, you will probably like this other one in the same category”) or col-
laborative filtering (such as Amazon’s “Customers who bought this item also
bought...”). Services for television recommendations, such as 4IP’s “Test Tube
Telly”3, tend to be restricted to using data from one system only. An advanced
mechanism for social recommendations will now need to consider a completely
different landscape, with different profiles of users, user groups and audience
segments. Opening and sharing of profiles and attention data between different
players in the market creates a different environment - an open social graph where
a wider user base can potentially help to improve the quality of recommendations
and reduce the costs of moderation and spam filtering.

In the NoTube project [3] we develop a flexible end-to-end architecture, based
on semantic technologies, for personalised creation, distribution and consump-
tion of television content. The project takes a user-centric approach to investigate
fundamental aspects of consumers’ content-customisation needs, interaction re-
quirements and entertainment wishes, which will shape the future of “television”
in all its new forms. In this paper we focus on the first part of this project - com-
bining multiple heterogeneous sources of data, with the addition of semantics,
in order to create machine-readable profiles for users. These can later be used
to drive better, more focused and more personalised television and other me-
dia recommendation services in a personalised, service-based EPG (Electronic
Programme Guide)[4]. NoTube aims to overcome a number of limitations in cur-
rent EPGs. Imagine how to recommend and search for programmes that are:
(a) non-fiction, (b) produced between 1989 and 1995, (c) involve locations in
Eastern Europe. In current EPGs (a) is resolvable, while (b) is not, but it is
possible if the programme information has been properly indexed along a given
timeline; (c) also requires appropriate metadata, and a sophisticated knowledge
model that allows to represent and reason about part/whole relations between
places, countries and regions (e.g., Sofia is in Bulgaria; Bulgaria is in Eastern
Europe). In the project we hope to gain insights into end-user control, user un-
derstanding of aggregation of data about them, privacy-preserving architectures,
and constraints on reuse of data as data of this kind is both potentially privacy
invasive and also valuable.

In this paper we describe the design and implementation aspects of the Bean-
Counter as the user data collecting component, aiming to illustrate its potential
application in the Social Web domain. The main design rationale is to provide
a flexible and extensible architecture that exposes robust, scalable and reliable
services to handle different kind of responses of different social applications plat-

® http://testtubetelly.channel4.com/
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forms. A set of APIs allows for modelling the targeted responses to gather them,
represent them with a set of suitable RDF vocabularies, and integrate them with
other pulled information in a fully transparent way. Thus, we outline a loosely
coupled architecture based on service-specific adaptors (tubelet) and application
servers (modelet), which allow for the selection of data source and RDF vocab-
ulary and the generation of RDF-ised user data, integrated with data coming
from other adaptors. We aim to create a set of language-independent, RESTful
APIs that allow for writing adaptors, analysers, data management and enrich-
ment components to different user data services. An important requirement is
maintaining a transparent privacy policy useful to users with different levels of
technical skills.

In the following sections we report on our work on the BeanCounter with
usage scenarios, alignment approaches, design and implementation details of the
BeanCounter implementation, and lessons learned. In these lessons we outline
some of the challenges related to realising not only the data collection compo-
nent, but the whole workflow for achieving reuse of user data from Social Web.

2 Beancounter Usage Scenarios

2.1 Scenarios for end-users

Bob has accounts at several social websites: Facebook, Twitter, YouTube, and
Last.fm. He regularly uses NoTube ‘favourites’ feature. For each website he has
a separate identity and has indicated a basic set of personal information and
interests. Each application also carries his (partial) user profile, with his inter-
ests related to that application, e.g., music preferences or travel history. There
is limited integration of such user profiles, typically not under user’s control and
lacking transparency of how data is interpreted in different applications. It is
difficult for Bob to find out what each system knows about him and how this
knowledge is derived. Moreover, he cannot easily find out his interests and per-
sonal statistics based on what he watches, listens to or consumes on different
devices (e.g., interactive television, online TV guide, Netflix, YouTube). Using
the BeanCounter, Bob can:

— log into the BeanCounter using his openID (or create an account).

— link a few of his accounts and devices to the BeanCounter, e.g., his
Twitter and YouTube accounts. He could also link an iZapper (a combined
EPG, remote, and context capturing device) to his account. After linking, the
service-specific adaptors (‘tubelets’) pull the data, convert it to an activity
stream in RDF using service-specific algorithms, and store it in a triple store.

— view some statistics about himself. Bob can immediately see some in-
teresting information about himself in the BeanCounter web Interface (see
Figure 1). A machine-readable profile can also be created.

— edit the result, e.g., delete all the data or remove sources. He can decide
which part of the profile to make public, if any. The final result is a machine-
readable profile that Bob uses to describe himself on the Semantic Web.
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Fig. 1. The BeanCounter UI for End-Users

2.2 Scenarios for technical end-user

Jane is privacy-conscious, technically minded and able to do some programming.
She has the latest television-PVR that outputs data using the XMPP protocol;
her friends have similar devices. She uses an iZapper to indicate programmes
she watches, records or likes and dislikes. For example, Jane can:

Download and run her own version of the BeanCounter and attach
her BeanCounter to her and her friends” PVR accounts, with their
permission. In this way, she can make queries over the combined set of interests
to see if she can make some recommendations about what to watch, by querying
the dataset to see what is mostly commonly watched and then querying schedules
to filter what’s on next week.

2.3 Scenarios for developers

George is a developer who wants to use the BeanCounter for tracking
attention data from YouTube. Suppose an instance of the BeanCounter
is currently deployed and is running on beancounter.asemantics.com, but is
pulling data only from Twitter. George wants to track YouTube favourites as
well. He studies the response (Atom feed) from the YouTube API and writes
couple of Java classes to represent this data. He chooses an appropriate au-
thentication mechanism (e.g., http Basic Auth, or OAuth). Then he needs to
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Fig. 2. BeanCounter UI for Developers

select the appropriate RDF vocabulary to represent this user data. FOAF is
suitable to represent the static part of the YouTube profile (e.g., the property
foaf:interest links users to the tags associated with every YouTube favourite
video. All he needs is to add a minimal set of annotation to his Java classes stat-
ing this. Once the lines of code are written, he uses the Management Interface
beancounter.asemantics.com/manager and adds the YouTube Tubelet to the
BeanCounter. The tubelet is immediately available to be used without restarting
the whole service.

Consider now Chris, who is a developer at OpenCalais annotation service
and wants to enrich identi.ca tweets. The goal is to build a Identi.ca Tubelet
that pulls the Identi.ca tweets, annotates them using the Opencalais and stores
the resulting triples. Similarly to the previous scenario, Chris first needs to make
a new tubelet. Then, he writes a small Java class called a Pipe, to indicate that
Opencalais service is to be used to process the text of the tweet, and finally,
he binds the new tubelet to that pipe. Thus, the output of this tubelet will be
processed by this pipe and then stored (see Figure 2). The same scenario can be
realised with other annotation services, such as KIM annotation service’.

Another example is Anna, a BBC producer, who wants to find out whether
people liked the new episode of ‘Torchwood’. Suppose the BBC has an instance
of the BeanCounter running and aggregates and anonymises data using the
public APIs from Twitter and Facebook combined with statistics from iPlayer.
Anna writes custom queries for Torchwood and a custom analyser that evaluates
whether each activity data item was positive or negative. With the ‘aggregation’

6
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feature - over all user data in the system - she creates custom queries to find out
what the overall opinions were and when people tended to watch it.

3 BeanCounter Metadata and Resources

More and more data gets published in RDF[8] most notably as linked datal6],
[5]: generic knowledge such as DBpedia®, domain data such as instances from
the BBC Programmes Ontology?, linguistic data such as W3C Wordnet!?, ser-
vice data like instances of WSMO-lite!!, or user data like FOAF'? instances
or MySpace metadata'®. This knowledge can be accessed in various ways[9]:
SPARQL endpoints, Java APIs, and REST-style Web-services. Programmers
combine these sources to create migration services for other programmers or
end-user (mashup) applications. In developing the BeanCounter we have expe-
rienced five key aspects relevant to the enrichment of the user attention data:

— Selection of resources: The growth of the Semantic data cloud allows us
to integrate more external data sources relevant to the NoTube domain. The
selection of the right sources is a non-trivial challenge. First, we need to list
candidate sources that possibly could contribute to our user-scenarios. Sec-
ond, for those sources we need to estimate the quality in terms of complete-
ness, reasoning complexity, errors and stability. Third, we need to determine
the effort needed to align the schemas to connect the source with the other
NoTube vocabularies.

— Creation of alignments: The growth of the Semantic data cloud allows
more and more interesting alignments for the NoTube domain between the
different data sources in the cloud. For example, in one of the case studies we
are working on making alignments in SKOS to aligning the Last.fm music
categories with programme data described in the BBC Programmes ontology.

— Creation of connections: The linked data cloud contains commonly used
URIs representing entities suitable for reuse, for example Dbpedia concepts.
Where possible we reuse URIs in this way to create a more connected graph.
The challenge is to find and easily reuse the relevant URIs

— Usage of the alignments and connections: When the alignments are
created, we cannot assume that all data that we want to align will be in
one single SPARQL repository. For this we need to develop alignment ser-
vices that themselves generate RDF on request or have another interface
(e.g., REST-style). For example, a type of alignment that gets special atten-
tion in NoTube because of non-English content provided in the case-studies:
multi-lingual aspects related to mapping Korean, Italian, Dutch and German

8 http://dbpedia.org/
9 http://purl.org/ontology /po/
0 http:/ /www.w3.org/TR/wordnet-rdf/
' http://www.wsmo.org/ns/wsmo-lite/
'2 http://xmlns.com/foaf/spec/
'3 http://grasstunes.net/ontology /myspace/myspace.html
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content to English (and back). For example, we are working on mapping the
Dutch Cornetto “Wordnet’ to the W3C Wordnet, to obtain more (English)
information for topics annotated originally in Dutch.

— Domain dynamics: The world is dynamic, so also the metadata describing
this world, such as user profile data, programmes and similar. It is the chal-
lenge to get the alignments as quickly as possible and to inform the interested
parties. For this a publish/subscribe mechanism where people can place a
‘listener’ on the topics of interest would make life easier. Current research
such as Jgbus (a SPARQL service over the XMPP protocol) is ongoing to
tackle this challenge.
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Fig. 3. NoTube Recommendation Architecture

The BeanCounter is a user data aggregation component: it aggregates data
about a user from Web sources (e.g., Facebook, Last.FM, Twitter) and produces
a machine-readable interest profile for this user. The BeanCounter produces also
a human-readable version of this profile by emphasising on the transparency
and privacy-preserving aspects, as well as on the adequate and appealing pre-
sentation of the information. However, in the context of this paper, we focus
on its input to semantic recommendation services. In the prototype version of
the overall NoTube architecture (see Figure 3) the BeanCounter is accompanied
by a controlling device iZapper that captures a viewer’s log in specific contexts
(e.g., I am at home, working, in the evening) and a viewer/recommender ser-
vice iTube, which uses the input from the BeanCounter and iZapper in order to
generate and present the recommended relevant television programmes to the
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user. iTube is typically a media centre environment, which can make use of the
semantic recommendation service’s output via an API. It could also be a dis-
play on a computer or a smaller device. Currently, we plan to use the iFanzy[2]
recommendation service, although the architecture will allow for many different
recommendations services to be used.

4 Prototype Architecture

4.1 iZapper: the controlling device

Traditionally televisions are controlled with dedicated remote controls. To de-
velop a viewer’s profile, the viewer has to explicitly configure it. iZapper (see
Figure 4) is a native iPhone application intended to control a media centre
(typical device and channel control), capture a viewer’s context, and to record
viewer’s activities to gain more information. Several types of contextual infor-
mation can be retrieved from a user’s iPhone, such as location (via GPS or wifi
endpoint), period (via time) and optionally tasks (via agenda).

1: The Blues Brothers, (8.3)

Working

Eating

Morning

£2.339,4.87/3 | Aiternooin

Home Evening

Fig. 4. iZapper User Interface: (a) Generating and (b) Representing User Activities

Television activities, such as watching, recording, ranking and bookmarking
will be recorded. All this information will be pushed to the BeanCounter. Every
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viewer has access to his personal iZapper. The BeanCounter will use the iZapper
as one source of user information for context, activities and profile. The context
is the circumstances and surroundings of a viewer, composed of location, period
and task, and is relevant for the fact that viewers’ ratings are potentially made
to hold in a specific context.

4.2 The BeanCounter Architecture

The BeanCounter itself can be modelled as a container of components (called
tubelets) responsible for calling and managing a service the user wants to import
into the system. Thus, each Web source (e.g., FriendFeed, Twitter, Glue, last.fm)
is wrapped and accessed by a tubelet, that is specifically built to handle data from
that source. Whatever the format is adopted by the Web service response (e.g.,
ATOM, JSON or some sort of XML), a tubelet can parse such content and map
it to RDF, allowing a native integration. All the logic for tubelet management
are embedded in the container determining the life cycle of each tubelet.

( | * hitp:fdpalmisanc.myopenid.com

ands a video ta the
tavorites list
gelocalize himsell using
a moblle device

Hitp REST APls allowing to
store and retrieve the data

Fig. 5. The BeanCounter prototype Architecture

The activation of each tubelet involves (1) a Scheduler: scheduling the activa-
tion of the tubelet, (2) a User ID Manager: mapping all the different credentials
of the user and (3) a computation of the range of data to be pulled out of the
source. The tubelet takes as input the result of the specific source API (e.g., in-
formation about the user in that source), parses it and creates some Java beans



10 The NoTube BeanCounter

that model the data pulled from that source. The beans are serialised by the
tubelet and passed as input to a Pipeline. The pipeline processes the serialised
beans and produces an RDF representation of the data. It is essentially a pipe
with a number of (optional) steps which eventually will produce RDF to be fed
into the RDF storage. Apart from the mandatory step for RDF conversion, other
additional steps could follow to perform some ad-hoc actions on this semantic
representation. The described data flow is oriented to a specific Web source.
Data are pulled directly from the source and some automatic lifting is made in
order to get a semantic representation of the source content (as a set of triples).

Another flow is more model-driven rather than source-driven. A container
is devised, where a modelet is the equivalent of a tubelet. A modelet can ac-
cept structured user data in a cross-source fashion. Every time a new piece of
information is needed, a new modelet is plugged into the modelets container. A
modelet feeds then into the proper java beans, which just as for the first flow
are serialised and passed to a pipeline. A key aspect of the BeanCounter is illus-
trated by this last component. It allows for aggregation of data from different
Web sources, where the same entity - movie, city, person - within two sources
should be unambiguously identified and mapped in both sources. Adding a new
modelet to the modelets container is possible by calling specific APIs defining the
desired modelet (e.g., how it is structured, which fields) and then hot-plugging
it into the container.

5 Discussion

During the requirements phase and implementation of two BeanCounters and the
iZapper, we have identified several challenges to realise effective reuse of Social
Web user data in domain-specific recommender system (for TV programmes).
Some challenges have already been addressed in the development of BeanCoun-
ters. From this work result also some practical guidelines for semantic data
integration. We now give a brief overview of those points, starting with Lessons
Learned for Semantic Data Aggregators:

— Pipelines. To ingest data into the system through pipelines, which are dy-
namically editable (e.g., add new pipe elements in specific points of the
chain). Some pipes could be responsible for collecting statistics on certain
triple data, while others could handle the building of specific indexes.

— Container Programming Pattern. This pattern manages the addition
and removal of components, as well as their life cycle, inter-communication
and activation. It provides an abstraction that hides the complexity of the
system, allowing developers to ignore low level functionalities. Some system
components are subjected to change depending on the evolution of the ser-
vices they are written for, so the system should support the addition and
the replacement of dynamic components without requiring a restart.

— Push, Pull and Trigger. A flexible system should gather data (1) manu-
ally, (2) by scheduled activities for getting data from external services, and
(3) in trigger mode with manual activation of collecting component
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— Hybrid Storage. A triple store is good for persisting semi-structured data,
but does not support structured data indexing (e.g., dates or geo coordi-
nates). To get a good response time in data retrieval and filtering, a hybrid
data storage handling indexes persisted in canonical Relational database ta-
bles and associated to RDF triples could be useful.

— Avoid working directly with triples. Using an RDF2O0bject mapping
library allows the data handling logic to be expressed programmatically as
object manipulation. It also encourages the (re)use of ontologies as libraries.
— Native Support to Track Data Evolution. Data retrieved in two sub-
sequent points of time typically mixes old already ingested with new infor-
mation. This introduces resource wastage and sometimes also data inconsis-
tencies. Therefore, native support for managing the ”delta” of data to avoid
this kind of problems could be useful.

Challenges for User Data Reuse on the Social Web:

Presentation of Aggregated User Data

How to maintain user’s motivation to add new data and achieve good
confluence of the content and the context?

What are non obtrusive ways of making the user aware of the privacy
implications of her actions?

How to make user aware of the current (1) presentation context, (2)
context model related to privacy and (3) adaption strategies?

How to keep user in control of profiles, content and context data used?

Privacy

How to handle privacy at the architectural level?

How to achieve user management without asking users, e.g., for ser-
vices username/password, or to create username/password for the Bean-
Counter?

How to help users understand the privacy issues when reusing and ag-
gregating their data?

How to manage data reuse, e.g., by using creative commons licensing?

Context Capturing

What are useful contexts, e.g., temporal, spatial, task-, device-related?
How to capture user’s context (semi-)automatically, i.e., minimise the
explicit user input, while maximising the background collection of user
and context data, as well as deductions from this data?

Data Aggregation and Enrichment

How to achieve unified and simple access to dynamic, growing and dis-
tributed multimedia content of diverse formats?

How to determine, which information from the activity stream is useful
for determining user’s interests and what enrichment is relevant, useful
and accurate in different user contexts?

What is a minimal amount of data to start up the personalisation pro-
cess, preventing a ‘cold start’?

How to represent user data statistics, strength of user interest and user
context in machine-readable format, e.g., RDF?

How to exploit current standards in television content metadata available
both for providers and consumers
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6 Conclusions

Our current experience of aggregating user data from various Social Web appli-
cations is presented in this paper. The BeanCounter is as a user data aggregation
component for the NoTube architecture. The usage scenarios motivate the rela-
tion between TV recommendation and Social Web. To aggregate heterogeneous
data, we have incorporated alignment support in our design and prototype imple-
mentation. Finally, we presented the lessons learned from the prototype imple-
mentation regarding the different challenges that need to be tackled and further
work to be done.
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