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Abstract. Sensors and the real-time data they produce are novel sources
of information which need to be integrated into the Semantic Web at very
large scale. Most of the time such data is locked inside specific applica-
tions and only accessible within organizational boundaries. Publishing
and integrating sensor data across these islands is difficult and labor-
intensive. In this paper we present an approach and an infrastructure
which makes sensor data available following the linked open data prin-
ciple and enables the seamless integration of such data into mashups.
SensorMasher publishes sensor data as Web data sources which can then
easily be integrated with other (linked) data sources and sensor data.
Raw sensor readings and sensors can be semantically described and an-
notated by the user. These descriptions can then be exploited in mashups
and in linked open data scenarios and enable the discovery and inte-
gration of sensors and sensor data at large scale. The user-generated
mashups of sensor data and linked open data can in turn be published
as linked open data sources and be used by others.
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1 Introduction

If we define a sensor as a data source which produces a sequence of data items
over time – a data stream – then we already have a very large number of sensors
deployed all over the planet. Following this unifying definition beyond the “clas-
sical” definition of sensors, a very large number of sensors already exist and have
been deployed: Each mobile phone already hosts a number of sensors, such as
GPS, camera, Bluetooth, WLAN, accelerometer, etc., standard computers and
CPUs carry a multitude of sensing devices which are already used for remote
administration at large scales, large deployments of sensors in the environmental
domain, for monitoring traffic, for logistics, supply chain management, etc. exist
already and this is not the end of the development.

Gartner predicts that “By 2015, wirelessly networked sensors in everything
we own will form a new Web. But it will only be of value if the ‘terabyte torrent’
of data it generates can be collected, analyzed and interpreted.”1 Making sensor-
generated information usable as a new and key source of knowledge will require
its integration into the existing information space of the Web.

1
Mark Raskino, Jackie Fenn, and Alexander Linden. Extracting Value From
the Massively Connected World of 2015. Gartner Research, 1 April 2005.
http://www.gartner.com/resources/125900/125949/extracting valu.pdf
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Besides the problem of coping with the vast amounts of data which will be
produced, most of these data sources are not easily accessible to enable integra-
tion with other data. One of main reasons for this may be the fact that research
in the sensor network area has focused on routing, data aggregation and energy
consumption inside a single sensor network while the integration of multiple sen-
sor networks has only been studied to a limited extent. On top of that, as the
price of commodity sensors is rapidly decreasing we can soon expect large num-
bers of autonomous sensor networks being deployed. Hence, there is the need
for platforms to publish and share sensor data in an easy way and to reduce the
cost and complexity of sensor data access and integration.

Several attempts has been made to remedy the problems of collecting and
publishing sensor data online, for example, SensorMap2, EarthScope3, and Earth-
cam4, etc. However, these data sources are difficult to integrate and to make them
accessible to other applications. Moreover, sensor discovery, which is vital in the
large scales, is impossible with most providers or rarely supported. Additionally,
to the best of our knowledge, no research is trying to target support for the casual
user who does not have full programming skills while still wants to have access to
sensor information and integrate it into Web applications. This gap may prohibit
very creative and useful applications of sensor data by non-technical users.

Sensed data is often archived or streamed as raw data, but rarely associated
with enough metadata describing its meaning. Meaning of sensor data includes
the feature of interest, the specification of measuring devices, accuracy, measur-
ing condition, scenario of measurements, location, etc. Such metadata is essential
when the user is confronted with large numbers of sensors and gigabytes of sen-
sor data. Especially, when the user does not have clear ideas about what he/she
is looking for, he/she can start a quite general search of relevant concepts and
narrow it down based on semantic descriptions and their relations. For example,
a city planner may want to assess and monitor quality of life in certain area. To
do so, he/she can start to navigate from his/her own domain of knowledge,then
finds out that quality of life depends on noise, sunlight, humidity, air pollution,
traffic condition, etc. Then he can filter out which sensor sources can provide
such data in his area of interest.

To enable easy access to sensor data to non-technical users, we propose our
SensorMashup platform as a step towards the vision of “The Web of Thing”. Our
platform will enable the publishing of sensors and the associated data sources
as Web citizens under URIs. These published entities, called Sensor Mashups,
will be created and then linked to ontological concepts, other (virtual) sensors
and other Web citizens under URIs through a visual composer. This phase will
create useful linked data for sensor discovery. Hence, the visual composer is able
to provide an intuitive GUI which allows users to navigate and explore sensor
data sources by following semantic links and using faceted-browsing techniques.
After having found the relevant sensor data sources, the user is able to combine

2
SensorMap : http://atom.research.microsoft.com/sensewebv3/sensormap/

3
EarthScope - An Earth Science Program : http://www.earthscope.org/

4
EarthCam - Webcam Network : http://www.earthcam.com/
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them visually in a workflow editor and then connect them to data processing op-
erators to create a new Sensor Mashup. Sensor data published from our platform
can be accessed through SPARQL endpoints and RESTful web services under
JSON, XML, RDF formats which can be easily used by various applications.
Triple-based query support enables semantic-based traversal over sensor data,
thus makes the data filtering and correlating more sophisticated than those of
previous approaches. Triple-based query support is only used to enable access via
standard mechanisms while internally we use compressed data representations
for efficiency reasons.

2 Motivating scenarios

A large number of use case scenarios have been proposed already but to the best
of our knowledge none takes into account linked open data as a principle for the
seamless integration of physical and virtual data. For our motivating scenario
we use the notion of “integrated presence management”. The goal of integrated
presence management is to combine sources of virtual presence, for example,
calendar information, online status in Skype and chats, in IP telephone systems,
collaborative environments, etc., with information about physical presence, for
instance, location determined via GPS, WLAN, Bluetooth, motion detection
sensors, RFID, noise sensors, etc., to build up an integrated view of an entity’s
presence and availability. This information can then be used in simple yet tech-
nically quite sophisticated scenarios. For example, if information from the user’
calendar is combined with physical location, then appointments can be automat-
ically changed if the system somehow can use users’ current physical locations
to infer that all participants are not able to get to meeting location in time,
or, despite being seen available on Skype, on the phone, and in a chat client,
a user may have an ongoing meeting which can easily be determined via audio
sensors and/or the physical proximity of RFID tags in the user’s office. In more
sophisticated scenarios, someone may leave a location-based notification for a
user who is not in his office and which will be delivered as soon as the addressee
gets close to this location again, e.g., his office. Besides these user-centric sce-
narios, a plethora of scenarios also exists for the management of things, e.g.,
for a meeting not only the participants need to be there but also resources like
projectors, etc. which are movable and have a usage context.

It is quite simple and straight-forward to come up with further more complex
scenarios based on these basic scenarios, for example, if also profiles, policies, and
privacy are taken into account. However, the underlying requirement in all these
scenarios is the need for flexible, transparent integration of data from diverse
sources and sensors. It can be accomplished very efficiently with a linked data
approach for sensor data sources.

3 Linking sensor data to the Web

In order to link real world data captured by sensors to the Web, it has to become
a form of Web resource. Sensors and their data elements can become Web re-
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sources by publishing their data on the Web using linked data techniques5. When
adopting such an approach, sensors and their data are assigned a URI which en-
ables the creation of links to other Web entities. Using a similar method to
Stream Feeds [10], each sensor has a URL pattern for streaming real-time data
as well as historical data. This pattern also includes semantic descriptions of the
sensor and sensor data model as described in the following.

As sensors and their data elements have URI identifiers, we are able to link
them into a virtual RDF graph as shown in Figure 1. The graph is called a
virtual graph, because the whole graph is not materialized and stored in a triple
storage. It is constituted by interlinked subgraphs controlled by sensor mashups.
A mashup’s metadata stored in the metadata repository defines how the raw
sensor data in a data stream can be linked to domain knowledge and external
linked data. This is driven by a set of ontologies which are used to capture facts
and the data model of the sensor information system. This linked metadata will
guide the finding of triple patterns needed from the virtual RDF graph of sensor
data.

Fig. 1. Linking raw data stream to virtual RDF graph

Sensor data from multiple sources can be fused to create derived sensor data
sources. We are later able to use these fused sensor data sources in the same
way as the original sources. The process of composing a new sensor data source
from existing ones is facilitated by the sensor mashup composer of SensorMasher
which enables the user to rapidly create new sensor data sources in a visual way.
The composing process generates the mashup’s configuration used to controls the
data flows from sensors to data streams and from data streams to data processing
operators. A mashup’s configuration is also stored in the metadata repository.
With the annotated sensor data streams, the composing operation can exploit
existing approaches proposed, such as [7] and [21]. These approaches employ
reasoning to enable the provisioning of interfaces for automatically composing a
sensor data source meeting a user’s goals.

5
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
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The most important operation when integrating data is exploring existing
data sources to find out which ones are of interest. The triple-based query pro-
cessor will facilitate the semantic-based sensor data exploration. A faceted brows-
ing functionality helps the user to filter sensor data based on relevant facts. For
example, a user can filter by sensor type as classified in the sensor taxonomy,
or by sensor location by choosing an area in a map, or by sensor specification
(sensor type, physical context, calibration parameters, precision, accuracy), etc.
The user can navigate from a data set to other data sets by following semantic
links. Under the hood, the exploration and navigation actions are translated into
complex queries (spatial, temporal and thematic queries) to the query processor
as described in [17].

Along with a URL pattern for direct access to each sensor’s data elements,
SensorMasher also provides a SPARQL endpoint to query all types of sensor
data. To identify a sensor, a query over the semantic descriptions of sensors can
be posed to this SPARQL endpoint, for instance, “find the nearest webcam from
a tourist venue.” Queries over sensor data are also supported, for example, “find
the latest air temperature reading if the average humidity in last 3 hours was
higher than 80%.”

Sensor and sensor data are also accessible via Web services which conform
to Sensor Web Enablement (SWE) standards [29]. However, to support interop-
erability among semantic information system, we use RDFa to embed semantic
descriptions in WSDL as well as the output data. The descriptions of these web
services are dynamically generated from semantic descriptions of the sensors and
mashups.

The SPARQL endpoint, web services and streaming protocol allow a Sensor-
Masher node to integrate sensor data from a remote one transparently. Hence,
a set of autonomous SensorMasher nodes will create a federated sensor informa-
tion system from which sensor data can travel and be queried across the borders
of single systems.

4 System design

4.1 Architectural view

Figure 2 shows the architecture of the SensorMasher platform. The bottom of
the diagram shows the wrappers for collecting sensor data. The sensor data is
streamed to the Data Stream Management System (DSMS) and fusion operators
in the next layer. The data flows of the streams are coordinated and managed
by the Query Processor, the Sensor&Mashup Manager and the User Manager
in the Mediator layer. The Frontend components such as Explorer, Composer
and Web interfaces on the top use interfaces provided by the Mediator layer to
access the sensor data streams. The detailed descriptions of these components
are given below.

Wrappers provide interfaces for receiving sensor stream data from physical
sensors via interfaces such as USB, Bluetooth, and serial ports. The wrappers
are responsible for interfacing with these physical sensors whereby the Sensor-
Masher node plays the role as a gateway between a sensor network and the Web
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Fig. 2. Architectural view

and vice versa. Sensor data can be streamed from IP-based connections in both
push-based and pull-based fashions. Using the push-based paradigm, the wrap-
pers listen and wait for the sensor data being actively streamed from a peer.
Alternatively, in the pull-based paradigm, the wrappers periodically pull the
data from a remote peer, for instance, by making an HTTP request. As soon as
a new reading arrives, the wrapper pushes the data into the appropriate stream
in the DSMS component.

Sensor data can arrive in the ways which cannot be directly handled in persis-
tent storage systems such as relational databases. Data streams differ from con-
ventional stored relational models in several aspects. The data streams not only
have data elements arriving continuously but also potentially have unbounded
size. Additionally, the order of data elements arriving within a data stream or
across multiple data streams is unpredictable and not necessarily arranged. Fur-
thermore, as soon as an element in a data stream has been processed it can
be discarded or archived, thus it cannot be no longer easily retrieved, unless it
is explicitly stored in memory, which typically is small relative to the size of
the data streams. To deal with these characteristics, data stream management
systems (DSMS) are designed for monitoring, combining and analyzing and cor-
relating streams of data [4] rather than following the design of traditional data
management systems. Designing and implementing such a data stream manage-
ment system, see [2, 8, 16] for examples, is beyond the scope of this paper. In the
SensorMasher platform, we use the DSMS as a blackbox in a subsystem which
provides interfaces to create sensor data streams as well as provides APIs sup-
porting continuous queries over data streams. As soon as a stream is created, it

Proc. Semantic Sensor Networks 2009,  page 6



Linked open data in sensor data mashups 7

can listen to incoming data from the underlying wrappers and/or other streams.
When new data arrives to the stream, the DSMS routes the data to further
listeners such as fusion operators or listening data streams.

The fusion operators implement typical sensor data processing operations
including data filtering, data alignment and association, correlation and classifi-
cation. They employ algorithms and techniques used in multisensor data fusion
process models [12] to allow users to incrementally build data processing work-
flows that may generate real-world observations. A special type of fusion operator
provides the extraction of semantics from sensor readings produced by wrappers.
For raw sensor data fed from physical wrappers, a template for annotating se-
mantics to sensor readings will be generated using the semantic description of the
physical sensor. For example, MICAz is a well-known wireless measurement sys-
tem which provides connectors to plug in sensors measuring light, temperature,
barometric pressure, etc. With foreseen meanings from output data structure,
a template to enrich semantics of the bit stream sending from this system can
be generated. For sensor data provided in XML format, the XSLT transforma-
tion operators similar to the ones introduced in the Semantic Web Pipes [13]
architecture can be used. Semantic descriptions embedded in XML-based sensor
data using RDFa or microformats can be easily extracted in the same manner
as done in Semantic Web Pipes.

The Sensor & Mashup manager component controls the data flow from sen-
sors to the DSMS and from the DSMS to the fusion operators and vice versa.
The Sensor & Mashup manager also provides interfaces to the metadata reposi-
tory such as editing and querying metadata under a triple-based model. It also
enables the deployment of sensor mashups by initializing associated wrappers to
feed data from sensors. It is also responsible for providing access control via the
User Manager component. The User Manager manages profiles of the mashups’
authors as well as the mashups’ sharing policy.

The Query Processor component supports triple-based queries over sensor
data from both the DSMS component and the metadata repository. To process
such queries, it has to follow the mapping rules that are generated from the
metadata repository. These rules guide it in delegating continuous queries to the
DSMS component as well as triple-based queries to the metadata repository.

The Explorer component provides a GUI enabling the user to explore sensor
data on a map or along semantic links. This Explorer also includes a facet-based
filter over triple-based sensor data. This semantic exploration is empowered by
APIs, the Query Processor and Sensor & Mashup Manager components and Web
services provided from remote SensorMasher nodes. The Web interfaces provided
include a Web services interface, a SPARQL endpoint and HTTP requests from
URL-based Sensor Web sources. The Mashup composer is used for visually com-
posing sensor mashups by creating a workflow connecting sensor data sources
with fusion operators. In composing processes, the user has to employ the Ex-
plorer component to search for the input data sources required.

The SensorMasher platform can be deployed in a federated fashion whereby
autonomous nodes are able to query each other via Web interfaces. The stream-
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ing APIs provided by wrappers allow a local node to stream data to a remote
one and vice versa.

4.2 Ontology-driven component design

Using the Sensor model of the SensorML6, we abstract the sensor model, sensor
data model and data processing components in Figure 3, and represent this
model in OWL-DL. In this data model, the sensor mashup is the key abstraction
of the SensorMasher. We define a sensor mashup as an observation (Observation
class). An observation is conducted to observe an feature of interest of a real
world object. For example, “finding vacant parking spots in an underground
parking lot” is an observation which targets the real world object “underground
parking lot” and is interested in the feature “vacant parking spots”. A feature of
interest may have several properties which can be measured by sensing devices,
called ObservableProperty. In the previous example, the observable property
is “car in parking lot or not”. The ObservableProperty class is the basic class
that describes the meaning of sensor outputs. For example, Temperature and
Humidity are sub-concepts of ObservableProperty, that represent the meanings
of temperature and humidity readings.

Fig. 3. Ontology-driven system design diagram

The observation is facilitated by a sensing process represented as Abstract-
Process. The subclasses of AbstractProcess describe 4 types of sensing processes.
The first one, SensorComponent, is for representing an atomic sensor to detect
a single sensing signal. The second one is for presenting a sensing system (Sen-
sorSystem) containing a set of atomic sensors. For instance, a weather station7

6
Sensor Model Language :http://www.opengeospatial.org/standards/sensorml

7
http://en.wikipedia.org/wiki/Weather station
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is a sensing system which has autonomic sensors such as thermometer, barom-
eter, anemometer, etc. The third one (ProcessModel) is for representing fusion
operators as software processes that are used to process sensor data. The last
one is the composition of sensing processes, called ProcessChain. This process
also contains a list of links to describe the flow of sensor data streams from con-
stituted processes. The sensor mashup often uses instances of ProcessChain to
define how the data from sensors is to be connected to the fusion operators along
the predefined workflow to generate a new output data stream. This instance
plays the role of the mashup’s configuration.

As mentioned earlier, we use the DSMS for managing sensor data streams
and do not expose all sensor readings as materialized triples. The triple-based
query over sensor data linked into the virtual RDF graph mentioned in Section 3
is parsed to create a query plan consisting of a set of subqueries. There exist
two types of subqueries: continuous queries over stream data and triple-based
queries over sensor metadata. The query planner will delegate the corresponding
subqueries to the DSMS and the triple-based query processors of the metadata
repository. The query aggregator later composes the individual partial query
results into the final result.

The user is able to explore all facets of sensor data by traversing virtual
RDF graphs of the federated SensorMasher nodes. After identifying the relevant
streams, the user can connect them to fusion operators to generate the final
sensor mashup with the expected output streams. The mashup will be deployed
by creating data streams associated with workflow fusion operators into the
DSMS component and storing metadata as triples in the metadata repository.

As the sensor mashup’s configuration is represented as triples, the sensor
mashup composing component is therefore an RDF graph composer. The final
component required is a tool for dragging RDF nodes to a canvas and connecting
them to create triples. As such, the user is able to drag sensors, mashups and
fusion operators (identified by URIs) into the composer’s canvas, then connect
them into a workflow, and finally, save the workflow as a graph. Using this
methodology, adding facts to sensors and sensor data is simply a process of
creating triples.

5 Implementation

Based on the above design, we have implemented SensorMasher. The system
is available at sensormasher.deri.org. Similar to some related DSMSs such
as TelegraphCQ [8] and STREAM [16], in this prototype, we extended SQL to
support declarative continuous queries. These declarative queries will be trans-
lated into physical query plans over the underlying relational data storage. Be-
cause there are only some minor modifications compared to SQL, querying data
streams with this DSMS is basically similar to querying relations. Hence, follow-
ing the D2RQ [5] approach we extended Jena ARQ [26] to build the SPARQL
query processor on top of the DSMS and the metadata repository. The map-
ping rules, which are similar to the D2RQ mapping language, are automatically
generated from the configurations of the mashups.

Proc. Semantic Sensor Networks 2009,  page 9
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We use two main ontologies to control the SensorMasher: the core ontol-
ogy and the extended ontology. The core ontology represents core concepts
and properties which are the same for every SensorMasher deployment. The
extended ontology contains subclasses of the core ontology which can be cus-
tomized based on specific requirements. In our prototype, the extended ontology
was built by using concepts and properties from the Physical Property taxon-
omy in the SWEET Property ontology8 and the SANY Sensor Taxonomy9. To
support implicit properties inferred from ontological relationships such as sub-
ClassOf, subPropertyOf, inverseOf, etc. in answering SPARQL queries, we use
the Jena in-memory reasoner to reason about these two ontologies at class level
to generate query mapping rules. For example, if we query for sensors that can
measure meteorological measurement, the result will contain sensors that can
measure temperature, humidity, wind speed, etc.

Fig. 4. Mashup Composer

Fig. 5. Exploring sensor data sources

The Mashup Composer and Ex-
plorer are implemented as Ajax-based
web applications. Screen shots are
shown in Figure 4 and Figure 5. The
user is able to find and explore sensor
data sources by drawing a polygon on
the map to locate the area of inter-
est. The user is also able to drill down
into the result set by using facet fil-
ters on types and properties. Further-
more, from an result item, it is pos-
sible to follow its relationships to dis-
cover other items which which have

8
http://sweet.jpl.nasa.gov/1.1/property.owl

9
http://sany-ip.eu/publications/1954
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semantic links to the previous one. If the user has identified a sensor data source
of interest he can drag it into Mashup Composer to later wire it into his mashup.

Fig. 6. Examples of sensor description and output data in RDF

After a mashup has been deployed in a SensorMasher node, it has an as-
sociated URL pattern to request different types and formats of data. For in-
stance, URL http://sensormasher.deri.org/resource/79 contains semantic de-
scription of a weather observation using the weather station mentioned in an
example of Section 4.2 . This weather station uses a thermometer to measure
temperate and an anemometer to measure wind speed. The left hand side of
Figure 6 shows some RDF snippets of this weather station. In this descrip-
tion, along with the specification of the weather station, we see that the URL
http://sensormasher.deri.org/data/185 is URL its latest reading. The right hand
side of Figure 6 shows the RDF output of this URL with some links to the afore-
mentioned sensor description. Via this URL, the corresponding sensor reading
also can be retrieved in other formats such as RDF, JSON, XML, RSS, CSV, etc.
by using HTTP negotiation, so that it can be consumed by various third-party
applications such as mobile applications, scripting web applications, etc.

Figure 7 shows a sample query over real-time sensor data. This query requests
the “the temperature and location where the wind speed has reached 30 miles per
hour around the Cliff of Moher”. We also extended the 52oNorth[23] source code
to support the OpenGIS Sensor Observation Web Service10 with RDF triples
embedded in WSDL and output data using RDFa.
10

http://www.opengeospatial.org/standards/sos
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Fig. 7. An example of querying sensor data using SPARQL

6 Related Work

Traditionally, sensor data fusion applications require prior knowledge about the
sensor systems as well as knowledge about the environment for which the sys-
tem is built. However, sensor data sources as well as fusion components can be
used in unpredictable ways beyond the original designer’s intent. To support
flexible reuse to create unpredictably creative results, specific interoperability
and integration issues among sensor information system have to be overcome.
Preliminary efforts to cope with these issues are the definition of standards such
as standards for transducers (IEEE 1451), the Radiation Detection Standards
(ANSI N42), the OGC Sensor Web Enablement [29], Extended Environments
Markup Language (EEML) [25], etc. Most of these standards are over-simplified
or too general or too domain-specific, so, there exist only a few systems con-
forming to them. The standard with the broadest impact among them seems to
be the Sensor Web Enablement standard which has been implemented by the
52oNorth [23] project, the NASA/JPL Sensor Webs Project [27], the European
Space Agency [24], etc.

Some efforts to improve accessibility to sensors are on the way as. Usually
the proposed approaches try to provide simple interfaces to publish and retrieve
sensor data via centralized portals. SensorBase11 enables the publication of sen-
sor data via HTTP POST and provides web services to query sensor data from
its relational database. In a similar fashion, Pachube 12 provides a RESTful in-
terface to stream real-time sensor data. Historical data and real-time data can
be retrieved via feeds in XML (EEML) or JSON formats. Along with web ser-
vices to publish and request historical and real-time sensor data, SensorMap[15]
also provides an explorer for sensor data on maps. Another approach employing
the HTTP protocol to make sensor data accessible is proposed by Dickerson et

11
http://sensorbase.org/

12
http://pachube.com/

Proc. Semantic Sensor Networks 2009,  page 12



Linked open data in sensor data mashups 13

al. [10]. It combines the advantages of the Web feed and multimedia streaming
paradigms. Each sensor stream has a URL with associated parameters to query
and filter historical and real-time data. The Global Sensor Networks (GSN) [1]
provides a zero-programming, declarative middleware to publish sensor data
directly from physical sensors connected to a PC via interfaces like USB, Blue-
tooth, UDP, TCP/IP, etc. or from virtual sensors. Sensor data is accessible
through HTTP with querying parameters. GSN provides a wide range of sup-
ported sensors and a nice development environment with Web interfaces and
visualization functionalities.

Typically, the user is interested not only in sensor readings but also in facts
and statements about them. Sensor data streams have some common properties
such as deployment, design, sensor type, sensor capabilities, targeted phenom-
ena, etc. On top of that, without the associated meaning, the user cannot decide
whether a sensor reading is suitable for an observation. For example, ambient
temperature readings would be inappropriate for a weather analysis which looks
for air temperature readings. This is a general shortcoming of the above ap-
proaches. From a user’s perspective, such facts and statements about data are
significant in exploring and collecting information sources to meet the user’s
demands of monitoring and observing the proper real-world phenomena. In a
real-life setting, the most important concern are the observed object and the
observable properties of interest. Only then, a user would be concerned about
which sensors are able to provide the required quality and quantity data. Hence,
metadata about sensors and sensor data which supports this data using fashion
is essential.

In response to this demand, the Open Geospatial Consortium (OGC) pro-
posed sensor and observation models based on XSD schema to specify interoper-
ability interfaces and metadata encodings that enable the real-time integration
of heterogeneous sensor webs into an information infrastructure. However, there
is a gap between the syntactic XSD of OCG’s Sensor Web Enablement (SWE)
and the RDF/OWL-based metadata which is commonly used for representing
domain knowledge. To bridge this gap, Shet et al. [19] proposed to use RDFa to
annotate ontological concepts and properties to SWE by using XLink [30]. To
encode sensor data in this form, the underlying sensor information system should
have such semantic data ready. This system has to capture sufficient semantic
data along with raw sensor readings and must be able to manage and process
sensor stream data as well as support semantic functionalities on top. While the
concepts have been proposed, no such system is in existence yet.

Some efforts make use of semantic descriptions of sensor data streams to
automatically compose sensor applications and services. In 2006, Whitehouse et
al. proposed Semantic Streams [21] which allows the user to pose queries based
on the semantics of sensor data against the system. The approach describes
sensor data stream semantics by using Prolog-based logic rules. Due to issues
of scalability and decidability of that model, Booillet et al. [7] proposed to use
OWL instead to represent sensor data stream as well as processing elements for
composing applications from input data streams. However, these approaches also
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assume that semantic descriptions of sensor data are already available and have
sufficient quality for their systems.

Along these efforts of coping with sensor data interoperability and integra-
tion issues, we propose SensorMasher as the first platform for publishing sensor
data as linked data. Its mashup engine enables the user to visually explore and
combine sensor data resources in a homogeneous triple-based data model. As
sensor data is published as linked data sources, every single data element can
not only can be easily accessed but also can it be annotated with meaningful
linked data. Using linked metadata as semantic description of sensor data lever-
ages the dynamic discovery, querying, exploration, navigation and combination
of sensor data sources.

7 Discussion
There are several challenging data management issues in Sensor Web environ-
ments such as data ingestion, temporal and spatial data management, data ex-
ploration, analysis and visualization, statistical modeling, data uncertainty man-
agement, data interoperability and distributed, large-scale data processing [3].
In the following we will discuss how SensorMasher tries to address some of them
in the context of the triple-based data model.

The current version of SensorMasher uses SPARQL to query sensor data
streams. However, SPARQL is not expressive enough to address specific data
stream issues such as window slicing, sampling operators, join and correlation
operators over streams, etc. Additionally, aggregating functions such as COUNT,
MAX, MIN, AVERAGE, etc. which are vital in stream data processing, are
not natively supported in the current version of the SPARQL working draft
[18]. Hence, an extended version of SPARQL which addresses these issues and
supports continuous queries over a triple-based data model is essential. At the
time of this writing, there is only one paper published on extending the SPARQL
grammar to process data streams [6]. The problem of the approach proposed in
this paper, however, is the usage of RDF as the underlying data model which
defeats the efficiency of stream query processing. While externally in the context
of linking data this is desirable, internally more efficient formats should be used
as we do in SensorMasher. Further research is required in order to design an
efficient query language which supports triple-based queries over data streams.
As mentioned in Section 5, the first prototype of SensorMasher is only able to
support inferred subsumption results of SPARQL queries with small ontologies.
While supporting reasoning on SPARQL queries is a difficult issue in the context
of large amounts of instances and big ontologies, dealing with data instances
“arriving and leaving” in a stream at high rates is even more complicated to
handle.

Due to the lack of declarative query languages over triple-based data streams,
there exist no approaches to map this type of query to physical query plans. In
SensorMasher, we try to map SPARQL queries to query plans over the contin-
uous queries of the underlying data stream management system (DSMS). How-
ever, additional optimization of query plans is required. Since a SensorMasher
node is accessible as an autonomous SPARQL endpoint, federating SPARQL
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queries over distributed SensorMasher nodes is an inevitable need. DARQ [20]
and the Semantic Discovery System [28] are just a few proposals for distributed
SPARQL query processing whose suitability to stream queries requires further
research.

The scalability of a SensorMasher node heavily depends on the scalability of
the stream query processor on top of the DSMS used by the platform. Medusa [9],
and Borealis [2] are two examples of distributed DSMS designed to support large-
scale data processing. Practically, employing these distributed DSMS to solve the
scalability issues concerning the processing of millions of sensor data streams
has not been well investigated. In this context, building the query planner to
deploy and schedule query plans translated from triple-based queries over such
underlying distributed DSMS is a incredibly challenging problem.

As the sensor data processing and integration in SensorMasher platforms is
carried out in an autonomous and distributed fashion, data provenance is an
issue which must be dealt with. Even though there have been various efforts in-
vestigating data provenance, inferring and computing origins of a derived sensor
data source after it has gone through many processing phases such as summa-
rization, aggregation, correlation, etc. are still open questions. Data provenance
is especially complicated when dealing with federated queries where sensor data
is transparently streamed from one autonomous node to another. By recording
as much relevant sensor metadata as possible we can use semantic links to sup-
port the tracing of a particular piece of information to its origins and deciding
how much to trust it.

The above discussion shows that this area requires significant research efforts
in various aspects. We believe that SensorMasher can be used as an experimental
platform to support practical experiments with the coming approaches and can
integrate the research results produced in a straight-forward way.

8 Conclusion
This paper is the first attempt to publish sensor data as linked data to enable dy-
namic discovery, integration, and querying of heterogeneous sensor data sources.
The ontology-driven data model and related system enable the user to easily
deploy, combine and annotate sensor data sources by using a visual composer
and explorer without requiring expertise in sensor programing and sensor data
processing. As a linked data citizen, SensorMasher enables linking real world
sensor data to The Linked Open Data dataset cloud13.
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