
Reactivity and Social Data: Keys to Drive Decisions
in Social Network Applications?

Philipp Kärger1,2, Emily Kigel2, and Daniel Olmedilla3

1 L3S Research Center, Hannover, Germany
2 Leibniz University Hannover, Germany

3 Telefónica Research & Development, Madrid, Spain

Abstract. Social Network applications are gaining momentum. However, equally
important, privacy is being shown a crucial requirement. Nowadays, privacy
preferences on Social Network applications consist only on allowing or restrict-
ing access to information based on attributes of users who are part in the very
same network. This paper tries to enhance privacy and provide automatic re-
actions to events via a very flexible specification of privacy policies and the
reasoning associated to them. In our approach it is possible to include Social
Semantic data exposed on the Web into the policy definition and reasoning
process. We introduce the notion of reactive Semantic Web policies offering
higher control of the communications and interactions among Social Network
applications and/or its users. We also present SPoX (Skype Policy Extension),
which is an implementation that allows policy-driven behaviour control based
on the Social Network and communication software Skype, including the capac-
ity of automatically react in certain situations based on user-defined reactive
policies such as, for instance, to automatically deny or let through Skype calls
and messages based on existing online Social Web data.

1 Introduction

With the advent of the Social Web the possibilities to communicate via Internet in-
creased dramatically. Among others, the way of communication via so-called Social
Network applications4 such as Twitter, Skype and Facebook plays an increasing role.
Such applications typically offer plenty of ways to communicate among their members,
examples are chat messages, wall posts, and micro-blogging posts. Moreover, in addi-
tion to such messages, a lot of communication happens via notifications. For example,
in Skype the change of a contact’s on-line status is shown in a small notification pop-
up. Other kinds of notifications include friendship requests, notifications about being
tagged in a picture, etc. In any case, independently of whether a message comes from
a single user or if it is a notification generated by the Social Network application, users
typically want to canalize the way such messages approach them. For that reason,
Social Network applications allow their users to set up simple preferences or policies

? This work was partially supported by the FP7 EU Project OKKAM (contract no. ICT-
215032)

4 With this term we refer to any kind of application that is based on a Social Network.

about which notification they are interested in and which message or who is allowed
to approach them in certain ways and contexts.

Such privacy preferences are typically limited in several respects. Stating for one
Social Network application that only friends are allowed to leave wall posts in my profile
does not cover people defined as friends on another application. Skype, as an example,
is only aware of contacts explicitly listed in Skype. Consequently, it may happen that a
call from someone who is a friend on Twitter or listed in one’s FOAF5 profile is blocked.
This only happens because one did not explicitly (and redundantly) add the caller as a
Skype contact. Generally speaking, any kind of social data that can be gathered from
the Web shall be considered for such decisions. Recent studies for mobile phone usage
actually show that disturbance of messages heavily depends on the social context of
their origin [1, 2]. For example, one may not mind to be approached by people that
regularly post in one’s blog; or accept friendship requests from people one follows on
Twitter. All these information about social contacts is available on the Web: with
whom one discusses in forums (e.g., represented in SIOC6), whom people know (e.g.,
represented via a FOAF profile), with whom they are working, be it on publications
(e.g., listed in DBLP7) or on software projects (e.g., DOAP8). Unfortunately, current
solutions for privacy preferences do not make use of it [3] and suffer from the “walled
garden” of Social Networks [4].

In this paper we propose to incorporate Social Web data into the evaluation of pri-
vacy preferences and, more generally speaking, into the definition of behaviour control
of Social Network applications. We base our approach on a reactive extension of Se-
mantic Web policies. We describe a language expressing such policies and an algorithm
to evaluate them. With this language, policy decisions can be made based on concepts
defined by different social aspects; that is, by using logic rules, new concepts can be
built from formerly isolated Social Web concepts. We further describe an implemen-
tation of this language and our prototype SPoX (Skype Policy Extension)9. SPoX is
an extension to Skype clients that allows users to easily specify policies that can, for
example, express who is allowed to approach the user under which conditions. With
SPoX a user can state that only friends on Twitter and Flickr or people listed in the
user’s FOAF profile are allowed to call and calls from all other users are automatically
blocked and turned into a chat. For evaluating policies, SPoX is able to consider con-
text information like time and online status of the user as well as social data about
other users that is exposed on the Semantic Web or accessible via APIs of proprietary
Social Network applications. Based on this information, SPoX automatically reacts
to events in Skype’s Social Network according to user-defined reactive policies.

In summary, the contributions of this paper are:

1. integration of social data into logic-based policies thus extending the expressiveness
of privacy preferences and behaviour control in Social Network applications by
crossing the borders of on-line Social Networks,

5 Friend-Of-A-Friend, http://www.foaf-project.org
6 Semantically-Interlinked Online Communities, http://sioc-project.org
7 available for example in an Sparql Endpoint such as dblp.L3S.de/d2r/
8 Description-Of-A-Project, http://trac.usefulinc.com/doap
9 downloads and screencast at www.L3S.de/∼kaerger/SPoX

2. an extension of Semantic Web policies with events and triggers to adapt to the
reactive nature of interactions and communication happening on nowadays Social
Web,

3. an implementation of a flexible policy engine that handles such reactive policies;
and SPoX, a prototypical extension for Skype clients, that allows a user to easily
specify policies and evaluates and reason over them to automatically drive the
behaviour of Skype accordingly.

This paper is structured as follows. We first motivate the usage of reactive policies in
Section 2 by naming a set of potential useful policies. In Section 3 we provide back-
ground information on policies and negotiations. Section 4 introduces our proposed
language and how it connects to the Social Web. There, we further discuss the possi-
bilities to identify entities across the borders of Social Networks. An implementation
is described in Section 5 and some related work is mentioned in Section 6. Finally, we
conclude the paper with discussions about open issues and future work in Section 7.

2 Motivation scenarios

To showcase our approach throughout the paper, we list here a set of simple preferences
controlling the flow of messages and the disclosure of information in the context of
Social Network applications.
(A) Do not accept Skype calls unless the caller is either in my contact list or listed as
friend in one of my Social Network profiles. For all other people calling me, cancel the
call and open a chat.
(B) Show notifications about emails arriving and contacts going on-line on Skype only
if the origin is either in my family group on flickr or in my family category on Skype.
Never show such notifications if my computer is in presentation mode.
(C) Do not allow wall posts on my facebook profile that contain one of a specified list
of bad words.
(D) Automatically accept friend requests on any platform if I ever wrote a paper with
the requester or if the requester’s website is a blog I regularly comment on.
(E) Only people that attended the conference ISWC2009 are allowed to comment on
this blog and to see pictures tagged with ISWC09.
(F) Forward tweets from Twitter to my mobile phone if I am offline and the author
of the tweet is listed in my FOAF profile.
(G) Do not accept calls by students unless it is in my consultation hour.
(H) Show this blog entry only to friends that work in my company.

3 Background

Semantic Web policies and negotiations: Semantic Web policies [5] are declarative
statements with a well-defined semantics expressing the behaviour of a system. A
typical use case for policies is the definition of access control rules protecting resources

from being unintentionally accessed. For example, the policy stating that only my
colleagues are allowed to access files tagged with work may look as follows10

allow(access(File, User))← isTagged(File, ’work’), isColleague(User). (1)

Adding the facts “isTagged(’study.doc’, ’work’).” and “isColleague(’Bob’).” will
make the goal “allow(access(’study.doc’, ’Bob’)” succeed if posed against this policy—
that is, Bob is allowed to access the document study.doc. In this paper, we follow [1],
where the user’s attention itself is considered a particular resource that is to be pro-
tected against the overload of undesired messages. A Semantic Web policy like Pol-
icy (1) may trigger negotiations while being evaluated (see [7]). In such negotiations,
the decision about whether a certain policy condition holds or not is automatically
negotiated among the requester and the policy owner. In Scenario (H), before a blog
entry is shown to a user, the server storing the post and the requester may automat-
ically negotiate in order to find out if the requester actually works for the company
in question. In such a scenario, proving if a person has a certain property is typically
done by means of digitally signed credentials. In this case, as a reply to the request for
the blog entry, a request for a credential proving company membership is sent by the
server; therefore setting up a negotiation.

Protune: We base our approach on the Protune11 (PRovisional TrUst NEgotia-
tion) framework. Protune [6] aims at combining distributed trust management poli-
cies with provisional-style business rules and access control-related actions. Protune
features an advanced policy language for policy-driven negotiation and supports dis-
tributed credential management and flexible policy protection mechanisms. The Pro-
tune policy framework offers a high flexibility for specifying any kind of policy, refer-
ring to external systems from within a policy and providing facilities for increasing user
awareness, like automatic generation of natural language explanations of the result of a
policy’s evaluation. The Protune policy language is based on logic programming and
as such a Protune policy has much in common with a Logic Program (see Policy (1)).

4 Reactive Semantic Web Policies on the Social Web

As motivated in previous sections, Social Network applications are purely reactive, that
is, events occur and they typically require (semi-)automatically handling by the users
(or the application doing it on behalf of the user). The approach presented in this paper
extends classical access/deny policies as sketched in Section 3 by the notion of events
and (re-)actions thus creating so-called reactive Semantic Web policies. This extension
follows the event-driven nature of Social Networks [3] that includes the reaction to
interactions. Here, the classical approach of allowing or denying access does not apply
anymore since communication attempts, tagging people on pictures, or posting on
forums require more advanced control that observe events and trigger reactions. In the
following section we introduce a policy language which is able to express simple yet
powerful reactive policies.
10 Throughout this paper we will use this simplified logic programming syntax of policies that

is also used in Protune [6].
11 http://www.L3S.de/protune

4.1 A reactive policy language

Our policy language is a straightforward extension with reactive rules to the Protune
language. Such reactive rules are expressed in the common form of Event-Condition-
Action rules (ECA rules [8]) written in the form ON Event IF Condition DO Action.
ECA rules are interpreted according to the following standard semantics: in case Event
occurs and, at the same time, Condition is evaluated to true, the action Action is per-
formed. In the following, we detail our language, which combines standard Protune
policies with reactive policies in the form of ECA rules.

Syntax: The language we developed for our approach is a superset of Protune where
policy rules of the following form are allowed:

ON event(Ae
1, . . . , A

e
n)

IF conditionL1(Ac
1,1, . . . , A

c
1,m1

),

. . . , (2)
conditionLm(Ac

m,1, . . . , A
c
m,mm

)

DO action1(Aa
1,1, . . . , A

a
1,m1

),

. . . ,

actionm(Aa
m,1, . . . , A

a
m,mm

).

where Ae
i and Ak

(i,j)(k ∈ {c, a}) are terms12 and conditionLi(. . .) are literals, that
is, they either represent conditioni(. . .) or ¬conditioni(. . .) for some logical atom
conditioni(. . .).

Example 1. Recalling Scenario (A): a reactive policy that changes a call into a chat
based on my local contact list or based on information gathered from a Social Network
may look as follows:

ON callComesIn(User, Call)
IF ¬isInMyContactList(User),
¬isMySocialNetworkFriend(User) (3)

DO denyCall(Call), sendChatMessage(′Hello . . .′ , User).

By directly extending Protune we are able to combine the definition of reactive
behaviour with the declarative definition of policies as the following example shows.

Example 2. For example, the embedding of standard Protune policies allows us to
further define what is meant by the predicate isMySocialNetworkFriend() that was
used in Policy (3):

isMySocialNetworkFriend(Person)←iAmFollowingOnTwitter(Person).
isMySocialNetworkFriend(Person)←isMyDBLPCoAuthor(Person). (4)
isMySocialNetworkFriend(Person)←isFacebookFriend(Person).

12 As it is common in logic programming, variables are denoted starting with a capital letter
throughout the paper.

It is important to note that, in a similar way, one may not only define the concept
“MySocialNetworkFriend” but also “FOAF friend of a FOAF friend of mine” or “per-
son living in my city”, etc.

Semantics: The evaluation of a policy described in this language is based on the
Semantics of ECA rules and (non-reactive) Protune programs (as defined in [6]).
Due to space limitations we provide the semantics of our language here in a rather
informal fashion: If an event occurs it is checked for every ECA-policy if its event
predicate unifies with the detected event. Based on the set of policies that matches
the event, a Protune policy is constructed by replacing each matching ECA-policy
ri with a non-reactive Protune policy of the following shape

allow(ri)←conditionL1(Ac
1,1, . . . , A

c
1,m1

),

. . . , (5)
conditionLm(Ac

m,1, . . . , A
c
m,mm

)

The resulting policy is queried with goal allow(r1) (see Section 3). In order to evaluate
this goal, the conditions in the body of Rule (5) are evaluated following the Stable
Model semantics (as it is done for standard Protune policies [6]). In case the goal
succeeds, all the actions associated to r1 are executed. After the evaluation for r1 the
goal allow(r2) is evaluated, and so on. It is important to note that we define the policy
evaluation to follow the order of the reactive policy rules as they appear in the policy.
Although the ordering of non-reactive Protune policies does not matters (due to the
declarative nature of Stable Models), the order of the reactive policies may matter
since different orders of action executions triggered by different ECA rules may have
different effects. This assumption follows the standard interpretation of ECA rules and
also the intuitive behaviour one expects, for instance, from standard email filters like
the Thunderbird Filter13.

4.2 Retrieving and combining social data

Looking at the scenarios in Section 2, a reaction to a message or to an event in the
Social Network may depend on social data about my network, be it if someone is a
FOAF friend (as used in Scenario (A)), a student (Scenario (G)), attended an event
(E) , or with whom I wrote a paper (D). Consequently, the condition part of a reactive
policy needs to retrieve such data in order to contribute to the decision about whether
to execute the action or not.

Semantic Web technologies provide standards and models to make social informa-
tion easily accessible. Information about users is described in standard formats like
RDF, which allows to deal with the data from different sources in a uniform way. In
addition, due to the emergence of new Web technologies in the era of Web2.0, many
Social Web applications open their platforms for external developers by providing an
API in order to access the platform’s data. In the following section we show how to
technically retrieve such social data for policy reasoning. Subsequently, we elaborate
on ways how to exploit this information.
13 http://kb.mozillazine.org/Filters (Thunderbird)

Connecting Protune to the Social Web. Looking back at Example 1, Policy (4),
in order to evaluate the predicate iAmFollowingOnTwitter(·) it has to be connected
to the actual Twitter API. For this, Protune offers the so-called in-predicate [9, p.13],
that allows to consider external data sources as given facts in the state of the knowl-
edge base. Following this approach, Policy (4) has to be extended with the following
Protune rule.

iAmFollowingOnTwitter(Person)←
in([Friend], TwitterWrapper : getPeopleIAmFollowing()), (6)
Person = Friend.

For the evaluation of the in-predicate, Protune requires a wrapper to be implemented
that offers a method getPeopleIAmFollowing(). The results of that method are bound
to the variable Friend and, internally, for each result ri a fact is added to the poli-
cies: ’in([ri],TwitterWrapper:getPeopleIAmFollowing()).’ . For our implementation the
translation and replacement of such predicates is done automatically and the creation
of logic programming-inspired policies is kept away from users as well and replaced by
a graphical policy editor. We extended Protune with wrappers that import knowl-
edge from arbitrary Sparql endpoints, RDF files, Twitter, Skype and Flickr (for more
details, see Section 5).

Exploiting social data for policy evaluation. Guiding and controlling the be-
haviour of social software requires conditions for policy decisions to be based on the
information which is available on the social software applications. Moreover as most
people use more than one Social Platform bearing their social data, the immense vol-
ume of data available, if combined, can lead to more fine-grained policies. This data
consists of personal data and Social Network information on the one hand and, on the
other hand, of user-generated content, like bookmarks, tags, reviews, photos, and blog-
posts (the so-called object-centered Social Network [4]). Furthermore, with the advent
of the Semantic Web, and the Linked Data movement14 in particular, this social data
can be linked to more general concepts revealing information like what is a blog post
about, in which country was a photo taken, etc.

In the policy evaluation process all this data, extracted from proprietary Social
Platforms or exposed on the Semantic Web, is not isolated anymore. Once the data
is retrieved, a policy reasoner can combine the retrieved data from multiple sources
of the Social and Semantic Web to create advanced, fine-grained and user-adjusted
policies. This is based on the observation that relationships among people are not only
extracted from explicitly mentioned links in the network but “citizens form relation-
ships and self-organize into communities around shared interests” [4] thus following the
principle of augmented Social Networks [10]. Looking back to Scenario (D), I may, for
example, define the concepts of “interest-sharers” similar to the concept “MySocial-
NetworkFriend” in Policy (4) in the following way: from the Skype profile of a caller,
one can retrieve her website. Based on SIOC data exposed on this website one can find
out if it is a blog I regularly comment on [11]. The second condition in Scenario (D)
can be determined by a Sparql query to DBLP that delivers all published papers of a

14 http://linkeddata.org

person. Based on this, it is possible to decide if a caller ever was a co-author of the
person to be called.

The challenge of identification. Bridging the walled garden of the Social Web for
policy reasoning requires a way of identifying the requester: for example, determining
if a caller on Skype is a friend in one’s FOAF profile or on Facebook needs information
about the caller’s identity on other platforms. Our current implementation solves this
problem on the one hand by negotiation: a requester is automatically asked to dis-
close her identity for the required platform. On the other hand, a caller’s website URL
given in her Skype profile is matched against website URLs given in the FOAF profile.
We leave further elaborations on this problem to future work and just name potential
solutions here. OpenID15 may be exploited to identify persons across Social Network
boundaries. FOAF+SSL [12] can be used to authenticate requesters. Matching peo-
ple by using further information about the requester is another option. For example,
Okkam16 may provide a unique id for the requester on the Semantic Web given known
attributes, Sindice17 may reveal other attributes about a person including other ac-
count ids. A query to the Google Social Graph API18 may as well deliver information
about a person’s identity on other platforms.

5 SPoX (a Skype Policy Extension)

Our approach of controlling the behaviour of Social Network applications by exploiting
social data seemed promising to be applied to the Social Network and communication
tool Skype. First, Skype’s privacy policies controlling who is allowed to do what are
very limited: a contact of a Skype user can belong to three classes only: the user’s
friend, a foreigner, or a person that was blocked by the user. For example, one cannot
set up filtering rules based on attributes of contacts such as to which category does
a contact belong (see Scenario (B)). Moreover, the way a user is allowed to approach
another cannot be filtered. For example, either both, chats and calls, are blocked or
none of both (see Scenario (A)). Second, Skype offers an API which eases the retrieval
of social data about other users on the one hand and, on the other hand, it allows to
easily influence Skype’s behaviour. Third, Skype offers a channel separated from chat
messages and call streams, that allows to transfer data to other peers. This is particular
helpful in order to exchange negotiation messages since no additional channel has to
be set up between two peers.

SPoX19[13] is a reactive policy engine that is influencing the behaviour of a Skype
client. SPoX builds on the (non-reactive) policy engine Protune and accesses Skype
via the open Skype Java API20. To develop SPoX we (a) implemented a reactive
extension of classical Semantic Web policies. We further extended Protune in order

15 http://openid.net/
16 www.okkam.org
17 sindice.com
18 code.google.com/apis/socialgraph/
19 www.L3S.de/∼kaerger/SPoX
20 developer.skype.com/wiki/Java API

to (b) access and reason on Semantic Web data (via Sparql endpoints or RDF files) and
social data (via the proprietary Social Platform APIs of Flickr, Skype, and Twitter)
and (c) to send negotiation messages over the Skype-inherent application channel21.
When launching SPoX the user is presented with a small control panel for activating
or de-activating SPoX and for opening the policy overview (see Figure 1). In the
overview, policies can be activated and de-activated by means of the check boxes on
the left, and they can be deleted or modified.

Gathering Social and Semantic Web data in SPoX. In order to incorporate
Semantic Web data into the policy decision process of SPoX we extended Protune
with a general wrapper that queries Sparql endpoints. In particular, SPoX allows
to incorporate co-authorship data from DBLP’s Semantic Web endpoint22. Another
wrapper is able to access arbitrary RDF files, in particular to gather information about
a user’s contacts on Flickr23. Further Social Web data is made available to SPoX by
a wrapper accessing FOAF profiles and by accessing the API of Twitter24.

Defining reactive Semantic Web policies in SPoX. SPoX comes along with an
easy-to-use reactive policy editor (see Fig. 2). It is inspired by the design of classical
e-mail filters. On the left-hand side, events, conditions, and actions can be selected
and added to the policy that is compiled on the right side. The underlined words can
be changed in a pop-up that appears by clicking on them. Conditions and actions
can be applied either to the initiator of the events (named “the caller” in Fig. 2) or
to an arbitrary Skype user. The conditions can be changed between conjunctive and
disjunctive connection (by clicking on “one of” resp. “all”) and conditions can be
negated (by clicking on “is not” resp. “is”). Not all conditions one may impose on a
person approaching via Skype can be expressed by such a user interface. Therefore,
SPoX allows to define as conditions arbitrary Protune concepts to be fulfilled . This
way, new concepts can be defined and exploited for decisions SPoX has to take (as
it is done in Policy (6)). SPoX allows to add such concept definitions to the user’s
Protune policy via the link “Edit my Protune policies” (see Fig. 1) that opens the
Protune policy editor. In a SPoX policy’s condition, one can refer to these concepts
by means of a special condition that allows to freely enter Protune predicates.

6 Related Work

In [1] semantic technology is used to control disturbance by calls on mobile phones.
There, among others, a user study is described revealing that social data influences
decisions about whether to accept calls or not. However, our work focuses more on
the retrieval of social data exposed on the Web (both, Semantic Web and proprietary
Social Web Platforms) and is applicable not only to person-to-person communication
but includes arbitrary messages. Furthermore, reactions to communication requests

21 This channel is typically used for game information, see skype.easybits.com/.
22 by means of the Sparql endpoint dblp.L3S.de/d2r/
23 via the RDF exporter apassant.net/home/2007/12/flickrdf
24 apiwiki.twitter.com

Fig. 1. The control panel and the policy editor with an overview of the current SPoX policies.

in [1] are—due to the scenario addressed—limited to access and deny; whereas our
policy language takes a more general approach that allows, for example, to turn calls
into chats instead of only denying the call. Besides that, the concept in [1] to disclose
the local context to a requester in order to help her decide if a call would disturb its
recipient25 is appealing and we plan to integrate it into our negotiation model (since
the disclosure of context may again be protected by a policy). Besides that, a body
of other work in the area of semantic reachability management for mobile phones has
been carried out [15, 14]. Similar to [1], these approaches share our intention but do
not describe how to include social data into privacy decisions, and do not allow to
react to messages but limit automation to access and deny communication requests.

In [16], Golbeck et al. present an email filter based on semantic Social Network
information (trust networks). In contrast to our approach, the authors do not allow to
directly access social data (like “who is my friend”) to decide about trustfulness but
describe how to combine available social data into a single reputation score used to
rank/filter emails.

Reactive Semantic Web policies have been mentioned already in our previous work
[17]. There, reactive policies are not defined in a single language but in a hybrid lan-
guage that requires two engines to be coupled in an interleaved fashion. In the present
work, we describe a single reactive policy language that does not have the drawback
of requiring an interleaved interpreter. However, other policy languages that allow for
events or actions are available but either they do not allow for policy negotiations or
they lack a well-defined semantics.

7 Conclusions, Open Issues and Outlook

In this paper we described an approach to remove the burden of message overload
in Social Network applications. We described a reactive policy language that—based
25 First described in [14].

Fig. 2. Setting up a new SPoX policy.

on social data on the Web—allows to describe what kind of messages are allowed to
reach the user. Using our approach we improve the user experience in Social Network
applications since (1) communication requests can be handled automatically based on
advanced policies (including strong and weak evidences [18], policy negotiations, etc.),
(2) messages generated from the Social Platform including news feeds, tweets, etc. can
be channeled based on declarative policy statements, and (3) important changes in
the Social Network are more visible since they can trigger reactions (e.g., notifications,
forward messages).

To further extend this work, we are planning to perform a user study to understand
how people actually use reactive policies and how easy it is to express them. We plan
to extend our implementation to cater for more Social Platforms and more sources
of Social Semantic Web data. Developing a more advanced policy language is on our
agenda as well. A new version may include composite events, combinations of actions,
and solutions for conflict detection among rules.

We are aware that open linked data is not valid for tough privacy decisions since
creating a fake FOAF profile is easy (see Scenario (F)). Therefore, we plan to study how
to improve the authentication part of our solution by FOAF+SSL [12] or OpenID26.
However, our approach currently takes the assumption that messages are sent by co-
operative entities.

References

1. Toninelli, A., Khushraj, D., Lassila, O., Montanari, R.: Towards socially aware mobile
phones. In: First Workshop on Social Data on the Web (SDoW). (2008)

2. Campbell, S.W., Russo, T.C.: The social construction of mobile telephony: an application
of the social influence model to perceptions and uses of mobile phones within personal
communication networks. Communication Monographs 7 (4) (2003)

26 http://openid.net

3. Grandison, T., Maximilien, E.M.: Towards privacy propagation in the social web. In:
Workshop on Web 2.0 Security and Privacy at the 2008 IEEE Symposium on Security
and Privacy. Oakland, California, USA, 18-21 May 2008

4. Breslin, J., Decker, S.: The future of social networks on the internet: The need for
semantics. IEEE Internet Computing 11(6) (2007) 86–90

5. Bonatti, P.A., Duma, C., Fuchs, N., Nejdl, W., Olmedilla, D., Peer, J., Shahmehri, N.:
Semantic web policies - a discussion of requirements and research issues. In: 3rd European
Semantic Web Conference (ESWC), Budva, Montenegro, Springer (June 2006)

6. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotiation with
metapolicies. In: 6th IEEE Policies for Distributed Systems and Networks (POLICY
2005), Stockholm, Sweden, IEEE Computer Society (June 2005) 14–23

7. Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K.E., Winslett, M.: No registration
needed: How to use declarative policies and negotiation to access sensitive resources on
the semantic web. In: 1st European Semantic Web Symposium (ESWS 2004), Heraklion,
Crete, Greece, Springer (May 2004) 342–356

8. Paton, N.W., ed.: Active Rules in Database Systems. Springer, New York (1999)
9. Bonatti, P.A., Olmedilla, D.: Policy language specification. Technical report, Working

Group I2, EU NoE REWERSE (February 2005) http://rewerse.net/deliverables/m12/i2-
d2.pdf.

10. Jordan, K., Hauser, J., Foster, S.: The augmented social network: Building identity and
trust into the next-generation internet. First Monday 8 (2003)

11. Bojrs, U., Breslin, J.G., Finn, A., Decker, S.: Using the semantic web for linking and
reusing data across web 2.0 communities. Web Semant. 6(1) (2008) 21–28

12. Story, H., Harbulot, B., Jacobi, I., Jones, M.: FOAF+SSL: RESTful Authentication for
the Social Web. In: Proceedings of the First Workshop on Trust and Privacy on the Social
and Semantic Web (SPOT2009)

13. Kärger, P., Kigel, E., Jaltar, V.Y.: Spox: combining reactive semantic web policies and
social semantic data to control the behaviour of skype. In: ISWC, Poster and Demo
Session, Washington, DC, USA. (October 2009)

14. Schmidt, A., Takaluoma, A., Mäntyjärvi, J.: Context-aware telephony over wap. Personal
Ubiquitous Comput. 4(4) (2000) 225–229

15. Stan, J., Egyed-Zsigmond, E., Maret, P., Daigremont, J.: Efficient Reachability Man-
agement With A Semantic User Profile Framework. In: Personalization in Mobile and
Pervasive Computing (at UMAP2009). (June 2009)

16. James, J.G., Hendler, J.: Reputation network analysis for email filtering. In: In Proc. of
the Conference on Email and Anti-Spam (CEAS), Mountain View. (2004)

17. Alferes, J.J., Amador, R., Kärger, P., Olmedilla, D.: Towards reactive semantic web
policies: Advanced agent control for the semantic web. In: ISWC 2008 (Poster and Demo
Session) Karlsruhe, Germany

18. Bonatti, P., Samarati, P.: Regulating service access and information release on the web.
In: CCS ’00: Proceedings of the 7th ACM conference on Computer and communications
security, New York, NY, USA, ACM (2000) 134–143

