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Introduction 
 

The advent of the World Wide Web has led many corporations to web-enable their 

business applications and to the adoption of web service standards in middleware 

platforms. Marking a turning point in the evolution of the Web, the Semantic Web is 

expected to provide more benefits to software engineering. Over the past five years there 

have been a number of attempts to bring together languages and tools, such as the Unified 

Modelling Language (UML), originally developed for Software Engineering, with 

Semantic Web languages such as RDF and OWL. The Semantic Web Best Practice and 

Deployment Working Group (SWBPD) in W3C included a Software Engineering Task 

Force (SETF) to investigate potential benefits. A related international standardisation 

activity is OMG's Ontology Definition Metamodel (ODM), which was formally adopted 

in October 2006, and finalized in December 2008. Another interesting question is how to 

use ontology to improve guidance and traceability in software development. 

 

It has been argued that the advantages of Semantic Web Technologies in software 

engineering include reusability and extensibility of data models, improvements in data 

quality, and discovery and automated execution of workflows. According to SETF's note 

A Semantic Web Primer for Object-Oriented Software Developers, the Semantic Web 

can serve as a platform on which domain models can be created, shared and reused. 

 

However, are there other potential benefits in the use of Semantic Web concepts in the 

field of Software Engineering? Could the Web-based, semantically rich formality of 

OWL be combined with emerging model driven development tools such as the Eclipse 

Modelling Framework to provide some badly needed improvements in both the process 

and product of software development activities? What is it about the amalgamation of 

OWL, UML and MDA methodology that could make a difference? Certainly, there 

appear to be a number of strong arguments in favour of this approach but consensus on 

the best way forward, if there is indeed a way forward at all has not yet formed. This 

workshop seeks to build on prior events that have begun to explore and evaluate this 

important area.  
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Validating Process Refinement with Ontologies?

Yuan Ren1, Gerd Groener2, Jens Lemcke3, Tirdad Rahmani3, Andreas Friesen3,
Yuting Zhao1, Jeff Z. Pan1 and Steffen Staab2

1University of Aberdeen, 2University of Koblenz-Landau, 3SAP AG

Abstract. A crucial task in process management is the validation of
process refinements. A process refinement is a process description in a
more fine-grained representation. The refinement is with respect to either
an abstract model or a component’s principle behaviour model. We define
process refinement based on the execution set semantics. Predecessor and
successor relations of the activities are described in an ontology in which
the refinement can be validated by concept satisfiability checking.

1 Introduction

With the growing interest about applying semantic web technologies on business
process modelling, many frameworks and ontological models have been proposed
to facilitate a more unified semantic representation [5, 6].

In model-driven software development, process models are usually created
and refined on different levels of abstraction. A generic process describes the core
functionality of an application. A refinement is a transformation of a process
into a more specific process description which is developed for a more concrete
application and based on more detailed process behaviour knowledge. In this pro-
cedure, the refined process should refer to the intended behaviour of the abstract
process and satisfies behaviour constraints. To check and ensure the consistency
of refinement becomes a crucial issue in process management. Currently, such
consistency check is mainly done manually and few methods have been investi-
gated to help automation. Hence the validation is error-prone, time-consuming
and increases the costs during the development cycle.

In this paper, we use execution set semantics to describe two types of process
refinements and present an ontological approach to represent and check them.
We first apply topological transformations to reduce the refitment checking w.r.t.
execution set semantics into checking of predecessors and successors of process
elements. Then we encode process models into OWL DL ontologies. Finally we
show that the refinement checking on the process models can be accomplished by
concept ussatisfiability checking in the ontology. We implemented our approach
and conducted performance evaluation on a set of randomly generated process
models. Experiment results showed that, 80% of the refinement validation tasks

? This work has been supported by the European Project Marrying Ontologies and
Software Technologies (EU ICT 2008-216691).
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can be performed within 1s, which is significantly faster than manually consistency
checking and the correctness of the validation is guaranteed.

The rest of the paper is organised as follows: in Sec.2 we define the problem
of process refinement with its graphical syntax, semantics and mathematical
foundation. The representation and validation of processes with the corresponding
execution constraints is demonstrated in Sec.3. In Sec.4 we present the evaluations
and in Sec.5 we review related works and conclude the paper.

2 Preliminary

In this section, we introduce preliminary knowledge about process models, process
refinement w.r.t. execution set semantics and DL-based ontologies.

Syntax of Process Models A process model—or short: process—is a non-
simple directed graph P = 〈E, V〉 without multiple edges between two vertices.
As a graphical representation, we use the business process modelling notation
(BPMN: http://www.bpmn.org/) due to its wide industry adoption. However,
we consider a normal form of process models for the sake of this paper as opposed
to the full set of partly redundant constructs in BPMN.

In our definition, vertices (V) include activities, gateways (A, G ⊆ V), and
the specific vertices start and end event (v0, vend ∈ V). Fig. 1a shows a BPMN
diagram which consists of two activities between the start and end events.
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Fig. 1. Wrong process refinement

A gateway is either opening or closing (GO, GC ⊆ G), and either exclusive
or parallel (G , G ⊆ G). The process models (c) and (d) in Fig. 1 contain
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exclusive and parallel gateways, respectively. We call a process normal if it does
not contain parallel gateways (G = ∅)—as, for example, process model (c).

The edge set (E) is a binary relation on V. We define the predecessor and the
successor functions of each v1 ∈ V as follows: pre(v1) := {v2 ∈ V | (v2, v1) ∈ E},
suc(v1) := {v3 ∈ V | (v1, v3) ∈ E}. The start (end) event has no predecessor
(successor): |pre(v0)| = |suc(vend)| = 0 and exactly one successor (predecessor):
|suc(v0)| = |pre(vend)| = 1. Each open gateway o ∈ GO (close gateway c ∈ GC)
has exactly one predecessor (successor): |pre(o)| = |suc(c)| = 1. Each activity
a ∈ A has exactly one predecessor and successor: |pre(a)| = |suc(a)| = 1. We can
then construct gateway-free predecessor and successor sets as follows:

PS(v1) := {v2 ∈ A | v2 ∈ pre(v1) or ∃u ∈ G s.t. u ∈ pre(v1) and v2 ∈ PS(u)}
SS(v1) := {v3 ∈ A | v3 ∈ suc(v1) or ∃u ∈ G s.t. u ∈ suc(v1) and v3 ∈ SS(u)}

These two definitions make gateways “transparent” to ordering relations. For
example in Fig.1b, SS(a1) = {b1, a2}, in Fig.1c, PS(C) = {C, D}.

Execution Set Semantics of Process Models We define the semantics of a
process model using the execution set semantics [18]. An execution is a proper
sequence of activities (ai ∈ A): [a1a2 . . . an]. A proper sequence is obtained by
simulating token flow through a process model. A token is associated to exactly
one vertex or edge. Initially, there is exactly one token, associated to the start
event. Tokens can be created and consumed following the rules below. Whenever
a token is created in an activity, the activity is appended to the sequence. Exactly
one of the following actions is performed at a time:

– For creating a token in an activity or in the end event v1 ∈ A∪{vend}, exactly
one token must be consumed from the incoming edge (v2, v1) ∈ E.

– Exactly one token must be removed from an activity or from the start event
v1 ∈ A ∪ {v0} in order to create one token in the leaving edge (v1, v2) ∈ E.

– For creating a token in a parallel close gateway g ∈ (G ∩GC), exactly one
token must be consumed from every incoming edge (v, g) ∈ E.

– For creating a token in an exclusive close gateway g ∈ (G ∩GC), exactly
one token must be consumed from exactly one incoming edge (v, g) ∈ E.

– Exactly one token must be removed from a close gateway g ∈ GC in order to
create one token in the leaving edge (g, v) ∈ E.

– For creating a token in an open gateway g ∈ GO, exactly one token must be
consumed from the incoming edge (v, g) ∈ E.

– Exactly one token must be removed from a parallel open gateway g ∈
(G ∩GO) in order to create one token in each leaving edge (g, v) ∈ E.

– Exactly one token must be removed from an exclusive open gateway g ∈
(G ∩GO) in order to create one token in exactly one leaving edge (g, v) ∈ E.

If none of the above actions can be performed, simulation has ended. The result
is a proper sequence of activities—an execution. It is to be noted that each
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execution is finite. However, there may be an infinite number of executions for a
process model. The execution set of a process model P , denoted by ESP , is the
(possibly infinite) set of all proper sequences of the process model.

For example, ES1a for process (a) in Fig. 1 is {[AB]}: first A, then B (for
brevity, we refer to an activity by its short name, which appears in the diagrams
in parenthesis). Process (b) contains parallel gateways ( ) to express that some
activities can be performed in any order: ES1b = {[a1a2b1b2b3], [a1b1a2b2b3],
[a1b1b2a2b3]}. Exclusive gateways ( ) are used in process (c) both to choose
from the two activities and to form a loop: ES1c = {[C], [D], [CC], [CD], [DC],
[DD], . . .}. Process (d) shows that gateways can also occur in a non-block-wise
manner: ES1d = {[EFGH], [EFHG], [FHEG], [FEGH], [FEHG]}.

Correct Process Refinement For refinement validation we have to distin-
guish between horizontal and vertical refinement. A horizontal refinement is a
transformation from an abstract to a more specific model which contains the
decomposition of activities. A vertical refinement is a transformation from a
principle behaviour model of a component to a concrete process model for an
application. The validation have to account for both refinements.

Fig. 1 shows a refinement horizontally from abstract to specific while vertically
complying with the components’ principle behaviour. In our example scenario,
Fig. 1a is drawn by a line of business manager to sketch a new hiring process.
Fig. 1b is drawn by a process architect who incrementally implements the sketched
process. Fig. 1c and d are the principle behaviour models of different components.

To facilitate horizontal validation, the process architect has to declare which
activities of Fig. 1b implement which activity of Fig. 1a: hori(a1) = hori(a2) = A,
hori(b1) = hori(b2) = hori(b3) = B. For vertical validation, the process architect
needs to link activities of Fig. 1b to service endpoints given in Fig. 1c and d:
vert(a1) = E, vert(a2) = F, vert(b1) = G, vert(b2) = H, vert(b3) = D.

Correct horizontal refinement. We say that a process Q is a correct horizontal
refinement of a process P if ESQ ⊆ ESP after the following transformations.

1. Renaming. Replace all activities in each execution of ESQ by their origina-
tors (function hori()). Renaming the execution set {[a1a2b1b2b3], [a1b1a2b2b3],
[a1b1b2a2b3]} of Fig. 1b yields {[AABBB], [ABABB], [ABBAB]}.

2. Decomposition. Replace all sequences of equal activities by a single activity
in each execution of ESQ. For Fig. 1b this yields {[AB], [ABAB]}.

As {[AB]} 6⊇ {[AB], [ABAB]}, Fig. 1b is a wrong horizontal refinement of Fig. 1a.
The cause is the potentially inverted order of AB by b1a2 or b2a2 in Fig. 1b.

Correct vertical refinement. We say that a process Q is a correct vertical refine-
ment of a process P if ESQ ⊆ ESP after the following transformations.

1. Renaming. Replace all activities in each execution of ESQ by their grounds
(function vert()). Renaming the execution set {[a1a2b1b2b3], [a1b1a2b2b3],
[a1b1b2a2b3]} of Fig. 1b yields {[EFGHD], [EGFHD], [EGHFD]}.
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2. Reduction. Remove all activities in each execution of ESQ that do not
appear in P . For our example, reduction with respect to Fig. 1c yields {[D]}.
Reduction with respect to Fig. 1d yields {[EFGH], [EGFH], [EGHF]}.

Fig. 1b is a correct vertical refinement of Fig. 1c because {[C], [D], [CC], [CD], [DC],
[DD], . . .} ⊇ {[D]} and a wrong vertical refinement of Fig. 1d because {[EFGH],
[EFHG], [FHEG], [FEGH], [FEHG]} 6⊇ {[EFGH], [EGFH], [EGHF]}. The cause for the
wrong refinement is the potentially inverted execution of FG by b1a2 in Fig. 1b.

As enumerating the execution sets for validation is infeasible, our solution
works with descriptions in ontology instead of using the execution sets themselves.

Description Logics and Ontologies DL-based ontologies have been widely
applied as knowledge formalism for the semantic web. An ontology usually consists
of a terminology box (TBox) and an assertion box (ABox). In TBox the domain
is described by concepts and roles with DL constructs. In this paper, we use DL
ALC. Its concepts are inductively defined by following constructs:

>,⊥, A,¬C, C uD,C tD,∃r.C, ∀r.D

where > is the super concept of all concepts; ⊥ means nothing; A is an atomic
concept; C and D are general concepts and r is an atomic role. In DL, the
subsumption between two concepts C and D is depicted as C v D. If two concepts
mutually subsume each other, they are equivalent, depicted by C ≡ D. When a
concept can not be instantiated in any model, i.e., C v ⊥, it is unsatisfiable. Two
concepts are disjoint if C v ¬D. In this paper we write Disjoint(C1, C2, . . . , Cn)
to denote that all these concepts disjoint with one another.

3 Validation with Ontologies

In this section, we present our solution of validating process refinement in
detail. We first eliminate all the parallel gateways in a process, then translate
such a process into ontologies based on the predecessor and successor sets of
activities, finally we show that the refinement checking can be reduced to concept
unsatisfiability checking

3.1 Process Transformation

As we can see from ES1c, the execution ordering relations between successors of
some g ∈ GO are implicit in the original process. For example, b1 and a2 does
not have any explicit edge, the semantics of parallel gateway still implies that
b1a2 or a2b1 must appear in some execution. In order to make such relations
explicit, we eliminate all the parallel gateways while retain the execution set. Our
strategy is to generate exclusive gateways to represent the executions.

Given a process P , its normal n(P ) can be obtained as follows:
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1. Repeatedly replace each penning-parallel gateway g by an opening-exclusive
gateway e. For each v ∈ suc(e), construct a new penning-parallel gateway g′

with pre(g′) = v, suc(g′) = suc(v) ∪ suc(e) \ {v} and then make suc(v) = g′.
2. Remove all the edges from an opening- to a closing-parallel gateway.
3. If an opening-gateway has only one successor, remove the gateway
4. If an closing-gateway has only one predecessor, remove the gateway

In step 1 direct successors of parallel gateways are “pulled” out of the gate-
way. Here a loop block is considered as a single successor. In this procedure, a
parallel gateway with n successors is transformed into n parallel gateways with n
successors but one of the successive sequence is shortened by one successor. Due
to the finite length of these sequences, this replacement always terminates. Step
2 then reduces the number of successors for these remaining parallel gateways
by removing “empty” edges. Step 3 and 4 finally remove the gateways. When a
gateway is removed, its predecessors and successors should be directly connected.

It’s obvious that this normalisation will always result in a normal process. An
example of normalisation of Fig.1b and Fig.1d can be seen in Fig.2.

The size of n(P ) can be exponentially large w.r.t. P in worst case: suppose P
contains only a pair of parallel gateways with n sequences of one activity, then
n(P ) will contains a pair of exclusive gateways with n! sequences of n activities.
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Fig. 2. Transformation to execution diagrams for Fig. 1b and d

In normalisation, some activities will be duplicated in the process. These
duplications have different predecessors (successors). We distinguish them by
an additional numerical subscript. We depict such a transformed process n(P )
with distinguished activities by P ?. Obviously, ESP ? is the same as ESn(P ) after
replacing all the distinguished activities by their original names. Thus, relation
between two execution sets can be characterised by the following theorem:

Theorem 1. Given two processes P = 〈EP , VP 〉 and Q = 〈EQ, VQ〉, ESQ ⊆
ESP iff ∀ai ∈ AQ? , there exists some aj ∈ AP ? such that PSQ?(ai) ⊆ PSP ?(aj)
and SSQ?(ai) ⊆ SSP ?(aj).

Proof. (1) For the → direction the lhs ESQ ⊆ ESP holds. We demonstrate the
subsumption for PS. For an arbitrary activity ai ∈ AQ? , the activity ai

′ is the
corresponding activity before normalisation (i.e. without additional subscripts).
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The activity aj
′ is the originator or ground activity of ai

′ in P after renaming and
aj ∈ AP ? is the the corresponding activity after normalization of P . From the
prerequisite it directly follows that the predecessors of ai ∈ AQ? are predecessors
of aj in Q?. The subsumption of the successor set is demonstrated likewise.
(2) To prove the other direction we assume that the rhs holds. Consider an
execution s ∈ ESQ we demonstrate that s ∈ ESP . For each activity ai

′ of an
arbitrary execution s ∈ ESQ the corresponding activity ai ∈ AQ? is received
after normalization. From the rhs it follows that there exists an activity aj ∈ AP ?

so that each predecessor of ai is also a predecessor of aj in P ? and likewise for
the successors of ai. After activity renaming and demonstrating for all activities
of each execution of ESQ the inclusion of the lhs follows.

Therefore, we reduce the process refinement w.r.t. execution set semantics
into the subsumption checking of finite predecessor and successor sets. We then
show that the transformation operations of execution sets can be equivalently
performed on the its process model and the predecessor and successor sets:

– Reduction on the process diagrams has the same effect on the execution
sets. That means, given a component model P and a process model Q, if we
reduce Q into Q′ by removing all the activities that do not appear in P , and
connect their predecessors and successors directly, the resulting ESQ′ will be
the same as the reduced ESQ with respect to P .

– Renaming can also be directly performed on the process diagram, i.e.
ESP [a → A] = ESP [a→A]. Thus, the renaming can be performed on the
predecessor and successor sets as well, i.e. PSP (x)[a → A] = PSP [a→A](x)
(SSP (x)[a→ A] = SSP [a→A](x)).

– Decomposition can be done on the predecessor and successor sets as well.
Theorem 1 shows that the subsumption of execution sets can be reduced to
subsumption of predecessor and successor sets. Decomposition means, an
activity x can go from not only predecessors of x, but also another appearance
of x, and can go to not only successors of x, but also another appearance of
x. Any sequence of x in the execution will be decomposed.

Thus, for horizontal refinement, we can first obtain the predecessor and suc-
cessor sets of activities, and then perform the Renaming and Decomposition
on these sets, and then check the validity. For vertical refinement, we can first
perform the Reduction on processes, then obtain the predecessor and successor
sets and perform the Renaming on these sets, and finally check the validity.

In this paper, we perform Reduction directly on the a process P and
obtain the predecessor and successor sets from P ?, then encode Renaming and
Decomposition into ontology and check the validity with reasoning.

3.2 Refinement representation

In this section we represent the predecessor and successor sets of activities with
ontologies. In such ontologies, activities are represented by concepts. The prede-
cessors/successors relations are described by two roles from and to, respectively.
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On instance level, these two roles should be inverse role of each other. However
this is not necessary in our solution. Composition of activities in horizontal refine-
ment is described by role compose. Grounding of activities in vertical refinement
is described by role groundedTo. To facilitate the ontology construction, four
operators are defined for pre- and post- refinement process:

Definition 1. : Given S a predecessors or successors set, we define four operators
for translations as follows:

Pre-refinement-from operator Prfrom(S) = ∀from.
⊔

x∈S x
Pre-refinement-to operator Prto(S) = ∀to.

⊔
y∈S y

Post-refinement-from operator Psfrom(S) =
d

x∈S ∃from.x
Post-refinement-to operator Psto(S) =

d
y∈S ∃to.y

The effect of the above operators in refinement checking can be characterised
by the following theorem:

Theorem 2. PSQ(a) ⊆ PSP (a) iff
Disjoint(x|x ∈ AP ∪ AQ) infers that Prfrom(PSP (a))uPsfrom(PSQ(a)) is
satisfiable.

SSQ(a) ⊆ SSP (a) iff
Disjoint(x|x ∈ AP ∪AQ) infers that Prto(SSP (a))uPsto(SSQ(a)) is satisfiable.

For sake of a shorter presentation, we only prove the first part of the theorem.
The proof for the second part is appropriate to the first part.

Proof. (1) We demonstrate the → direction with a proof by contraposition.
The disjointness of activities holds. Supposed the rhs is unsatisfiable, i.e.
Prfrom(PSP (a))uPsfrom(PSQ(a)) is unsatisfiable. Obviously, both concept def-
initions on its own are satisfiable, since Prfrom(PSP (a)) is just a definition with
one all-quantified role followed by a union of (disjoint) concepts. The concept
definition behind this expression is ∀from.

⊔
x∈PSP (a) x which restricts the range

of from to all concepts (activities) of PSP (a). Psfrom(PSQ(a)) is a concept
intersection which only consists of existential quantifiers and the same from
role. This definition is also satisfiable. Therefore the unsatisfiability is caused by
the intersection of both definitions. In Psfrom(PSQ(a)) the same role from is
used and the range is restricted by Prfrom(PSP (a)). Therefore the contradiction
is caused by one activity b ∈ PSQ(a) which is not in PSP (a), but this is a
contradiction to the precondition PSQ(a) ⊆ PSP (a).
(2) The ← direction can be proved similarly by contraposition.

Now we can represent horizontal and vertical refinements by ontologies:

Horizontal Refinement For conciseness of presentation, we always have a
pre-refinement process P and a post-refinement process Q and we refine one
activity z of P in this step. z may have multiple appearances zj in P ?. For each
zj we define component zj ≡ ∃compose.zj . Simultaneous refinement of multiple
activities can be done in a similar manner of single refinement. Then we construct
an ontology OP→Q with following axioms:
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1. for each activity ai ∈ AQ? and hori(a) = z
ai v

⊔
∃compose.zj

These axioms represent the composition of activities with concept sub-
sumption, which realise Renaming in horizontal refinement. For example,
b31 v ∃compose.B and a11 v ∃compose.A.

2. for each ai ∈ AQ? where a is not refined from z
ai vPrfrom(PSP ?(ai))[zj → component zj ],
ai vPrto(SSP ?(ai))[zj → componennt zj ],
These axioms represent the predecessor and successor sets of all the unre-
fined activities in the pre-refinement process. Because in the post-refinement
process, any activity refined from zj will be considered as a subconcept of⊔

component zj , we replace the appearance of each zj by corresponding
component zj . For example, Start v ∀to.component A.

3. for each zj ∈ AP ? ,
component zj vPrfrom(PSP ?(zj)∪{component zj})[zj → componennt zj ],
component zj vPrto(SSP ?(zj) ∪ {component zj})[zj → componennt zj ],
These axioms represent the predecessor and successor sets of all the refined
activities in the pre-refinement process. Due to the mechanism of Decompos-
ing, we add corresponding component zj to their predecessor and successor
sets, and replace the zj with component zj for the same reason as before.
For example, component A v ∀from.(Start t component A).

4. for each ai ∈ AQ? ,
ai vPsfrom(PSQ?(ai)),
ai vPsto(SSQ?(ai)),
These axioms represent the predecessor and successor sets of all the activities
in the post-refinement process. For example, a22 v ∃from.b12, b23 v ∃to.a23.

5. Disjoint(ai|ai ∈ Q and Hori(a) = z)
These axioms represent the uniqueness of all the sibling activities refined
from the same zj . For example, Disjoint(a11, a21, a22, a23)

6. Disjoint( all the activity in P , and all the component zj).
This axiom represents the uniqueness of all the activities before refinement.
For example, Disjoint(Start, End,A, B, component A, component B).

With the above axioms, ontology OP→Q is a representation of the horizontal
refinement from P to Q by describing the predecessor and successor sets of
corresponding activities with axioms.

Vertical Refinement Similar as horizontal refinement, suppose we have prin-
ciple behaviour model P and a concrete process model Q, which has already
been reduced w.r.t P to eliminate ungrounded activities. Any activity in Q can
be grounded to some activity in P . Thus, after reduction, ∀a ∈ AP ,∃b ∈ AQ

that b is grounded to a, and vice versa. Therefore for each xj ∈ AP ? , we define
grounded xj ≡ ∃groundedTo.xj .Then we construct an ontology OP→Q with
following axioms:

1. for each activity ai ∈ AQ? and vert(a) = x
ai v

⊔
∃groundedTo.xj
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These axioms represent the grounding of activities by concept subsumption,
which realise the Renaming in vertical refinement. For example, a11 v
∃groundedTo.E, b11 v ∃groundedTo.F .

2. for each ai ∈ AP ?

grounded ai vPrfrom(PSP ?(ai))[xj → grounded xj ],
grounded ai vPrto(SSP ?(a))[xj → grounded xj ],
These axioms represent the predecessor and successor sets of all the activities
in the pre-refinement process. Due the mechanism of Renaming we replace
all the xj ∈ AP ? by grounded xj . Because Decomposition is not needed
in vertical refinement, we stick to the original predecessor and successor sets.
These axioms become the constraints on the activities in Q?.

3. for each ai ∈ AQ? ,
ai vPsfrom(PSQ?(ai)),
ai vPsto(SSQ?(ai)),
These axioms represent the predecessor and successor sets of all the activities
in the post-refinement process. Notice that the ungrounded activities have
been removed from the process.

4. for each x ∈ AP ,
Disjoint(ai|ai ∈ Q? and vert(a) = x)
These axioms represent the uniqueness of all the sibling activities refined
from the same x.

5. Disjoint(Start, End, all the grounded xj).
This axiom represents the uniqueness of all the activities before refinement.
For example, Disjoint(Start, End, grounded C, grounded D).

With above axioms, ontology OP→Q is a representation of the refinement
from P to Q by describing the predecessor and successor sets of corresponding
activities with axioms.

In both horizontal and vertical refinement, the number of axioms are linear
w.r.t. the size of P ? and Q?. The language is ALC.

3.3 Concept satisfiability checking

In ontology OP→Q, all the activities in Q? satisfy the ordering relations in
P ? by satisfying the universal restrictions and satisfy the ordering relations
in Q? by satisfying existential restrictions. Given the uniqueness of concepts,
the inconsistency between P ? and Q? will lead to unsatisfiability of particular
concepts. The relation between the ontology OP→Q and the validity of the
refinement from P to Q is characterised by the following theorems:

Theorem 3. An execution path containing activity a in Q is invalid in the
refinement from P to Q, iff there is some ai ∈ Q? such that OP→Q |= ai v ⊥.

Proof. For each a in Q the ontology OP→Q contains the axioms
a vPsfrom(PSQ(a)) and a vPsto(SSQ(a)). The axioms a vPrfrom(PSQ(a))
and a vPrto(SSQ(a)) are derived from the axioms (item 1,2). Depending on
the refinement either the axioms a v ∃groundedTo.xj and grounded xj ≡
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∃groundedTo.xj or a v ∃compose.zj and component zj ≡ ∃compose.zj are in
the ontology. (1) For the → direction the lhs holds, we demonstrate that a is
unsatisfiable. Since a is invalid either PSQ(a) 6⊆ PSP (a) or SSQ(a) 6⊆ SSP (a).
From Theorem 2 it follows that either Prfrom(PSP (a))uPsfrom(PSQ(a)) or
Prto(SSP (a))uPsto(SSQ(a)) is unsatisfiable and therefore a is unsatisfiable since
a is subsumed. (2) The ← direction is proved by contraposition. Given a is unsat-
isfiable in OP→Q. Assumed a is valid in the refinement then PSQ(a) ⊆ PSP (a)
and SSQ(a) ⊆ SSP (a) holds. From Theorem 2 the satisfiability of Prto(SSP (a)),
Prfrom(PSP (a)), Psfrom(PSQ(a)) and Psto(SSQ(a)) follows which leads to a
contradiction to the satisfiability of a.

This theorem has two implications:

1. The validity of a refinement can be checked by the satisfiability of all the
name concepts in an ontology;

2. The activities represented by unsatisfiable concepts in the ontology are the
source of the invalid refinement.

we check the satisfiability of the concepts to validate the process refinement.
Every unsatisfiable concept is either an invalid refinement or related to an invalid
refinement.

With the help of reasoning, we can easily see that Fig.1b is an invalid
horizontal refinement w.r.t. Fig.1a: a22 v ∃from.b12, also a22 v ∃compose.A
thus a22 v ∀from.(Start t component A). However, b12 disjoints with both
Start and component A therefore a22 is unsatisfiable. Similarly, we can detect
that b12, b23 and a23 are unsatisfiable. This implies the invalid routes in Fig.2a
and further the invalid refinement of Fig.1b. Also, the vertical refinement w.r.t.
Fig.1d is wrong while the vertical refinement w.r.t. Fig.1c is correct.

According to the underlying logic, reasoning complexity is ExpTime.
Helped by our analysis, the process architect remodels their process (Fig. 3).

Now, the execution set of Fig. 3 is {[a1a2b1b2b3], [a1a2b2b1b3], [a1a2b1b3b2]}. Re-
naming of Fig. 3’s execution set with respect to Fig. 1a yields {[AABBB]}. After
decomposition, we conclude that Fig. 3 correctly horizontally refines the process
in Fig. 1a because {[AB]} ⊇ {[AB]}. As for validating vertical refinement with the
component models, renaming yields {[EFGHD], [EFHGD], [EFGDH]}. After reduc-
tion with respect to Fig. 1c and Fig. 1d, we conclude that Fig. 3 correctly grounds
on Fig. 1c and Fig. 1d because {[C], [D], [CC], [CD], [DC], [DD], . . .} ⊇ {[D]} and
{[EFGH], [EFHG], [FHEG], [FEGH], [FEHG]} ⊇ {[EFGH], [EFHG]}.

4 Evaluation

We have implemented the transformation of BPMN process models and refine-
ment information to OWL-DL ontology. In addition to the transformation, we
implemented a generator which creates random, arbitrarily complex refinement
scenarios. Flow correctness is ensured by constructing the process models out
of block-wise patterns that can be nested. The generator is parameterized by
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Fig. 3. Adapted specific process for correct refinement

the maximum branching factor B, the maximum length L of a pattern instance,
the maximum depth of nesting N , and by the probability for loops, parallel,
or exclusive flow. Most realistic appearing process diagrams were created with
B = 3, L = 6, N = 3, and with a mixture of loops, parallelism, and exclusive
flow to the ratio of 2 : 1 : 2.

With the given parameters, we generated 1239 refinement scenarios (197
correct, 1042 wrong) with the average and maximum number of activities in the
generic and refined models printed on the left-hand side below.

Generic Specific Total Transf. OWL-DL Reasoning
Activities Activities Activities Time Axioms Time

Average 5.79 17.4 23.2 4ms 154 2.8s
Maximum 30 53 69 0.4s 1159 3.4min

The generated scenarios were used to evaluate the refinement analysis on
a laptop with a 2 GHz dual core CPU, 2 GB of RAM using Java v1.6 and
Pellet 2.0.0. Two factors contribute to the overall complexity of the analysis:

1. Transformation to OWL-DL. As we pointed out earlier, theoretically,
the complexity of the transformation can be exponential in the worst case.
However, our experiments show that in many practical cases, the size of the
OWL-DL knowledge base—measured by the number of axioms—remains
relatively small. In particular, for 80% (90%) of the scenarios, the number of
axioms was below 220 (400) (see Fig. 4). Some unusual nesting of parallel flow
causes the exceptions in the diagram that have a higher number of generated
axioms. Remarkably, the appearance of such cases seems to uniquely distribute
over the scenarios independently of the size of the original processes due to
the artificial nature of the generated scenarios.

2. OWL-DL Reasoning. The theoretical complexity of OWL-DL reasoning
is exponential as well. However, our evaluation runs in Fig. 5 suggest that for
the practical cases evaluated, reasoning time grows less than exponentially
(less than a straight line on a logarithmic scale) compared to the number of
axioms in the OWL-DL knowledge base. We separately plot the reasoning
times of the correct and wrong refinements because classifying a consistent
knowledge base is more expensive in general.

When comparing absolute times, reasoning consumes about two orders of
magnitude more time than transformation as can be seen from the right-hand
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Fig. 5. Reasoning time for axioms on logarithmic scale

side of the table above. This determines our future research to seek improvements
in the reasoning rather than in the transformation.

As for the complete run time, the above table indicates that the refinement
analysis of an average scenario—with a generic process of about 6 activities and a
refining process of about 17 activities—would take about 3 seconds. We consider
this a simpler, yet realistic problem size.

In one of the larger evaluated scenarios, 15 generic activities were refined to
48 specific activities (for comparison: our running example contains 5 specific
activities). The 63 activities in total (= 15+48) were transformed to 402 activities
due to many parallel flows in that scenario. Analysis of the 765 generated axioms
was performed in 18 seconds.

In the most complicated scenario of our evaluation, where a large knowledge
base had to be constructed due to the heavy use of parallel gateways, total
analysis time remained below 4 minutes. Although this is definitely too much
for providing a real-time refinement check to process modelers, analysis took
less than 1 second for 80% (≤ 220 axioms) and less than 10 seconds for 90%
(≤ 400 axioms) of the examined practical cases. Compared to the manual efforts
a human is required today, our approach provides a significant improvement.
Furthermore, the check performed by our approach is—in contrast to the manual
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approach—guaranteed to be correct and thus helps to avoid costly follow-up
process design errors.

5 Related Works and Conclusion

There are many existing works related to our study. Some of them [17, 14]
come from the business process modelling and management community which
investigated process property checking with model checkers.

Researchers in system transition and communication systems [13, 11, 10, 12]
also developed behaviour algebra to analyse the bisimulation, i.e. matching
between processes. In some of the works, execution set semantics are also applied
[18]. However, these models do not validate refinement with activity compositions.

Other models use mathematical formalisms to describe concurrent system
behaviour. [3] describes concurrent system behaviour with operational semantics
and denotational semantics. But the analyzed equivalence between process models
does not distinguish between deterministic and non-deterministic choices.

Semantic web community contribute to this topic by providing first semantic
annotations for process models such as service behaviour and interaction [4, 16,
15] and later automatic process generation tools [7]. However, these approaches
do neither consider process refinement nor a DL based validation of relationships.

In [8] actions and services, which are a composition of actions are described
in DL. Actions contain pre- and post-conditions. The focus is on a generic
description of service functionality. As inference problems, the realizability of
a service, subsumption relation between services and service effects checking is
analyzed. Services are described similarly with DL in [2]. The reasoning tasks
are checking of pre- and post-conditions of services. The main focus of this work
is the reasoning complexity.

The DL DLR is extended with temporal operators in [1] for temporal con-
ceptual modelling. In this extension, query containment for specified (temporal)
properties is analyzed. In [9] the DL ALC is extended with the temporal logics
LTL and CTL. Still, neither of them considers process modelling and refinements.

Our contribution is this paper includes:

1. Devising a general approach to represent and reason with process models
containing parallel and exclusive gateways;

2. Applying graph-based topological approach with DL reasoning to provide
automatic solution of process refinement checking;

3. Implementing and evaluating a prototype that performs process transforma-
tion and refinement checking as proposed.

In the future, there are several potential extension of this work. We will
continue our implementation and evaluation to support larger and more complex
process models. We will also try to extend the process representation with more
expressive power. Another interesting topic is whether the process transformation
itself can be automatically inferred by reasoning. We also want to integrate our
refinement representation with other business process modelling ontologies.
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Abstract. To date, Semantic Web research has tended to focus on data
modelling challenges, at the expense of software architecture and engi-
neering issues. Our empirical analysis shows that implementing Semantic
Web technologies creates challenges which can affect the whole applica-
tion. Standard solutions and best practices for Semantic Web technologies
are just emerging. The lack of these has been an obstacle for implementing
and deploying applications which exploit Semantic Web technologies for
real world use cases.

In this paper we conduct an empirical survey of Semantic Web applica-
tions. We use this empirical data to propose a reference architecture for
Semantic Web applications, and to identify the four main challenges for
implementing the most common functionality related to Semantic Web
technologies from a software engineering perspective: (i) the issues in-
volved in integrating noisy and heterogeneous data, (ii) the mismatch of
data models and APIs between components, (iii) immature and belated
best practices and standards, and (iv) the distribution of application logic
across components. We describe two orthogonal approaches for mitigating
these challenges: (a) simplifying the application architecture by delegat-
ing generic functionality to external service providers, and (b) assembling
and customising of components provided by software frameworks for rapid
development of complete applications.

1 Introduction

Semantic Web technologies simplify knowledge-intensive applications, by enabling
a Web of interoperable and machine-readable data [1] based on formal and explicit
descriptions of the structure and semantics of the data [2].

Existing research on deploying Semantic Web technologies has tended to focus
on data modelling, and software architecture and engineering issues have been
comparatively neglected. Benefits such as simplification of information retrieval
[3], information extraction [4] and data integration [5] have been well researched.

However, in order to encourage wide scale adoption of Semantic Web tech-
nologies, the whole life cycle of Semantic Web data needs to be assessed in terms
of efforts and pay back of the application development. According to [6] this life
cycle includes: the initial phase of ontology development, followed by planning how
to use the data, creation of new data or refining of existing data, then persistent
archiving of data, and finally publication and external access of data. Creation,
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refining, archiving and publication may all be performed at runtime by the applica-
tion, and as such involve aspects of software engineering and software architecture
in addition to data modelling aspects.

While the challenges of ontology development have been analysed based on
empirical data of ontology development projects [7], to our best knowledge no
empirical analysis of the challenges involved in the implementation of creating,
refining, archiving and publication of data based on Semantic Web technologies
exists.

We have performed an empirical survey of 98 Semantic Web applications (Sec-
tion 2), which allows us to identify the most common shared components and the
challenges in implementing these components. Together, these components con-
stitute a reference architecture for Semantic Web applications. The survey shows
that implementing Semantic Web technologies creates challenges which can affect
the whole application. Standard solutions and best practices for Semantic Web
technologies are just emerging. The lack of these has been an obstacle for imple-
menting and deploying applications which exploit Semantic Web technologies for
real world use cases.

Based on the survey, we identify the four main challenges (Section 3) for im-
plementing Semantic Web applications: (i) the issues involved in integrating noisy
and heterogeneous data, (ii) the mismatch of data models and APIs between
components, (iii) immature and belated best practices and standards, and (iv)
the distribution of application logic across components. Identifying these chal-
lenges allows better assessment of the costs associated with adopting Semantic
Web technologies within enterprises, and forms the basis for designing better soft-
ware frameworks and software architecture for exploiting the emerging Web of
Data.

Towards this goal, we present two approaches for mitigating the identified
challenges (Section 4) from a software engineering perspective. The first approach
proposes an architectural solution by delegating generic components to external
service providers thus simplifying the application. An orthogonal approach is to
provide better software engineering support with components provided by software
frameworks for rapid assembling and customising of complete applications. Finally,
we list related research (Section 5) and discuss future research (Section 6).

The main contributions of this paper are (1) an empirical analysis of the state of
the art regarding the implementation of the most common components of Semantic
Web applications, (2) a reference architecture for Semantic Web applications based
on the empirical analysis, (3) identifying the main challenges in implementing
these components which are introduced by Semantic Web technologies, and (4) two
approaches to mitigate these challenges from a software engineering perspective.

2 Empirical analysis of Semantic Web applications

As our goal is to identify the main challenges introduced by implementing Seman-
tic Web technologies, we have performed an empirical analysis of the most common
capabilities specific to Semantic Web applications. In Section 2.1, we provide a
classification for Semantic Web applications in order to differentiate them from
other applications on the World Wide Web. Section 2.2 outlines the methodology
of the survey. The results of our survey follow in Section 2.3. First, we present a
description of components which abstract the most common functionality related
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to Semantic Web technologies. Secondly, we provide statistics about the variations
amongst the implementations of the components.

2.1 Classifying Semantic Web applications and the Web of Data

The most basic requirement for a Semantic Web application is the use of RDF for
the metadata used by the application. This can be derived from the fundamental
role of RDF in the “layer cake” of Semantic Web standards [8]. Additionally a
set of formal vocabularies should be used to capture the application domain, and
SPARQL should be used as data query language, according to [9, definition 2.2].
All surveyed applications meet these requirements, except for applications using
programmatic access to RDF data for efficiency reasons.

The Linked Data principles define how to publish RDF data, so that RDF
data sets can be inter-linked [10] to form a Web of Data. The Linking Open
Data community project(http://linkeddata.org) provides most of the currently
available linked data.

2.2 Methodology of the survey

The survey of current Semantic Web applications has been performed in two parts,
consisting of an architectural analysis and a questionnaire about the application
functionality.

Architectural analysis The applications from two key demonstration chal-
lenges in the Semantic Web domain have been analysed to identify the most com-
mon functionality of Semantic Web applications: the “Semantic Web challenge”(http:
//challenge.semanticweb.org/), organised as part of the International Seman-
tic Web Conference from 2003 to 2008, and the “Scripting for the Semantic Web
challenge”(http://www.semanticscripting.org), organised as part of the Eu-
ropean Semantic Web Conference from 2006 to 2008. Duplicate submissions have
been eliminated, resulting in a total number of 98 surveyed applications.

The result of the architectural analysis is a list of components which provide an
abstraction of the most common functionality which is required to implement Se-
mantic Web standards. The components have been extracted from the architecture
diagrams and the textual descriptions of the application architecture and imple-
mentation, depending on availability in the submitted paper. The components
provide a common way to decompose the surveyed applications, so that compo-
nents with similar functionality from different applications can be compared. This
allows us to e.g. identify the need for data updating standards in section 3.3, as
most applications have a user interface, but only a minority of applications allow
creation of new data by the user.

Application functionality questionnaire Additionally a questionnaire was
used to collect details about the implementation of the applications. The question-
naire contains 27 properties associated with 7 areas of functionality. The results
from the questionnaire provide statistics about the range of variations in which
the functionality of the common components has been implemented.

The questionnaire covers these areas of functionality: (1) implementation of
Semantic Web standards, (2) support for data sources, (3) support for formal vo-
cabularies that are heterogeneous and have diverse ownership, (4) implementation
of data integration and alignment, (5) support for structured, semi-structured, un-
structured or multimedia data, (6) support for authoring and editing of data, and
(7) support for external data sources and the open-world assumption.
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Only the applications from the “Semantic Web challenge” 2003 to 2006, and the
“Scripting for the Semantic Web challenge” 2005 to 2007 were analysed with the
questionnaire. The authors of the papers describing the applications where asked
to validate and correct the details about their applications. Of the 50 applications
analysed with the questionnaire, 74% validated their data.

2.3 Survey results

Taken together, the two parts of the survey can be combined to provide an
overview of the state of the art in implementing the required functionality for
Semantic Web technologies. The architectural analysis provides a list of the most
common components, and the questionnaire provides statistical data about the
different variations of implementing each component.

Table 1 shows the seven most common components, and lists the number of
applications implementing a specific component by year.
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2003 10 100% 80% 90% 90% 80% 20% 50%
2004 16 100% 94% 100% 50% 88% 38% 25%
2005 6 100% 100% 100% 83% 83% 33% 33%
2006 19 100% 95% 89% 63% 68% 37% 16%
2007 24 100% 92% 96% 88% 88% 33% 54%
2008 23 100% 87% 83% 70% 78% 26% 30%
total 98 100% 91% 92% 72% 81% 32% 35%

Table 1. Percentage of surveyed applications implementing the 7 most common compo-
nents, per year and in total

2.4 Reference architecture for Semantic Web applications

The surveyed applications share a significant amount of functionality regarding
common capabilities of Semantic Web applications. We abstract from the differ-
ences between individual applications and distinguish seven main components,
which together constitute a reference architecture for Semantic Web applications
by describing high-level concepts and terminology, without fixing interfaces [11,
page 242].

The (i) data interface provides an abstraction over remote and local data
sources, the (ii) persistent storage stores data and run time state, and the (iii)
user interface provides access for the user. (i) to (iii) have each been implemented
by more than 90% of surveyed applications. The (iv) integration service
provides a unified view on heterogeneous data, and the (v) search service allows
searching in data. (iv) and (v) have each been implemented by 70% to 80%
of surveyed applications. The (vi) crawler discovers and retrieves remote data,
and the (vii) authoring interface allows creating new data and editing existing
data. (vi) and (vii) have each been implemented by 30% to 40% of surveyed
applications.
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In the following we describe the functionality of each component in detail and
provide statistical data for the range of variations amongst the implementations of
the surveyed applications. The full results of the architectural analysis are avail-
able on-line(http://semwebapp-components.dabbledb.com/), as are the details
of the questionnaire results(http://www.activerdf.org/survey/).

User interface (92%)

Data Interface (100%) Crawler (35%)

Authoring Interface (32%)

Persistent Storage (35%)
Integration Service (72%)

Search Service (81%)

Remote Data 
Sources

Fig. 1. The reference architecture for Semantic Web applications, with the percentage
of surveyed applications implementing the component

Data Interface: Also known as data adapter or data access provider. Pro-
vides the interface needed by the application logic to access local or remote
data sources, with the distinction based on either physical remoteness or admin-
istrative and organisational remoteness. Separation from the persistence layer is
motivated by the function of the data interface as an abstraction layer regarding
the implementation, number and distribution of persistence layers. 100% of the
applications have a data interface.

Component variations: Accessing local data is implemented via programmatic
access through RDF libraries by at least 50% of the applications. Only 24% use
a query language for accessing local or remote data sources, but only half of
these applications use the SPARQL standard. Multiple data sources with different
ownership are used by 90% of applications, 70% support external data provided
by the user and 60% can export their data or make it reusable as a source for
other applications, by e.g. providing a SPARQL end-point. 76% of the applications
support updating their data during application runtime.

Persistent Storage: Also known as persistence layer or triple store. Provides
persistent storage for data and run time state of the application, it is ac-
cessed via the data interface. In practice many triple stores and RDF libraries
provide both a data interface and persistent storage, but there are cases where
the components are de-coupled, e.g. if the application has no local data storage,
and only uses SPARQL to access remote data. 91% have a persistent storage.

Component variations: Possible supported standards include but are not lim-
ited to data representation languages (XML, RDF), meta-modelling languages
(OWL, RDFS) and query languages (SQL, SPARQL). RDF is explicitly mentioned
by 86% of applications, OWL is supported by 48%, RDFS by 22%. Inferencing or
reasoning on the stored data is explicitly mentioned by 58% of the applications.
Storage of any combination of structured, semi-structured, unstructured data or
(binary) files can be implemented, with different levels of features or optimisation
for the different data types. 58% implement support for unstructured text and
48% support mixing of structured and unstructured data in some way.
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User Interface: Also known as portal interface or view. Provides a human
accessible interface for using the application and viewing the data. Does
not provide any capabilities for modifying or creating new data. 92% have a user
interface, as some applications do not provide a human usable interface.

Component variations: The navigation can be based on data or metadata, such
as a dynamic menu or faceted navigation. The presentation may be in a generic
format, e.g. in a table, or it may use a domain specific visualisation, e.g. on a
map (10%). 16% present images to the user and 6% explicitly mention support
for audio content in the user interface. 28% support multiple languages in the user
interface, thus catering to a multilingual audience.

Integration Service: Also known as integration, aggregation, mediation, ex-
traction layer or service. Provides means for addressing structural, syntactic
or semantic heterogeneity of data, caused by accessing data from multiple
data sources using diverse kinds of format, schema or structure. The desired re-
sult is a homogeneous view on all data for the application. The integration
service often needs to implement domain or application specific logic for the data
integration. 72% of the applications have an integration service.

Component variations: Integration of heterogeneous data is supported by 90%
of the applications, and 90% support data from sources with different ownership.
Data from distributed data sources is supported by 72%. These three properties
are orthogonal, as it would be e.g. possible to support just SIOC data [12] which
is not heterogeneous, but which is aggregated from personal websites, so that the
data sources are distributed and under different ownership.

Mapping or alignment between different schema may be automatic (12%),
but most applications (80%) require some form of human intervention for the
integration. Reasoning and inferencing can be used for the integration (58%).
Integration may be performed once if data stays static, or continuously if new
data gets added.

Search service: Also known as query engine or query interface. Provides
the ability to perform searches on the data based on the content, structure or
domain specific features of the data. Interfaces for humans, machine agents
or both can be provided. 81% provide a search service.

Component variations: Besides search on features of the data structure or se-
mantics, generic full text search (58%) or a search on unstructured and structured
data at the same time (48%) can be provided. The interface for machine agents
may be provided by e.g. a SPARQL, web service or REST endpoint.

Crawler: Also known as harvester, scutter or spider. Required if data needs to
be found and accessed in a domain specific way before it can be integrated. Imple-
ments automatic discovery and retrieval of data. 35% implement a crawler.
Some applications have an integration service, but do not need a crawler, e.g.
because they only use local RDF data, but need to perform object consolidation
[13].

Component variations: Support of different discovery and access mechanisms,
like HTTP, HTTPS, RSS. Natural language processing or expression matching
to parse search results or other web pages can be employed. The crawler can be
active once if data is assumed to be static or continuous (76%) if new data needs
to be discovered.
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Authoring interface: Allows the user to enter new data, edit existing
data, and import or export data. This component depends on the user inter-
face component, and enhances it with capabilities for modifying and writing data.
Separation between the user interface and the authoring interface reflects the low
number of applications (32%) implementing write access to data.

Component variations: The annotation task can be supported by a dynamic
interface based on schema, content or structure of data. Direct editing of data
using standards such as e.g. RDF, RDF Schema, OWL or XML can be supported.
Input of weakly structured text, using e.g. wiki formatting can be implemented.
Suggestions for the user can be based on vocabulary or the structure of the data.

3 The main challenges for implementing Semantic Web
technologies

The list of common components and the data about the variations in implement-
ing these components allow us to identify the main challenges for Semantic Web
application development: (i) the issues involved in integrating noisy and hetero-
geneous data, (ii) the mismatch of data models and APIs between components,
(iii) immature and belated best practices and standards, and (iv) the distribution
of application logic across components. In the following we detail these challenges
and subsequently explain their impact on an example application.

3.1 Integrating noisy and heterogeneous data

An objective of RDF is to facilitate data integration [5] and aggregation [4]. How-
ever, even if all data sources were to use RDF as their data model, there would
still exist potential integration issues due to different access mechanisms, noisy
and erroneous data, and inconsistent usage of vocabularies and instance URIs
between sources. Therefore, depending on how noisy and disconnected the data
is, some amount of pre-processing may be required before using the data in an
application.

Our survey shows that implementing integration of noisy and heterogeneous
data can contribute the biggest part of the application functionality required for
utilising Semantic Web technologies. The majority (72%) of surveyed applications
implement an integration service. However manual intervention as part of the inte-
gration is necessary for 80% of applications. This means that prior to integration,
either data is manually edited or data from the different sources is inspected in
order to create custom rules or code. Only 20% explicitly mention fully automatic
integration using e.g. heuristics or natural language processing. 76% allow updat-
ing of the data after the initial integration, and reasoning and inferencing is used
for 58% of integration services.

Semantic Web data may be accessible by multiple different methods: large
dumps to be downloaded, individual (possibly dynamically-generated) documents
which need to be crawled, or via SPARQL endpoints to which queries must be
issued. In order to ease the acquisition of published data, site suppliers can provide
a semantic sitemap [14] on their website, so that crawling agents know where to
find related RDF data. There are also a set of best practice guidelines [10] for
publishing and interlinking pieces of data on the Semantic Web. The creation of
ontologies is beyond the scope of this paper but has been discussed in previous
literature [7].
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Previous research performed using the Swoogle system [15] shows that there
is a spectrum for RDF data, ranging from well structured data using stable and
slowly changing vocabularies and ontologies to noisy and dynamic data with un-
defined terms and formal errors. The study tracked size changes in three versions
of 183k RDF documents, and found changes had occurred in 60% of these doc-
uments. It also found that 2.2% of terms had no definitions and some had both
class and property meta-usage. The Swoogle study also showed that the size dis-
tribution of Semantic Web documents is highly skewed, with many small docu-
ments and much fewer very large documents. Similarly, a study [16] using the
WATSON infrastructure concludes that the Semantic Web is composed of many
small, lightweight ontologies and fewer large, heavyweight ontologies. Assuming
that within an ontology there is generally consistent use of vocabularies and in-
stance URIs, the large number of smaller lightweight ontologies will present more
problems for data integration.

The Semantic Web bug tracker(http://bugs.semanticweb.org/) is an ini-
tiative to improve the quality of the Web of data by tracking issues which could
introduce inaccuracies in systems consuming the data. Previous work [17, 13] by
the authors has also shown up various inconsistencies in RDF data on the Web.
Some examples of frequent errors occurring in Semantic Web data observed from
these sources are:
– Use of non-standard terms: There is frequent usage of classes and prop-

erties which are not defined in the official specifications. A study of ontology
usage [17] shows over 1m definitions of instances of the class foaf:chatEvent,
which does not exist in the official FOAF specifications(http://xmlns.com/
foaf/0.1/).

– Incorrect usage of vocabularies:
Publishers frequently use terms from vocabularies in ways which they were not
intended and which may introduce unexpected results after reasoning. For ex-
ample, dbpedia, which publishes structured data extracted from Wikipedia,
uses the property foaf:img to link resources of all types to associated images.
This is problematic because according to the FOAF specifications, the prop-
erty foaf:img has a domain of foaf:Person. This means that confusingly,
a reasoning system could infer that all Dbpedia resources with images are of
type foaf:Person.

– Multiple URIs for the same objects: The ability to uniquely identify
arbitrary resources via URIs is an important factor in data integration. How-
ever there is little agreement between sources on which URIs to use for a
particular resources. This is a problem as it may result in potentially useful
information about a resource being missed. Reasoning on inverse functional
properties (IFPs) can alleviate this to some extent. An evaluation of an ob-
ject consolidation algorithm [13] showed that 2.4 million instances could be
consolidated into 400k instances. However noise in IFP statements can cause
even more problems. [13] notes that in filling out online profiles, users who do
not wish to reveal their instant messaging usernames will fill in an alternative
value such as “none”. As a result, 85k of the users supplying these non-unique
usernames were incorrectly merged.

The majority of applications rely on data integration, but in order to imple-
ment it, expensive human intervention is necessary and knowledge about reason-
ing and inferencing needs to be acquired by the software engineers. Up to three
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components can be required for integrating data (the integration service, crawler
and often the search service), which contribute to the requirements introduced by
Semantic Web technologies to the application.

3.2 Mismatch of data models and APIs between components

Within the components of the surveyed Semantic Web applications there were two
frequently occurring mismatches from a software engineering perspective: either
they internally used different data models or the APIs between components were
mismatched, both of which pose important challenges to implementing Semantic
Web technologies.

The graph based data model of RDF provides the foundation for knowledge
representation on the Semantic Web [1], however programmatically accessing RDF
data from a component requires mapping of an RDF graph or subset (in the case
of a SPARQL query result) to the data model used by the component [18].

Most of the surveyed applications (92%) were implemented using object ori-
ented languages, and many of the surveyed applications stored data in relational
databases. Web applications which are based on relational databases only have to
manage the mismatch between object oriented and relational data. Semantic Web
applications however have to additionally handle the graph data model of RDF.

Web applications utilise object relational mappers (ORM) such as Hibernate(
www.hibernate.org) for Java or ActiveRecord(http://ar.rubyonrails.org/)
for Ruby to transparently map between the data models, and similar approaches
for mapping RDF data have been developed such as ActiveRDF [18] for Ruby or
SuRF for Python(http://pypi.python.org/pypi/SuRF). Without such a map-
per, the developer has to provide an abstraction layer on top of the RDF data
model himself.

3.3 Missing or belated conventions and standards

In order to benefit from Semantic Web technologies, new paradigms such as the
graph based data model of RDF and its open-world semantics need to be under-
stood. On the other hand, many concepts and ideas to which Web application
developers are accustomed are hard to translate to the stack of Semantic Web
technologies. Approaches for providing conventions and standards to ease the shift
towards Semantic Web technologies have often been designed with a considerable
delay after the standardisation of RDF in 1999. Providing more and authoritative
recommendations is an important factor for increasing adoption of Semantic Web
technologies by enterprises.

All of the surveyed applications consume RDF data of some form, 70% allow
accessing or importing of user provided external data, and 60% can export data or
are reusable as a source for another application. However as discussed in section
3.1, there are many different export and access mechanisms for RDF data, from
putting an RDF dump on a web server, embedding links to RDF data in HTML
or providing a SPARQL endpoint.

Authoritative recommendations for making RDF accessible over the Web were
not available until 2006, when Tim-Berners Lee published a design note(http:
//www.w3.org/DesignIssues/LinkedData.html) which established the Linked
Data principles. RDFa specifies how to embed RDF graphs in XHTML documents,
and has been in development since 2004. GRDDL (from 2007) specifies how to
enable automatic conversion of HTML documents to RDF data.
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The basic database interaction pattern of a Web application is “create, read,
update and delete”(CRUD) [19], but Semantic Web applications can operate on
both local and remote data sources so that updating and deleting depends on the
provenance of the data [19]. The survey shows that there is a remarkable difference
between the number of surveyed applications which provide a user interface (90%)
and the number of applications which allow entering or editing data (30%).

Several approaches for enabling CRUD are currently under development, such
as the Update extension for SPARQL, which provides the ability to add, update,
and delete RDF data remotely. RDF forms and RDF pushback provide an archi-
tecture for structured data input, remote updating of data and conversion of RDF
data to legacy data formats. However, at the time of writing the W3C was not
involved in these efforts.

3.4 Distribution of application logic across components

The components of a Semantic Web application implement different areas of func-
tionality which are required by Semantic Web technologies, however the compo-
nents need to be controlled by the application logic in order to use the components
for the application domain. For many of the components identified by the survey,
the application logic is not expressed as code but as part of queries, rules and
formal vocabularies.

58% of the surveyed application use inferencing and reasoning, which often
encode some form of domain and application logic, 80% explicitly mention using
a formal vocabulary, and 24% make use of an RDF query language. This results
in the application logic being distributed across the different components.

The distribution of application logic is a well known problem for Web ap-
plications built on top of relational databases [20], and current web frameworks
such as Ruby on Rails or the Google Web Toolkit(http://code.google.com/
webtoolkit/) allow the application developer to control the application inter-
face and the persistent storage of data programmatically through Java or Ruby,
without resorting to e.g. JavaScript for the interface and SQL for the data stor-
age. However approaches for centralising the application logic of Semantic Web
applications still have to be developed.

3.5 The impact of the challenges on an example application

The challenges of implementing Semantic Web standards become apparent even
for small applications. Figure 2 shows the architecture of an application from
the authors previous work, the SIOC explorer [21]. It aggregates content from
weblogs and forums exposing their posts and comments as RDF data using the
SIOC vocabulary [12]. The application logic and most parts of the application
are implemented using the Ruby scripting language and the Ruby on Rails(http:
//rubyonrails.org/) web application framework. The user interface allows
faceted browsing of the SIOC data and is implemented through the BrowseRDF
Ruby component [19]. The data interface is provided by ActiveRDF[18], which
is an object-oriented Ruby API for accessing RDF data. It is used to access the
integration service: The data interface is also used to access the persistent
storage of RDF data using the Redland library(http://librdf.org/). Other
application data is persistent to a MySQL relational database. The crawler is
implemented through several Unix command line utilities which are controlled by
Ruby. The SIOC explorer does not implement a search service or an authoring
interface.
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Fig. 2. Result of the architectural and functional analysis of the SIOC explorer

All four identified implementation challenges affect the SIOC explorer : (1)
Even though all data sources use RDF and the SIOC vocabulary, the data is
noisy enough to require two steps of data integration. The OWLIM extension
of Sesame provides generic object consolidation, and integration specific to SIOC
data is implemented as Ruby code. (2) The components are mismatched, re-
garding both the data models(object oriented, relational and graph based) and
the programming language APIs (Ruby and Java). This requires mapping
RDF to Ruby objects (ActiveRDF) and mapping relational data to Ruby objects
(ActiveRecord). Sesame has no Ruby API, so SPARQL is used to access Sesame,
resulting in slow performance for large numbers of concurrent read operations. (3)
Unclear standards and best practices affect the crawler implementation, as
different SIOC exporters require different methods to discover and aggregate the
SIOC data, as RDFa and GRDDL were not in wide use when the SIOC explorer
was developed in 2007. (4) The application logic is distributed across the pri-
mary application logic component, the data interface, the rules of the integration
service and the code which controls the crawler.

4 Mitigating the software engineering challenges

We propose two approaches for mitigating these challenges. The first approach
proposes an architectural solution by delegating generic components to external
service providers thus simplifying the application. The second approach is to pro-
vide better software engineering support with components provided by software
frameworks for rapid assembling and customising of complete applications. Both
approaches use modularisation to delegate the implementation of some Semantic
Web capabilities to components which are provided either by an external service
or by a software framework.

4.1 Delegating generic components to external providers

The majority (72%) of surveyed applications implement an integration service,
and in section 3.1 we have discussed the issues involved in integrating noisy data
even if all sources support RDF. One possible approach to mitigate the identified
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Fig. 3. Simplified Semantic Web application architecture after delegating data discovery,
aggregation and integration to an integration provider

challenges is the delegation of generic data discovery, data aggregation and data
integration to external providers.

In this way, external integration providers can provide the functionality of
the integration service, search service and crawler. They provide high value services
such as data aggregation and integration, which can be exploited by integration
consumers. If the cost of discovering, aggregating and integration data on a
Web scale is to high for some domains, the integration consumers can benefit
from economies of scale when using external integration provider. Figure 3 shows
the resulting simplified application architecture. Current search engines already
provide APIs which can be utilised to search the whole web or just one specific
site, however they lack the capabilities of Semantic Web technologies.

Delegating data integration to external providers can eliminate the need for
(1) integration of semantic data if the application only needs generic services,
like object consolidation based on inverse functional properties. As new (2) stan-
dards and best practices for discovering, publishing and updating of data become
available, these only need to be implemented by the integration provider with-
out affecting the integration consumer. The (3) mismatch of components is
not affected by this, if SPARQL is efficient enough for the application. If domain
specific integration of data is required, then different integration providers could
provide specialised integration services for individual domains, just like generic
and domain specific search engines exist today. However, (4) distributing appli-
cation logic remains a challenge, as specialised and domain specific queries can
contain important parts of the application logic.

The SIOC explorer can benefit from this approach by delegating the crawler
which aggregates SIOC data from the different weblogs and forums, to an exter-
nal integration provider such as Sindice [22], which continuously discovers and
aggregates SIOC data and performs generic integration services such as object
consolidation. This removes two components from the architecture, and allows the
application to be purely implemented in Ruby thus eliminating API mismatches.
All SIOC data would need to be accessed from Sindice via SPARQL, after which
it can be stored in a local persistent store.

4.2 Assembling complete applications from components

While not explicitly described, most surveyed applications are at least partially
created on a case-by-case basis: not just the application specific logic is imple-
mented by a software engineer, but also at least one other component of the
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application. Very often the user interface, integration service or the crawler are
custom made for the specific application. The survey shows that most applications
are implemented with more then one programming language, which indicates that
most applications are assembled from components with API mismatches.

Software frameworks provide the infrastructure for applications in the form
of templates, components and libraries. The provision of software frameworks for
implementing Semantic Web technologies has the potential to address all of the
identified issues to a certain degree: (1) generic data integration can be provided
through libraries provided by the framework. (2) the mismatch of components
can be addressed if the framework provides all the components which are neces-
sary to assemble a Semantic Web application, and if all parts of the framework
provide APIs for the same programming languages. (3) New standards and best
practices, e.g. for data discovery or publication, can be implemented as part of
the framework, thus alleviating the need for the application programmer to im-
plement them. (4) Distribution of application logic can be addressed through the
framework by providing a central point for implementing the application logic,
which can control and customise all of the components.

Similar benefits are already provided by modern Web application frameworks
such as Ruby on Rails for Ruby, PHPCake for PHP and Django for Python. The
Semantic Web Application Framework (SWAF) [19] provides a first step towards
providing components for assembling and customising a complete Semantic Web
application.

5 Related work

Our methodology is adapted from [23], which uses six cases studies of software
systems as the basis for introducing the basic concepts of software architecture.
This is used as the foundation for identifying the most important general chal-
lenges for the design of complex software systems which are constructed from
many components. We adapt this approach for the field of Semantic Web tech-
nologies. The challenges which we identify are based on a survey of 98 Semantic
Web applications.

Other empirical surveys about Semantic Web applications are publicly avail-
able, however they are not concerned with the software architecture and specific
implementation details of concrete applications. Thus they provide no empirical
basis for identifying the main challenges of implementing Semantic Web tech-
nologies. [24] presents the results of a survey of 627 Semantic Web researchers
and practitioners done in January 2007. The questions from the survey cover
the categories of demographics, tools, languages and ontologies. It tries to char-
acterise the uptake of Semantic Web technologies and the types of uses cases
for which they are deployed. Another similar survey of 161 researchers and 96
application-oriented participants was published online in 2009(http://preview.
tinyurl.com/semweb-company-austria-survey).

[25] performs a survey and architectural analysis of 35 applications from the
“Semantic Web challenges” in 2003, 2004 and 2005. The result is a prescriptive
software architecture for Semantic Web applications described with UML. How-
ever, the results of the survey do not identify any software engineering challenges
for implementing Semantic Web technologies.

While no other empirical analysis of the challenges of implementing Seman-
tic Web applications exist, the ONTOCOM project [7] provides a detailed cost
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estimation model for ontology development projects. We do not provide a cost es-
timate model for software engineering of Semantic Web applications. However, our
identification of the main challenges in implementing such applications provides
the basis for future research on establishing such cost estimation models.

6 Conclusion

Semantic Web technologies enable new benefits such as semantically structured
machine-readable data and the integration of data from multiple, heterogeneous
sources. However, adopting new technologies adds effort resulting from implement-
ing the new standards and their associated functionality. We have conducted an
empirical survey of Semantic Web applications, which we have used to propose a
reference architecture for Semantic Web applications, and for identifying the main
challenges which are introduced by implementing Semantic Web technologies: the
issues involved in integrating noisy and heterogeneous data, the mismatch of data
models and APIs between components, immature and belated best practices and
standards, and the distribution of application logic across components. These
challenges have been an obstacle for the development of applications exploiting
Semantic Web technologies. Two possible approaches for mitigating these chal-
lenges are: the simplification of the application architecture by delegating data
integration to an external service provider, and assembling and customising of
components provided by software frameworks.

The ecosystem of the emerging Web of Data will be based on integration
providers and integration consumers. Integration providers provide access to data
which has been discovered, aggregated and integrated in a generic way or which
caters to a specific domain. Integration consumers will utilise these services to
provide their users with benefits which are enabled by the Web of Data and by
the integration providers. Data will be published and discovered according to
community and industry best practices, which are increasingly implemented by
ready-made components. The identified challenges and potential solutions enable
future research to better assess the costs of adopting Semantic Web technologies
within enterprises, and form the basis for designing better software frameworks
and software architecture for exploiting the emerging Web of Data.
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21. Bōjars, U., Heitmann, B., Oren, E.: A Prototype to Explore Content and Context on
Social Community Sites. In: Proceedings of the International Conference on Social
Semantic Web (CSSW). (2007)

22. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: A document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies (2008)

23. Garlan, D., Shaw, M.: An introduction to Software Architecture. Advances in
Software Engineering and Knowledge Engineering 1 (1993) 1–40

24. Cardoso, J.: The Semantic Web Vision: Where Are We? IEEE Intelligent Systems
22 (2007) 84–88

25. Cunha, L.M., de Lucena, C.J.P.: Cluster The Semantic Web Challenges Applica-
tions: Architecture and Metadata Overview. Technical report, Pontificia Universi-
dade Catolica do Rio de Janeiro (2006)

SWESE 2009: 5th International Workshop on Semantic Web Enabled Software Engineering

30



 

 

Fly-By-OWL: A Framework for Ontology Driven       

E-commerce Websites 

Azhar Jassal, David Bell 

Fluidity Research Group 

Brunel University, Uxbridge, West London, UB8 3PH, UK  

{Azhar.Jassal, David.Bell}@brunel.ac.uk 

Abstract: Fly-By-OWL allows Web developers to create “ontology-driven” E-

commerce websites that can harness live reasoning. It aims to make the 

Semantic Web‟s underlying technologies (ontologies and reasoning) relevant to 

Web developers. To demonstrate Fly-By-OWL, the “Semantic Pizza Store” is 

presented, an example store that uses the output of the pizza ontology tutorial as 

its knowledge base. By making use of inferences, products can be categorised 

dynamically and product customisation can rely upon consistency rather than 

hard-coded rules. 

Keywords:  Ontology, Semantic Web, OWL, Web Application, CGI, Dynamic 

Website, E-commerce, LAMP, Database, DBMS, Pizza 

1. Introduction 

The World Wide Web was the “killer app” that spread the internet to every home and 

office across the world. In the beginning, a website was just a collection of 

interlinking pages written in Hypertext Mark-up Language (HTML). The introduction 

of the Common Gateway Interface (CGI) specification in 1993 allowed a website to 

become both dynamic and interactive. From then on the design of a Web page could 

be separated from its content. Pages were no longer static; they were generated on-

the-fly with content that was customised for each user‟s request. This spurred the 

advent of a whole range of Web applications, allowing everything from Web-based 

email (the original HoTMaiL) and e-commerce sites (Amazon) to become possible. 

While many technologies exist today that allow programming for the Web, from 

servlets to dynamic scripting languages, it was CGI that long ago led the way. With 

the design of a website separated from its content, relational databases found their 

place as the default backend of Web applications.  

 

The extensive features provided by a fully fledged database management system 

(DBMS) made them the Web developer‟s default choice for not just data but all 

content handling. From the advent of the dynamic website to the present day, 

databases are used to hold everything needed to feed a Web application, from user 

details and visitor information, to content such as product information for an e-

commerce store and the messages that somebody posts on their Blog. It is databases 
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that hold the content that feeds today‟s Web. Yet, the Web itself has held limits that 

stem from its original design, by being based upon Hypertext Mark-up Language 

(HTML), nothing is said about what the data is for, i.e. about its semantics [1]. The 

biggest problem with the Web is that “information is dumb; the data contained in 

websites does not know what it is” [2]. To address this, the Semantic Web project was 

initiated in 2001 and aimed to bring structure to the meaningful content of Web pages 

[3]. 

 

The paper begins by analysing if Semantic Web technologies have found any 

utilisation within the backend of a present day Web application. Related work is 

discussed, noting the position of ontologies within those Web applications and their 

significance to its overall operation. Fly-By-OWL is then introduced; a framework 

that allows developers to create “ontology-driven” Web applications that can harness 

the potential of live reasoning. The first implementation of Fly-By-OWL focuses on 

an e-commerce context, by specifically allowing developers to create “ontology-

driven” business-to-consumer (B2C) e-commerce websites. The e-commerce context 

is chosen to “emphasise upon practical application” which is necessary to work 

towards the widespread adoption of the Semantic Web [4]. The framework is then 

demonstrated with the “Semantic Pizza Store”, which uses the ontology output from 

the Protégé pizza tutorial [5]. 

2. Finding a place for Semantics in Today’s Web 

It has been almost 20 years since the initial advent of the Web. According to the 

Netcraft Web Server Survey (July 2009), there are now 240 million hostnames 

running a publicly accessible Web server, compared to 24 million in October 2000 

[6]. With 8 years passed since the commencement of the Semantic Web project, how 

many mainstream Web applications are now employing Semantic technologies? And 

where have developers, those responsible for serving relevance to real users, 

positioned them within their Web applications? O‟Reily [7] wrote that “the Internet is 

the most striking example of a marketplace, full of economic opportunity, which has 

grown out of the open-source software community”. As of July 2009, Apache, an 

open source Web server, holds the dominant 47% share of the market [6] and forms 

part of the larger LAMP stack for Web applications. LAMP is a free open-source 

software bundle which provides the principal components used to build a viable 

general purpose web server. Once mostly used for small-scale Web development, it 

has advanced its way into mainstream corporate software development, being used by 

Google and Yahoo to build search applications, while Lufthansa and the Sabre Travel 

Network used it to develop travel reservations systems [8]. 

 

In order to gather a snapshot of how developers are using Semantic technologies, six 

popular LAMP based projects with highly active user communities are analysed in 

Table 1, to determine whether any features of these packages utilise ontologies. 
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Support is categorised as either: standard (official feature), planned in roadmap 

(upcoming standard feature) or unofficial add-on (community maintained 

contribution). 

 
Table 1. Ontology utilisation within six widely used LAMP based Web applications 

Project Description S
ta

n
d

a
rd

 

R
o
a
d

m
a
p

  

A
d

d
-o

n
 

Drupal Content Management System (CMS) used as a back-

end for websites. Is followed by over 550,000 

registered users and is used by thousands of websites. 

User contributed add-on: Drupal SIOC 

   

Joomla Another CMS, used as a back-end to websites. Like 

Drupal, used by many prominent websites, followed 

by over 300,000 registered users. User contributed 

add-on: GoodRelation’s for VirtueMart (a Joomla e-

commerce extension) 

   

phpBB Most widely used open-source bulletin board system 

in the world, followed by over 350,000 registered 

users. User contributed add-on: phpBB SIOC 

   

osCommerce  Open source out-of-the-box e-commerce solution 

with a community of 210,000 registered users. User 

contributed add-on: GoodRelation’s 

   

vBulletin Commercial bulletin board software used by 

thousands of websites, followed by a community of 

200,000 registered users. User contributed add-on: 

vBulletin SIOC 

   

WordPress Open source blog publishing application and CMS 

used by millions of websites. User contributed add-

on: WordPress SIOC 

   

 

In an effort to find answers to the two questions posed beforehand, these six popular 

LAMP based Web applications were examined. The results show a clear picture, 

while all of the applications have a community contributed add-on that utilises 

ontologies in one form or another; the actual developers of the applications have no 

plans to use ontologies within a standard feature. This makes a simple fact apparent: 

while the Semantic Web does have an active research community that wishes to 

captivate the use of it‟s technologies within these projects, the technologies 

themselves have not proved their present real world benefit to developers. McBride 

[4] wrote that in order to step towards widespread adoption of Semantic Web 

technologies, we must “emphasise practical applications” and that we must start to 

“develop applications now”. That was 7 years ago and while the Web continues to 

show unprecedented growth, the same unfortunately cannot be said about the 

Semantic Web. It has still not made any impact that can be felt by a real world Web 

user, i.e. common man. 
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What these six popular Web applications share in common is that they are all 

“database-driven”. The LAMP stack itself positions the database as a fundamental 

building block of a Web application, with the “M” in LAMP standing for MySQL, an 

open source DBMS. The initial advent of dynamic websites, where design could be 

separated from content, was a giant leap. With it, the DBMS became the default 

“content-handler”, and so it seems what was made default with that great leap, has 

continued to remain default into the present day. The Web, above any other 

development platforms before it, is led by example. This can be blamed to being a by-

product of its rapid growth. In 2004, the World Wide Web Consortium (W3C) 

selected a standard ontology language, OWL (Web Ontology Language). It is based 

upon Description Logic (DL) and exploits existing work on languages such as OIL 

and DAML+OIL [9]. With an ontology language chosen, it would have been expected 

for some Web applications to begin to adopt ontologies as their knowledge bases over 

a DBMS, but ontologies have still not become the backend to any noticeable real 

world Web application. 

 

With Semantic technologies still not being accommodated for, is the Web of today 

any different from when CGI first made its advent? Perhaps the Web has been stuck 

in an endless loop; by using in essence the same building blocks from the advent of 

CGI that cannot accommodate semantics. Rob McCool, the author of “httpd” which 

later became Apache wrote that “without radical simplification, the Semantic Web 

will continue to see limited participation and few compelling applications” [10]. In 

order to move the field forward, this paper proposes an approach for creating 

“ontology driven” e-commerce websites that goes back to basics. It focuses upon 

being directly relevant to a general purpose Web developer. It allows novice Web 

developers to harness ontologies as their primary knowledge base, rather than a 

DBMS and make use of live reasoning. By allowing developers to “begin developing 

now” and by “emphasising practical applications” [4], it aims to progress adoption of 

the Semantic Web by making its underlying technologies more relevant to Web 

developers, as they build the applications that are relevant to real Web users. 

3. Ontology utilisation within Web Applications 

As can be seen in Table 1, the Semantic Web community has been active in 

contributing add-ons for popular Web applications that enable them to make some 

utilisation of Semantic technologies. An add-on or extension is an optional 

component, and installed by a user to add specific functionality that the developers 

did not deem significant enough to have to offer as standard. The Semantically-

Interlinked Communities (SIOC) Initiative uses an ontology to represent “social data” 

in RDF [11]. By offering add-on‟s for four of the six Web applications listed in Table 

1, large ontologies would be generated by exporting content. By offering its add-on 

“exporters” for various applications, SIOC envisions being able to interlink these 

“independent” and separated communities. The ontologies themselves do not play any 

role vital to the function of the overall Web applications, and serve a different purpose 

to the scope of the “ontology-driven” progression being proposed by this paper. 
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The remaining two Web applications listed in Table 1 make their ontology utilisation 

with GoodRelation‟s, a lightweight ontology for annotating e-commerce offerings 

[12]. GoodRelation‟s provides a vocabulary for describing the types of goods and the 

terms and conditions of items and services offered on the Web. It is an accepted 

vocabulary of Yahoo! SearchMonkey, to accommodate structured data for their 

search engine. The add-on‟s for the e-commerce Web applications (an extension in 

the case of Joomla) generate structured data following the GoodRelation‟s vocabulary 

from the product data already present within the Web applications back-end database. 

GoodRelation‟s provides a suitable vocabulary for the knowledge base of an 

“ontology-driven” e-commerce Web application. This paper focuses on a framework 

that allows the creation of such websites, where the Web developer is free to choose 

the most appropriate vocabulary for their knowledge base. While SOIC and 

GoodRelation‟s were projects that happened to contribute add-on‟s, there are also 

other projects that concern using ontologies within Web applications. 

 

Stojanovic et al. [13] provides a reverse engineering approach to migrating data-

intensive websites to the Semantic Web. By transforming a present day back-end 

relational database model into corresponding ontological structures, content is 

mapped from the database into an ontology. OntoWeaver, a website design 

framework, uses ontologies to drive the design and development of data-intensive 

websites [14]. OntoWebber is a model-driven ontology-based system architecture for 

creating data intensive Web sites and portals [15]. Of these projects, the most closely 

related to the scope of this paper is OntoWiki, an open source semantic wiki Web 

application which facilitates the visual representation of a knowledge base as 

information maps [16]. Within OntoWiki, Erfurt is being developed, a Semantic Web 

toolkit with a native reasoner (and DIG capabilities) for the PHP programming 

language. While the context is wiki‟s, the usage of ontologies as the primary 

knowledge base that drives the Web application makes it the most relevant to this 

paper. The simultaneous creation of a Semantic toolkit for PHP, which along with 

Perl and Python makes the “P” in LAMP, could be another vital element in enabling 

Semantic technologies to find a more prominent position within Web applications. 

 

Bearing in mind the call for “rapid simplification” or the Semantic Web having to 

face limited partition [17], we present a framework that goes back to basics and 

focuses on being relevant to even casual Web developers. By bringing together the 

standard ontology language (OWL), semantic reasoners (e.g. FaCT++, Pellet) and 

ontology editors (e.g. Protégé), the Fly-By-OWL framework allows the most novice 

Web developer to create an “ontology-driven” e-commerce website. It allows Web 

developers to harness the artificial intelligence (AI) capabilities provided by 

reasoning in their websites.  It introduces the “ontology-driven” concept in an e-

commerce context to “emphasise upon practical application” [4].  With Fly-By-OWL, 

developers can manipulate a knowledge base (with live reasoning on-the-fly) just as 

their applications would have previously interacted with a DBMS. Fly-By-OWL aims 

to make the creation of “ontology-driven” websites a possibility for even casual Web 

developers and practically demonstrate the leap provided by using ontologies over 

present day means. To the best of our knowledge, the implementation will be the first 
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to allow an everyday Web user to interact with an OWL knowledge base with live 

reasoning within some context, e.g. e-commerce. Allowing Web developers to 

harness the abilities of a reasoner and progressing from “database-driven” to 

“ontology-driven” will allow us to step closer to the Semantic Web. 

4. Fly-By-OWL: Ontology Driven Websites 

The Fly-By-OWL framework allows even a novice Web developer to create 

“ontology-driven” Web applications. The initial implementation of the framework 

focuses on using it to create e-commerce stores. With product information presently 

held in a database, a Web developer would write a catalogue/ shopping cart which 

would interact with a DBMS. Fly-By-OWL presents the Web developer with a data-

model of an OWL knowledge base (with inferences) which can then be presented 

through HTML however the developer envisions. The knowledge base can be queried 

using Manchester Syntax [18].  Using ontologies allows limitations imposed by the 

present day “database-driven” approach to be overcome. For example, product‟s can 

be categorised on-the-fly using equivalent classes in the ontology, by using reasoning 

and inferences which place products within appropriate categories. Product 

specifications can be customised without any hard coded rules as reasoning can 

indicate whether a class is now inconsistent.  

 

Figure 1: Fly-By-OWL Framework 

The framework is compromised of three layers (see Fig. 1) and uses a Model-View-

Controller (MVC) pattern to isolate “content”, in essence business logic (the 

knowledge base) from “design”. While the framework is able to produce output in 
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either HTML (Web browser, for humans) or XML (Web services, for machines), the 

first implementation focuses on HTML, to “emphasise upon practical application” [4] 

within the context of e-commerce websites. Fly-By-OWL requires a live constant 

connection (over DIG) to a reasoner, which runs as the backend reasoning server. 

4.1 Bottom Layer: Knowledge Base (Ontology) 
 

The bottom layer of the framework compromises of the ontology itself. The 

knowledge base can be created in Protégé, an open source ontology editor. The 

implementation of the framework supports both OWL and OWL 2 ontologies. In a 

present day Web application, the knowledge base could be served by anything from a 

flat file up to a DBMS. By using an ontology, artificial intelligence capabilities can be 

harnessed by the Web developer that with semantics, are more rich in scope and 

ability when compared to present day means.  

 

4.2 Middle Layer: Data-model Generator 
 

The middle layer of the framework interacts with the knowledge base and a reasoner 

(over DIG) to generate a data-model. Whereas the behind-the-scenes of a current day 

dynamic website may use a DBMS as a database server, Fly-By-OWL uses FaCT++ 

as a reasoning server. Once inferences have been made, the data-model is generated 

following a set specification. A custom query in Manchester Syntax can be passed 

into this layer. If one is received, it is made equivalent to a temporary class which is 

added to the knowledge base that holds results after reasoning. 

 

4.3 Top Layer: Template Engine 
 

The top layer of the framework uses FreeMarker [19] as the template engine and is 

able to produce output for either a website (HTML) or Web service (XML). The 

output is customised by scripting templates in either HTML or XML with the 

FreeMarker Template Language (FTL). FTL allows the user to manipulate and fetch 

elements from the data-model. The Web developer can place these elements however 

they envision through the use of templates. Template “modules” are created that each 

present both different information and functionality to a user.  

 

4.4 Template modules 
 

Template modules allow a Web developer to create a Web application with Fly-By-

OWL just as they would with any other dynamic scripting language (e.g. PHP, ASP, 

and JSP). For example, the template module “index” may contain an initial welcome 

page to the website, whereas the template module “products” may list items and the 

module “customise” may provide the functionality to enable a user to customise a 

products properties (with reasoning used to check for consistency). Using modules 

makes creating a website with Fly-By-OWL no different from how Web applications 

have always been created with dynamic scripting languages. Pages hold individual 

functionality, and once interlinked create a complete Web application. Some 
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examples of these individual pages can be: “home” (home page), “catalogue” 

(product catalogue), “cart” (visitors shopping cart), “checkout” (start of checkout), 

“complete” (end of checkout). 

 

4.5 Fly-By-OWL in practice 
 

To illustrate how Fly-By-OWL works in practice, Fig. 2 displays the inferred class 

hierarchy of the ontology output from the Protégé pizza tutorial [5]. Here, the 

“NonVegetarianPizza” class shows its inferred results; pizzas that contain a meat or 

seafood topping. From an e-business perspective, a Web developer may want to use 

the inferred results of this class as a non-vegetarian category on a pizza ordering e-

commerce website.  

 

 
Figure 2: The pizza ontology tutorial (inferred class hierarchy) 

 

By using FTL, “NonVegetarianPizza” can be found in the data model. Iterating 

through its contents will allow a Web developer to display the pizzas that contain a 

meat or seafood through a “dynamic category”. The category is dynamic as the pizzas 

within it have not been specified by humans, but are placed there due to their 

properties and through inference. An excerpt from a template which makes use of the 

inferred results of the “NonVegetarianPizza” class, written in HTML with FTL 

scripting can be seen in Fig. 3. This is a code snippet from the “pizzas” page of the 

“Semantic Pizza Store” (discussed further in section 1.4). It demonstrates how to 

The inferred non-

vegetarian pizzas 

are output in a 

web page using 

the FTL code 

snippet in Fig. 3 
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output the inferred subclasses of “NonVegetarianPizza”. Following the data-model 

specification, elements can be retrieved from the knowledge base and output to the 

user. The code snippet in Fig. 3 iterates through the data-model at 

“NonVegetarianPizza”, displaying a box for each pizza, made from a table that 

contains its name and toppings (inferred pure classes). FTL provides all of the 

common calls a Web programmer would require, such as „if‟ and „else‟ clauses, „for‟ 

and „while‟ loops, among many other functions that allow the manipulation of the 

data-model. 

 

 
Figure 3: Snippet of the Pizza template module (FTL in red) 

 

The first implementation of the Fly-By-OWL framework focuses on using it to create 

ontology driven business-to-consumer (B2C) e-commerce stores. This context was 

chosen as it can demonstrate in practice the benefits gained from being “ontology-

driven”. Developers can explore the advanced product handling abilities gained by 

being able to reason and make inferences, and not have to rely on hard coded rules. 

The stores created using Fly-By-OWL will be the Web‟s first ontology driven 

websites in real world context that require live reasoning to produce every page of 

output. By placing ontologies in real world Web context, the framework aims to make 

them relevant to Web developers. Once a product ontology has been prepared, for 

instance in Protégé, a Web developer must then create appropriate templates that 

showcase the products and allow the user to undertake common e-commerce store 

functions (such as browsing products, viewing additional product details). The 

implementation of the framework includes functionality within it that provides 

common features expected in an off-the-shelf e-commerce platform, such as a 

shopping cart, which is accommodated within the specification of the data-model.  

<#set whichClass = NonVegetarianPizza> 

<#list whichClass?keys as pizzaName> 

<table> 

<tr> 

<td><b>${pizzaName}</b></td> 

</tr> 

<tr><td> 

<table> 

<tr><td> 

 

<!-- Toppings //--> 

<table> 

        <#list whichClass[pizzaName].PureClasses?keys as topping> 

<tr> 

<td>${topping}</td> 

</tr> 

</#list> 

</table> 

<!-- End Toppings //--> 

 

</td></tr> 

</table> 

</td></tr> 

</table> 

</#list> 
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5. Semantic Pizza Store 

The example store that has been created to demonstrate the framework and its 

capabilities is the “Semantic Pizza Store”, based upon the output of the well known 

pizza ontology tutorial, written in Manchester by Matthew Horridge. The tutorial 

teaches ontological concepts to new Protégé users [5]. The ontology output from 

following the tutorial is used as the knowledge base for the store. The pizzas are 

offered for sale, with live inferences being made to categorise pizzas as Vegetarian, 

Non-Vegetarian, Spicy, etc and allowing the user to customise standard pizzas and 

create their own. The knowledge base can be queried on the fly in “Manchester 

Syntax”, for example requesting all pizza‟s from a specific country or of a certain 

spiciness. The queries can be either input by the user and POST, or they can be passed 

in via an encoded URL in a GET request. The “Semantic Pizza Store” demonstrates 

both how ontologies are appropriate as the backend knowledge base to sell the 

products in question, pizzas and how they overcome the limitations of a product 

database. Fig. 4 shows a screen capture of the home page of the “Semantic Pizza 

Store”. 

 

 
Figure 4: Screen capture of the “Semantic Pizza Store” home page 

 

The popularity of the pizza ontology tutorial makes it appropriate to use in 

demonstrating Fly-By-OWL. Its concepts will be familiar to most researchers in the 

field. Fig. 4 shows the home page module (“index”) of the “Semantic Pizza Store”. 

The pizza subclasses are fetched from the knowledge base and displayed as clickable 

boxes, acting as “dynamic categories”, allowing the user to browse pizza‟s of those 

types. The results of these classes are inferred. A user can query the knowledge base 
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in Manchester Syntax, and toppings are displayed so a user can begin to create their 

own pizza. Additional functionalities of the “Semantic Pizza Store” include 

customising the preset pizzas, creating half and half‟s and adding pizzas to a shopping 

cart from where the user can proceed to a checkout, among other functionality 

expected in a typical online pizza ordering service. The template modules of the 

example store are all written in HTML and make use of CSS and JavaScript, similar 

to other current day websites. The data-model is manipulated through FTL scripting, 

as was shown in the code snippet in Fig. 3. 

 

The source code of the templates that are used by the “Semantic Pizza Store” is 

viewable online at the Fly-By-OWL website. Fig. 5 shows the pizza module, 

displaying the subclasses of “NonVegetarianPizza” (results inferred). It is using the 

code snippet from Fig. 3 to generate the pizza description boxes. The objective of the 

example store is to present the capabilities of the framework to Web developers. The 

framework itself can handle any OWL or OWL 2 ontology that is loaded as the 

knowledge base. The framework does not treat the pizza ontology different to any 

other knowledge base. To create a store using the Fly-By-OWL framework, a Web 

developer must upload their ontology and then create appropriate template modules 

using the data-model specifications and FTL scripting. This allows a Web developer 

to present the concepts within the knowledge base however they best envision.  

 

 
Figure 5: “Semantic Pizza Store” viewing the NonVegetarianPizza class (results inferred) 

 

Fly-By-OWL allows the creation of “ontology-driven” e-commerce websites while 

emphasising its practical relevance to web developers. During development, the pages 

output to a user were all generated in under one second. The lengthiest operations 
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within a page load are reading the ontology itself and the generation of the data 

model. While Web application platforms are generally tried-and-tested, the 

“ontology-driven” with live reasoning concept is new and further research is required 

to understand how it will cope under various loads, and the hardware/ software setup 

required to best handle such traffic. Performance monitoring a Fly-By-OWL store 

under various traffic loads has been identified as a further research topic. The size of 

the ontology being used as the knowledge base and it‟s affect on load times will also 

be studied. With further development of the platform‟s architecture, load times are 

intended to be comparable to any database-driven Web application. 

6. Research agenda 

With the first implementation of Fly-By-OWL focused towards an e-commerce 

context, research questions arise in regards to how the “ontology-driven” concept will 

cope against traditional tried-and-tested back-ends (e.g. a DBMS). A number of 

research questions arise in regards to its real-world usage and further development. 

 

 How are page load times affected by traffic? 

 How are page load times affected by size of the knowledge base ontology? 

 What types of ontology will be used as the knowledge base? E.g. 

GoodRelation‟s vocabulary and how will they be handled by Fly-By-OWL? 

 How should the platform be expanded beyond the e-commerce context and 

become more applicable for general Web applications? 

 What kind of Web services can be created by using XML templates with 

FTL scripting and how should they harness reasoning? 

7. Conclusion 

This paper has presented Fly-By-OWL, a framework that enables the creation of 

“ontology-driven” Web applications, with its first implementation aimed specifically 

towards e-commerce stores. By following calls for “rapid simplification” of the 

Semantic Web, this paper aims to make ontologies relevant to Web developers. By 

starting with an analysis of ontology usage within six popular LAMP based Web 

applications, it became apparent that the developers of those applications found no 

place for ontologies within any standard or road mapped feature. While the Semantic 

Web community was active in creating add-on‟s for those applications that allowed 

them to make use of ontologies in some form, the scope of their depth was trivial and 

they did not play any role vital to the operation of the applications. With Fly-By-

OWL, e-commerce store‟s can be created for the present day Web that are driven by 

an ontology. With live reasoning, present day limitations experienced when using a 

database can be overcome. The paper demonstrated some features such as using 

inferences to dynamically categorise products and customising products without hard 

coded rules but verifying consistency. The paper also showcased the “Semantic Pizza 
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Store”, an example e-commerce store based upon the pizza ontology tutorial created 

to demonstrate the framework. A research agenda has been formulated that looks to 

address some of the initial questions posed by the “ontology-driven” concept and how 

to further Fly-By-OWL‟s overall relevance and scope. 

8. Project on the Web 

The Fly-By-OWL project website and the “Semantic Pizza Store” are hosted at 

Brunel University, U.K. and can be found online at http://www.flybyowl.org. You are 

welcome to use the framework to create your own “ontology-driven” e-commerce 

stores and interact with our online community. 
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Abstract. This paper formalizes several independent approaches on
how to develop Semantic Web applications using object-oriented pro-
gramming languages and Object-Triple Mapping. Using such mapping,
Semantic Web applications have been developed up to three times faster
compared to traditional Semantic Web software engineering. Results
show that at the same time, developer satisfaction has been significantly
higher if they used object triple mapping. We present a formal notation
of object triple mapping and results of an experimental evaluation clearly
showing the benefits of such mapping. The work presented here may one
day help to make Semantic Web technologies part of the majority of
future applications.

1 Introduction

Using and handling RDF data in software is not trivial to implement, especially
with regards to the large number of best practices to consider. Before even that,
developers need to learn about RDF concepts and how to deal with them using
RDF programming libraries [1]. For many tasks, additional knowledge about
RDF schema and OWL is required. This makes getting started with the Semantic
Web quite a challenge for Semantic Web beginners and entry-level developers.

In general, two issues with current Semantic Web programming libraries can
be identified: First, their complete potential is always visible to developers, in-
stead of by default only revealing those parts that would be sufficient for a major-
ity of implementation problems. Second, lots of RDF- and Linked Data-related
implementation tasks, such as discovery, retrieval, and publishing of datasets
need to be implemented by hand, resulting in huge implementation efforts even
for relatively small implementation problem (cf. Section 4).

A promising approach for simplifying Semantic Web software development
is Object Triple Mapping (OTM) [2, 3]. There do exist some OTM implementa-
tions, and also some research on its expressivity (cf. Section 2). However, there
is no research on the actual building blocks needed to develop Semantic Web
applications on top of existing RDF programming libraries, and there is no re-
search on whether, or how OTM actually simplifies application development.
With our work, we are confident to lay out guidelines for the development of
future, easy-to-use Semantic Web programming libraries.
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In Section 3, wie formalize OTM and extend it by a small pseudo-code vocab-
ulary describing linked data functionality. This formalization is a starting point
for further research in this important area. We used the formalization for an
experimental evaluation of the benefits of OTM. The results of this evaluation
are presented in Section 4. Section 5 concludes the paper.

2 Related work

Linked Data has become one of the most popular topics among the emerging
Semantic Web [4]. Best practices need to be identified and described, how to effi-
ciently implement linked data applications. Design patterns formalize such best
practices; not as programming libraries, but as solutions to frequently recur-
ring problems. They have been introduced to software engineering by [5]. In the
world of relational database management systems, widely-used design patterns
on object-relational mapping (ORM) have been identified [6]. These patterns
allow developers to simply instantiate objects, and they are automatically filled
with contents from a relational database. Modifications to these objects will
automatically be persisted in the database.

The need of simplifying Semantic Web software engineering in a similar way
to ORM has been identified in [2], and an implementation called So(m)mer,
based on meta-programming, is available1. Up to now, several other tools for
OTM have been inspired by object-relational mapping. The D2RQ Platform [7]
uses a declarative language to describe mappings between relational database
schemata and Semantic Web ontologies and lets clients access RDF views on
the underlying non-RDF data. Other approaches such as RDFReactor2 take
mappings between OO programming units and Semantic Web schemas and allow
software developers simplified access to a triple store. OntoJava [8] uses a similar
approach to use auto-generated inference rules inside application source code.
Winter [9] extends So(m)mer to allow for mappings of complex patterns instead
of plain RDF classes onto Java classes.

All these solutions and the research done around them focus on specific parts
of the approach chosen, such as feasibility and expressivity of such mapping, but
do not yet aim at supporting the whole process of discovering, retrieving, pro-
cessing, and re-publishing linked data, which will involve further steps such as,
e.g., policy or data license checking [10]. To overcome this situation we have iden-
tified the principles common to these solutions and formulated design patterns
for OTM, closely resembling ORM design patterns [3]. As our contribution in
this paper, we will formalize the design pattern and evaluate how actual software
can be built upon it.

1 https://sommer.dev.java.net/
2 http://semanticweb.org/wiki/RDFReactor
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3 Formalizing OTM

It is good practice to encapsulate business or domain logic in classes and methods
of object-oriented (OO) programming languages [6]. E.g., if a software product
deals with people and relations between them, the software’s object model likely
contains a Person class and friends field for this class. To use RDF data in most
OO programming languages, the mapping from RDF properties to the domain
classes’ fields has to be implemented by hand. Our hypothesis is that large parts
of this OO handling of RDF concepts, including discovery and retrieval on the
WWW, should be hidden from software engineers, making the development of
Semantic Web software much easier, and hence encouraging software developers
to actually start creating such software. In the following sections, we introduce a
formal notation of the knowledge representation in OO programming, a mapping
between RDF and OO concepts, and a simple pseudo-code vocabulary relevant
for building applications using such mapping.

3.1 Basic concepts

The RDF data model has an established formal notation building upon the
following concepts [1].

Definition 1 (RDF data model) Let U be the set of URI references, B an
infinite set of blank nodes, and L the set of literals.

– V := U ∪B ∪ L is the set of RDF nodes,
– R := (U ∪ B) × U × V is the set of all triples or statements, that is, arcs

connecting two nodes being labelled with a URI,
– any G ⊆ R is an RDF graph.

How RDF graphs are actually constructed, handled, and transferred is subject
to standards, conventions, and technical constraints. Linked data principles [4]
suggest to provide smaller sub-graphs describing individual resources. In [11],
an abstraction on top of these principles is described providing the whole Web
of Data as one huge graph. Hence, operating on RDF data involves not only
operating on triples and resources, but also retrieving the right sub-graphs of R,
which will be described in a later section.

For OO programming, there is no single established formal notation focusing
on the information representation part. Hence, we just use some basic formal
concepts to capture OO environments form the information representation per-
spective.

Definition 2 (OO data model) Let O be a set of object identifiers, F a set
of field names.

– S := P(O)F is the set of field assignments s : F → P(O),
– Q := SO the set of system states q : O → S.

SWESE 2009: 5th International Workshop on Semantic Web Enabled Software Engineering

47



A system state q ∈ Q maps each object o ∈ O onto a field assignment s :=
q(o) ∈ S, which in turn maps each field name f ∈ F onto the object’s values
s(f) ⊆ O for this field. Note that in our notation, a field assignment returns
sets of objects as field values. This allows to represent programming concepts
such as array or collection objects. Ordered lists and formal cardinality and type
restrictions (i.e., scalar-value fields or statically typed object definitions) on OO
data models are outside the scope of this paper but can easily represented on
top of our formalism if needed.

Example 1 (comparison of RDF and OO data model) Let p1, p2, p3 ∈ U
be URI denoting three people, n ∈ U be the URI foaf:name and k ∈ U be the
URI foaf:knows. An RDF graph describing p1 and p2 might look the following.

G :=
{
〈p1, n, “John Doe”〉, 〈p1, k, p2〉, 〈p1, k, p3〉, 〈p2, n, “Jane Doe”〉

}
Let us now have a look at this example from the OO perspective. Let o1, o2, o3 ∈
O be object identifiers denoting three people, name, friends ∈ F be field names,
q ∈ Q a system state, and s1 := q(o1), s2 := q(o2). The OO representation of G
will look the following.

s1(name) = {“John Doe”}
s2(name) = {“Jane Doe”}

s1(friends) = {o2, o3}

3.2 Mapping RDF and OO

In this sections we continue to use the set definitions from the previous section.

Definition 3 (Object triple mapping, OTM) An object triple mapping for
an RDF Graph R, fields F and objects O is some (G, mt, ma, q) such that

– G ⊆ R is an RDF graph
– mt : F ′ → U for mapped fields F ′ ⊆ F (the vocabulary map),
– ma : O′ → U for mapped objects O′ ⊆ O (the instance map)
– q ∈ Q a system state such that for all u ∈ U , o ∈ O′, f ∈ F ′ and s := q(o)
• |m−1

a (u) ∩ s(f)| ≤ 1
• |m−1

a (u) ∩ s(f)| = 1⇔ 〈ma(o), mt(f), u〉 ∈ R

Note that this definition does not require the instance map ma to be injective,
which would be desirable in many cases, at least from a software engineer’s
point of view. However, there might be different simultaneous OO representa-
tions oi of a single RDF resource u resulting from, e.g., different data licenses,
trust policies, or access control decisions. Hence, the injectivity of the actual
instance map presented to the developer should rather be ensured using addi-
tional formal representations of policies, contexts and the like, instead of being
a general requirement to the instance map. Also, our notion of OTM does not
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necessarily require a class map for RDF and OO, since many dynamically-typed
object-oriented programming languages do not have the notion of classes. For
statically-typed programming languages, an implementation of such class map
will however be required. Treating other RDF concepts such as lists or reifica-
tion, and also the semantics of RDFS and OWL are not part of this mapping,
but subject to OTM implementations.

Example 2 (OTM) To map RDF representations of people to the correspond-
ing OO representation (cf. example 1), we need

– a vocabulary map mt : name 7→ n, friends 7→ k;
– mapped objects o′1, o

′
2, o
′
3 ∈ O′ such that ma : o′1 7→ p1, o′2 7→ p2, o′3 7→ p3;

– a system state q ∈ Q and field assignments s′1 := q(o′1) and s′2 := q(o′2).

The mapped objects o′1, o
′
2 will exactly look like o1, o2 from example 1:

– s′1(name) = {“John Doe”} because 〈ma(o′1)︸ ︷︷ ︸
=p1

, mt(name)︸ ︷︷ ︸
=n

“John Doe”〉 ∈ G

– s′2(name) = {“Jane Doe”} because 〈ma(o′2)︸ ︷︷ ︸
=p2

, mt(name)︸ ︷︷ ︸
=n

“Jane Doe”〉 ∈ G

– s′1(friends) = {o′2, o′3}, because 〈ma(o′1)︸ ︷︷ ︸
=p1

, mt(friends)︸ ︷︷ ︸
=k

,ma(o′i)︸ ︷︷ ︸
=pi

〉 ∈ G.

Although several implementations of such mapping exist (cf. Section 2), for our
research we use our own OTM implementation, which is available licensed under
the GPL3. This implementation strictly follows the OTM design patterns derived
from object-relational patterns [3, 6].

3.3 Building Linked Data software

Building a linked data application using OO programming will involve handling
RDF resources as OO objects. There are only two ways to obtain objects from
resources, and we introduce the following pseudo-code notation for them:

– get(u) for u ∈ U : Request o ∈ O′ such that ma(o) = u;
– query(pattern): Request O′′ ⊆ O′ matching a pattern, using SPARQL.

From Definition 3, it is not clear how the RDF graph G is obtained. G will be
constructed during application execution using the follwoing ways.

– Directly query a triple store, e. g., using SPARQL,
– load(u) for u ∈ U : Ensure that the dereferenced graph Gu ⊆ G,

Following linked data principles, an OTM implementation can automatically call
load(u) on occurences of get(u). Just as this simplifies resource handling, two
more pseudo-code operations are required to build linked data applications.

3 http://projects.quasthoffs.de/otm-j
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– use(u) for u ∈ U : Set up the OTM implementation to use the dataset u,
i. e. evaluate the data license, and set up the SPARQL endpoint to be used.
Even further decisions can be made, such as deciding upon some statistics
whether to dereference single URIs for this dataset or rather to download a
data dump.

– publish(O′′) for O′′ ⊆ O: Publish objects as linked data, either by pro-
ducing serialized RDF files, or by hooking into some Web programming
framework. By configuring meta-data for publication such as licenses, sev-
eral checks, e. g. on license compatiblity, can be performed.

4 Evaluation

Our primary motivation for investigating OTM is to understand why Semantic
Web technologies have been picked up so hesistatingly by software developers,
and to show software developers how they can simply use and benefit from
these technologies. We asked software engineers with little or no experience in
Semantic Web software engineering (but yet sufficient programming skills) to
solve a problem using RDF data sources and programming libraries.

4.1 Setup

Each participant was assigned two tasks, one of which was to be solved without
OTM, and the other one using OTM. The order of the two tasks and the order of
using/not using OTM was randomized to ensure the results will not be distorted
by learning effects. Participants used the Eclipse programming environment and
the jUnit framework to test their results4. To simulate the usual work-flow of
Web programmers, we provided the participants with example source code of
similar solutions [12].

Tasks. The experiment dataset consisted of 12,726 fictious foaf:Person re-
sources, 100 foaf:Document resources, 15 foaf:Group resources, and 169 bldg:Room
resources5. Each document had between 2 and 4 authors, each group between 8
and 15 members, and each person knew a number of other people. All resources
could be dereferenced by their URI. The following tasks needed to be solved.

Task 1. Given a set of URI identifying documents, construct the set of all the
documents’ authors’ names.

Task 2. Given a URI identifying a person, construct the set of all person’s
friends’ friends’ names.

The participants were expected to find a solution close to the following pseudo-
code (using the vocabulary from Section 3.3), which was however not presented
to the participants.
4 http://eclipse.org/, http://junit.org/
5 foaf: http://xmlns.com/foaf/0.1/, bldg: http://example.org/buildings/
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Solution 1. GET_AUTHOR_NAMES(publication_uris):
load(dataset_uri)
for each uri in publication_uris

publication = get(uri)
for each person in publication.authors

return person.name
Solution 2. GET_SECOND_ORDER_FRIENDS(person_uri):

load(person_uri)
person = get(person_uri)
for each friend in person.friends

load(friend.uri)
for each friend2 in friend.friends

load(friend2.uri)
return friend2.name

4.2 Metrics

Difficulty. After each of the two assignments, participants were asked to esti-
mate the difficulty of the assigment, the maintainability of the resulting source
code, and how difficult a solution would have been using XML stores or RDBMS
instead of RDF, on a scale from 0 (trivial) to 10 (too hard). After the first as-
signment only (which randomly had to be solved either using OTM or without
OTM), participants were asked whether they see potential use of RDF in their
near-future projects. Along with these subjective measures, we tracked the time
required to find a working solution, and the number of edit-debug cycles.

Source code. Since OTM encapsulates large parts of RDF data handling it
is expected that solutions building on OTM will have less lines of code than
solutions than non-OTM solutions. To get a deeper understanding of how lines
of code will be reduced, we separately counted lines of code carrying

– language constructs such as loops, variable declarations etc.;
– RDF library initialization code, i. e. creation of or connection to data stores;
– data access code, i. e. imperative statements for URI handling such as get,

load, use, or query operations, (cf. Section 3.3), and RDF concept manip-
ulation using RDF libraries; and

– business or domain logic, i. e. lines of code manipulating domain objects
such as people, publications or names, e. g., by handling or accessing fields
of domain objects.

Feedback. Besides these rather quantitative metrics, we gathered feedback dur-
ing and after the experiment. In a questionnaire, we asked the participants to
identify the biggest problems during finding the solutions, and to name other
types of support they wished they had.
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4.3 Participants

Undergraduate computer science students at Hasso Plattner Institute, University
of Potsdam were invited to to participate in the experiment. Ten participants
aged 19 to 27 (mean 22.6) actually took part in the experiment. All participants
had between 4 and 9 years of programming experience (mean 6.6). According
to their estimation on a scale from 0 (none) to 10 (expert) prior to solving the
assignments, only three of them said having some basic knowledge about RDF,
the others none (mean 0.9). All participants were experienced with the Java
programming language (mean 5.4). Also, most participants had some experience
using traditional information stores such as XML documents (mean 3.4) and
RDBMS (mean 3.9).

4.4 Results

Difficulty. The results for developer satisfaction were surprisingly clear (Fig. 1).
Implementing the assignments was found to be significantly easier using OTM
(mean 2.4, σ = 1.8) than using the Jena RDF library only (mean 6.4, σ = 2.1).
Also, the participants judged their solution significantly easier to maintain (both
for themselves: 1.13, σ = 1.6, and if they let somebody else do it: 2.13, σ = 1.5),
if OTM had been used compared to non-OTM (means 4.3, σ = 1.8 and 5.9,
σ = 1.1). However, whether the first assignment was to be solved using OTM or
without OTM had no influence on the participants’ estimation of the difficulty of
integrating Semantic Web technologies in their own future projects (means 4 and
5). Regarding the estimated difficulties, we can eliminate variance by comparing
the differences of the difficulty of the implementation and the estimated difficul-
ties of alternative approaches using XML or RDBMS (Fig. 2). By means, the
non-OTM solution has been rated more difficult compared to traditional data
formats, whereas the OTM solution has been rated easier to implement than
traditional data formats. However, the differences for these relative difficulties
are not significant. For Task 1 (finding the names of publication authors), both
the number of edit cycles (non-OTM mean 29, σ = 6.6) and the time needed to
find the solution (mean 1.2 hours, σ = 0.5) was significantly lower using OTM
(8.8 edit-debug cycles, σ = 6.2 and 0.4 hours, σ = 0.2, Fig. 3). For Task 2
(finding the names of friends’ friends), the mean number of edit-debug cycles
was increased from 8 to 19, while the mean time needed to find the solution was
decreased from 0.6 hours (σ = 0.3) to 0.4 hours (σ = 0.4) using OTM. However,
the differences for Task 2 are not significant. The combined figures for Task 1
and Task 2 show that the number of edit-debug cycles remains stable, but the
development time has been decreased significantly using OTM. It is unclear why
the number of edit-debug cycles is larger for Task 2 using OTM. But since the
development time was not increased, we do not consider this a general weakness
of OTM. It will however be interesting to direct further research in this direction.

Source code. The figures for the source code metrics are clear again (Fig.
4). The overall lines of code are reduced from 20.9 (σ = 5.4) not using OTM
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Fig. 1. Difficulty (0 – easy, 10 – too hard) of implementing the solution, and estimated
difficulty of maintaining the result’s source code and using Semantic Web technologies
in future projects for non-OTM (white) and OTM (streaked). Error bars show 95% CI.

Fig. 2. The mean difference of the difficulty of implementing the solution and the
and estimated difficulties of implementing alternative solutions using XML and HTTP
or RDBMS is higher for non-OTM (white) solutions than for the OTM solutions
(streaked). Error bars show 95% CI.

to 11.3 (σ = 7.7) using OTM. The number of lines of code carrying language
constructs (mean 5.1 for non-OTM and 4.4 for OTM) and lines carrying business
and domain logic (means 5.1 and 3.5) remain about the same, no matter if
OTM is used or not. But lines of code for library initialization (non-OTM mean
4.8, σ = 1.8) and data access (12, σ = 5.4) are reduced significantly to 1.5
(σ = 1.4) and 2.8 (σ = 3.9) if OTM is used. This is plausible as using OTM no
objects simply representing vocabulary (such as Jena’s Property) or data access
interfaces (such as Jena’s StmtIterator) need to be instantiated. Additionally,
using our OTM implementation the load operation can be omitted, as on calls to
get and on field access load is called automatically. However, the main benefit
of these implicit calls is not reduced lines of code, but improved separation of
concerns, i. e. data access is separated from domain logic.

SWESE 2009: 5th International Workshop on Semantic Web Enabled Software Engineering

53



(a) number of edit-debug cycles (b) time in hours needed to find solu-
tion

Fig. 3. Depending on the implementation task, the number of edit-debug cycles can be
reduced significantly using OTM (streaked), compared to OTM (white), 3(a). OTM
can also significantly reduce the implementation time of Task 1. In spite of increased
number of edit-debug cycles for Task 2, the time needed to find the solution is not
increased, 3(b). Error bars show 95% CI.

Fig. 4. The significant decrease in lines of code using OTM is achieved by reducing
library initialization and data access code. Error bars show 95% CI.
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Qualitative Feedback. Asked for the biggest problems they faced solving the
non-OTM tasks, participants found it generally hard to understand the Jena
API. Participants found it difficult to understand the central Jena classes Model,
Resource, and Property, which is due to their lacking knowledge of RDF con-
cepts. Also, participants had problems understanding Model.read, which loads
RDF data from the URI specified, and Model.getResource, which only creates
a Resource object to be further processed in Java. Some were unsure when a
String in Jena was a literal value, and when it represented a URI. One partici-
pant commented “The source code contains weird objects, which do not have to
do anything with the problem domain. This causes programming mistakes, be-
cause these objects are untyped.” He mentioned the example of deciding whether
RDFNode is a Literal or a Resource. Also, Jena’s StmtIterator, which needs to
be used in order to read triple information, was criticized for being confusing to
use. All in all, participants highly valued the source code examples we provided,
and said finding a solution would have taken much longer without the example.
However, some would have preferred more comprehensive examples, featuring
nested loops, or complete howto documents.

OTM received less comments, which is probably due to the fact that each
participant was to solve two assignments–one using OTM, one without–and the
OTM task was easier to solve than the non-OTM task. Still, we received valuable
feedback. Participants found it hard to find the mapped Java class representing
resources of a specific RDF type. Some participants have been observed analyzing
all mapped Java classes available, others just read the example source code
provided and concluded the right classes to use. However, one participant just
guessed arbitrary (wrong) classes to be used in his source code and got stuck
for a while. Although our OTM implementation simplifies URI dereferencing by
implicitly loading RDF graphs when instantiating mapped objects, it took one
participant a while to find out how to explicitly load a whole dataset as needed
for Task 1. Some participants had trouble in dealing with generic Java types
used for collections of objects, and hence could not fully benefit from our OTM
framework.

Both the OTM and non-OTM solutions shared some comments. Participants
said a graphical representation of the RDF schema, or the mapped class model,
and a graphical browser for the dataset would have helped them to understand
the data structures and would have improved their implementation performance.
Also, participants complained about not having understood how or where the
data had actually been stored. Only very few participants had the idea of viewing
the URI provided by the test framework in a Web browser window.

5 Conclusion

In this paper, we presented a formalism for Object Triple Mapping (OTM),
a promising approach to structuring the development of Semantic Web soft-
ware. Our OTM formalism harmonizes several implementions seeking to simplify
Semantic Web application development and adds process elements to describe
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complete programs operating on linked data. Our second contribution is an ex-
perimental evaluation of OTM. We presented the results of this experiment,
clearly showing that

– OTM speeds up the development of Semantic Web software.
– Lines of code needed to solve several tasks are reduced by half using OTM,

and the share of “purely technical” lines of code is diminished so that using
OTM, business logic and program structure stands out in the code.

– Improved programming experience can be measured, as developers without
Semantic Web programming experience find it simpler to develop software
using OTM, and are more satisfied with the quality of their results.

The experiment material, assignments, datasets etc. can be downloaded from
the experiment web site6. We encourage readers to join the evaluation, and share
their results with us. To obtain a broader view on what are the Semantic Web
software engineers’ pains, how we can help them, and which technology they
actually prefer, we will extend our evaluation to more programming languages
and RDF programming libraries. Besides this planned continuous evaluation, we
will publish the direct and indirect feedback we receive from participants, and
will incorporate that feedback into our own OTM implementation for further
evaluation, and are willing to contribute to other existing OTM implementations.

As the results of our experiment are very promising, we are confident to
contribute in further spreading the word about positive experience using Se-
mantic Web standards and technologies. Once software engineers and managers
are convinced that Semantic Web technologies can be introduced in software
projects without adding costs, or even reducing costs, software will start to con-
tain more and more Semantic Web technologies, fostering interoperability and
data mash-ups. By then, software engineers will be willing to learn more about
these technologies and more complex software projects going beyond the features
of off-the-shelf OTM implementations can finally be done.7
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Abstract. In recent years, researchers have argued that using ontologies to repre-
sent and drive knowledge infrastructure of software projects provides separation
of the declarative and procedural knowledge and enables easier evolution of the
declarative knowledge. We have validated these conjectures in the context of Bio-
Portal, a repository of biomedical ontologies, which was developed in our group.
We are using the BioPortal Metadata Ontology to represent details about all the
ontologies in the repository, including internal system information and the infor-
mation that we collect from the community such as mappings between classes in
different ontologies, ontology reviews, and so on. To the best of our knowledge,
BioPortal is the first large-scale application that uses ontologies to represent es-
sentially all of its internal infrastructure.
The BioPortal Metadata Ontology extends several other ontologies for repre-
senting metadata, such as the Ontology Metadata Vocabulary and the Protégé
Changes and Annotations Ontology. In this paper, we show that it is feasible
to describe the structure of the data that drives an application using ontologies
rather than database schemas, which are used traditionally to store the infrastruc-
ture data. We also show that such approach provides critical advantages in terms
of flexibility and adaptability of the tool itself. We demonstrate the extensibil-
ity of the approach by enabling representation of views on ontologies and their
corresponding metadata in the same framework.

1 Representing Knowledge Infrastructure: From Database
Schemas to Ontologies

The topic of using Semantic Web technology to facilitate software development, inte-
gration, and evolution has been an active area of Semantic Web research, with annual
workshops on Semantic-Web Enabled Software Engineering (SWESE). Researchers
have pursued several different directions in this line of work: generating software code
from ontologies [7] or using ontologies to describe inputs, outputs, or tasks of soft-
ware components to enable integration of software and services [12]; facilitating gath-
ering of requirements from domain experts [1]; using ontology-based reasoning to val-
idate integrity and consistency of software models [2]; or facilitating critical software-
engineering tasks, such as configuration management [16] and product management [8].
These novel applications, as well as the traditional ones, use ontologies to describe
only some of the artifacts, whereas the structure of the rest of the data is reflected in a
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database schema. In this paper, we describe an approach to application development that
pushes this envelope to use ontologies and ontology instances to represent essentially
all data that the application requires in a single flexible framework, from declarative
high-level descriptions of the data as in the examples above to internal system data.

For large-scale distributed architectures today, the development stack includes sev-
eral technologies wrapped around a SQL database schema, such as persistence man-
agers (e.g., Hibernate), a web server, and so on. When the database schema changes,
these changes often need to be propagated through the development stack, thus making
such changes expensive in distributed web-based applications. We have encountered
this problem in developing BioPortal1—a community-based repository of biomedical
ontologies, containing 170 ontologies with more than one million classes among them
at the time of this writing. Users can submit their ontologies to BioPortal; search across
all ontologies; browse the ontologies, their different versions, and the associated de-
scriptions and provenance information; describe their ontology-related projects and link
the descriptions to the ontologies; leave comments on classes and on ontologies; create
mappings between concepts in one ontology and concepts in another ontology [11].

The BioPortal application is heavily knowledge-driven: most of what the users see
when browsing BioPortal (in addition to the ontologies themselves), is some rendering
of information that would traditionally be in a database. This internal information that
drives the application includes the metadata about ontologies in the repository, such as
ontology domain, authors, and other provenance information, as well as information on
which property to use for preferred name and synonyms in each ontology, information
on where the ontology itself resides in the system (e.g., the specific database table),
when it was uploaded, the name of the administrator of the ontology in BioPortal, and
so on. Some of this information (such as provenance) is intrinsic to the ontology artifact
and is relevant outside of BioPortal; some information is internal system information.

Because the BioPortal application is novel in many of its aspects, our internal in-
frastructure continues to evolve constantly, as we understand better user requirements,
learn what works and what does not, get new collaborators that would like to extend
BioPortal in a certain way. With the knowledge infrastructure constantly in flux, we
found that describing and representing the structure of the knowledge as a relational
database schema did not provide the flexibility and quick adaptability that our users
required. Making changes was cumbersome and put a bottleneck in the development of
the software code. It also made it much harder for anyone to adapt the BioPortal code
for their own purposes as the developers had to be familiar with the entire development
stack (including Protégé, Java, Spring, Hibernate, and Ruby-on-Rails).

Thus, we decided to “eat our own dog food:” we developed an ontology to describe
this infrastructure and represented the application data itself as ontology instances. Thus
the whole BioPortal application is driven by ontologies and ontology instances. Note
that while BioPortal is a repository of ontologies, the infrastructure that we describe is
not specific to the artifacts represented in a repository. It will work for a repository of
any other artifacts, not necessarily ontologies. To the best of our knowledge, BioPortal
is the first large-scale application of this approach.

This paper makes the following contributions:

1 http://bioportal.bioontology.org
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– We developed an ontology to represent the infrastructure and run-time data of a
large community-based ontology repository.

– We implemented the infrastructure of BioPortal using an ontology to represent most
of the data required to drive the application.2

– We validated the extensibility of the approach by adding functionality to support
flexibly representation of ontology views.

2 Types of Metadata in the Repository

The BioPortal ontology repository is an active ontology repository with a large user
community that contributes its content and uses its web services in their applications.
In addition to more than 170 ontologies, it currently contains multiple versions of these
ontologies, submitted by their authors and almost one million mappings between con-
cepts in the ontologies. There are descriptions of ontology-based projects, and notes
and discussions on classes and ontologies. The BioPortal Resource index provides
ontology-based access to several biomedical data sets available online (e.g. entries in
GEO, ClinicalTrials.gov). All BioPortal functionality is supported by a rich metadata
infrastructure, which includes the following types of metadata:

– ontology metadata describing the ontologies and their provenance and includes
ontology name, domain, description and keywords, authors, license information,
versions, references, and metrics such as the number of classes and properties;

– mappings between concepts, and metadata associated with mappings, such as how
the mapping was created, whether it was created manually or computed automati-
cally by a particular algorithm (and which one) and context for the mapping [10];

– ontology reviews are contributed by users as part of their evaluation of ontologies
in BioPortal;

– notes on classes are user-contributed notes that can contain questions, comments,
and suggestions, usually addressed to the authors of specific ontology classes;

– projects that use ontologies, described by BioPortal users;
– user information such as user profiles, information on who administers each on-

tology and each project description, who contributed notes, mappings, and reviews
to BioPortal, and so on.

3 Functional and Architectural Requirements for Metadata
Support

The BioPortal application dictates the following functional and architectural require-
ments for the metadata support:

Efficient and scalable support of BioPortal main functions: Any metadata infrastruc-
ture must support fast access to metadata, flexible querying of specific metadata items
and their combination, and be scalable. We envision that the number of users, notes,
projects, and mappings will grow significantly in the coming months.

2 At the time of this writing, some data, such as mappings and user information, is still in
database tables from our initial implementation of BioPortal.
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Support for ontology versioning: Users can upload successive versions of their ontolo-
gies and explore any ontology version. There must be services that always resolve to the
latest version of an ontology, with each ontology having a “virtual” location that always
redirects to the latest version. Metadata referring to an ontology or its components (e.g.,
reviews, notes, mappings) must be attached to a specific version of an ontology.

Flexible evolution of the metadata schema: One of the key requirements for metadata
support is its ability to adapt easily to new requirements and types of metadata. The
types of metadata that an ontology repository requires is still an active area of research.
Thus, the structure of the metadata and the specific properties change frequently. These
changes to the schema describing the metadata must be easy to implement and roll out.

Customizability of the metadata schema: Some groups install their own versions of
BioPortal software to support either a broader scope than just biomedicine (e.g., the
Open Ontology Repository sandbox3) or to maintain a repository open only to a spe-
cific set of users (e.g., the Marine Metadata Initiative4). Developers that maintain these
BioPortal installations usually customize the code to satisfy the local requirements. For
example, the fields that describe an ontology and its provenance are different for differ-
ent communities. Definitions of mappings and the associated metadata differ as well.
The representation of metadata schema must make it easy for these developers to cus-
tom tailor what gets represented and what gets presented in the user interface.

Reuse of existing technologies and ontologies: Wherever possible, we would like to use
existing technologies and standards for representing metadata. For example, the Ontol-
ogy Metadata Vocabulary (OMV) [14] provides a vocabulary for describing ontologies.
There are several ontologies and APIs for describing mappings (e.g., the alignment
API [4] or the Protégé mapping ontology [10]). Reusing these ontologies enables us
not only to use technologies that have already been tested but also to share the data
represented using these ontologies. For example, by using OMV to represent ontology
metadata, we can share these descriptions with other repositories that use OMV, such
as Oyster [13] and Cupboard [3]. Similarly, the comments on ontologies that BioPortal
users provide are useful for ontology authors when they evolve their ontology. In or-
der for ontology authors to see these comments alongside the ontology classes in their
favorite ontology-editing environment (such as Protégé). Thus, the comments must be
represented in the format that an ontology editor, such as Protégé, can understand (e.g.,
the Protégé Changes and Annotations Ontology, CHAO [9]).

In our initial implementation of BioPortal we used a database schema to describe
our metadata, with column names corresponding to metadata fields. This approach is
fairly traditional for many large-scale implementations and supports the first two re-
quirements in our list—efficient and scalable handling of metadata and support for on-
tology versioning. However, in our experience, this approach did not fare so well on
other requirements.

Any time we needed to add a new metadata field, we had to change not only the
database schema, but also the rest of the application stack (e.g., Hibernate) to reflect the

3 http://oor-01.cim3.net/home/release
4 http://mmisw.org/or/
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change. These changes were time-consuming and cumbersome. Yet, the more we were
developing BioPortal, the more features we were adding, the more often we needed to
adjust the metadata representation. For instance, in addition to describing the ontolo-
gies themselves, we needed to add ontology views, to support ontology reviews along
several different dimensions, and to represent a large set of ontology metrics—all of
these requirements crystalized after the start of the development.

With the metadata schema encoded as a database schema, any customization of new
BioPortal installation requires changes to the schema as well. And, as we mentioned
earlier, this process is cumbersome and error-prone.

Reusing and sharing the metadata that we collect also was not straightforward: it
is hard to find two applications that use the same database schema. Thus, in order to
transform the metadata from our internal representation to the representation that an-
other repository (e.g., Oyster) uses or to represent comments in a format that a tool such
as Protégé would understand, we must write a script to export the data.

While none of these challenges are insurmountable, we decided to apply a com-
pletely different approach to representing metadata infrastructure in BioPortal to ad-
dress these requirements. As we show in the remaining sections, this approach satisfied
our requirements and proved to be extensible enough to support new requirements.

4 Architecture

Figure 1 shows the architecture of BioPortal. It is a traditional service-oriented lay-
ered architecture, with the front end (Ruby-on-Rails) accessing the backend informa-
tion through RESTful services.5 There are services to access ontology information (e.g.,
get information about a specific ontology, upload a new version, get a diff between two
versions), concept-level services (e.g., get class definition), hierarchy services (e.g., get
all subclasses of a class), search services (e.g., search for a term across all ontologies),
and other services. The business logic tier implements these services in Java, using the
Spring framework. This layer is the one that contains the logic to translate the internal
metadata representation into responses to service request (e.g., a service may request a
list of all versions for a specific ontology). Before we transitioned to the ontology-based
approach, the database schema of the underlying relational database (mySQL) was re-
flected directly in the implementation of this layer and its metadata functions. In our
current approach, the metadata structure is accessed through the Protégé ontology API.
This API, in turn, does use a database to store the ontology and the instances. However,
the schema of the database that the Protégé uses does not depend on the ontology itself.
It is a single table that stores both the ontology and the instance information.6

The types of metadata and their properties are describe in the BioPortal Metadata
Ontology.7 The metadata values are Protégé instances and property values (see Figure 2
for an example). We use the Protégé API to access the ontology and instances.

5 http://bioontology.org/wiki/index.php/BioPortal_REST_services
6 http://protege.cim3.net/cgi-bin/wiki.pl?JdbcDatabaseBackend
7 http://bioportal.bioontology.org/virtual/1148
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Fig. 1. Layered architecture of BioPortal: The Presentation Tier contains the user interface and
external applications that call BioPortal REST services. The Business Logic Tier implements the
logic of translating the data and metadata stored in the database into responses to the service calls.

5 The BioPortal Metadata Ontology

The BioPortal Metadata Ontology is an OWL ontology that imports a number of other
ontologies (Figure 3) and includes classes to describe an ontology itself, its versions,
information about the ontology, creators of an ontology, user-contributed content, such
as notes, reviews, and mappings. It also contains the system information that is rele-
vant for maintaining and representing the ontology in BioPortal, such as which users
administer the ontology in BioPortal, where the ontology itself is located in the Bio-
Portal system, internal ontology id and version ids, and so on. The instances of classes
in this ontology represent the actual metadata for the BioPortal content. The BioPor-
tal Metadata Ontologyis an OWL-Lite ontology, specifically, RDF Schema constructs,
plus owl:import, thus supports in a scalable manner any reasoning that BioPortal
requires (for example for transitivity in getting superclasses or subclasses of a class).

The BioPortal Metadata Ontology imports several ontologies that deal with the
types of metadata that BioPortal supports:

– The Ontology Metadata Vocabulary (OMV) describes most of the metadata for
ontologies themselves (e.g., domain, author, version, ontology language, etc.)

– The Protégé Changes and Annotations Ontology (CHAO) provides definitions
for generic annotations and ontology components that they annotate.

SWESE 2009: 5th International Workshop on Semantic Web Enabled Software Engineering

63



FMA, v.2.0

FMA, v.1.0

Review_1209
Text: Key enabler in bioinformatics

BioPortal Metadata Classes

Class
OMV:Ontology

Class
Review

Instances

rdf:typerdf:typerdf:type

reviewOn

Class
VirtualOntology

FMA

rdf:type

hasVersion
hasVersion

Fig. 2. Representing metadata as ontology and instances in BioPortal: The diagram shows
some examples of classes and instances that represent metadata in BioPortal. There is an in-
stance of the class VirtualOntology that corresponds to the Foundational Model of Anatomy
(FMA) and not any specific version of it. This instance points to instances of OMV:Ontology
describing specific versions of FMA in BioPortal. A review provided by a user (an instance of
the class Review) points to a specific version of the FMA for which the review was created.

– The Protégé Mapping Ontology provides vocabulary for describing one-to-one
mappings between concepts and corresponding metadata.

The OMV provides the vocabulary for describing a specific ontology version. An
instance of the class OMV:Ontology describes a single version of an ontology. This
class contains properties describing pertinent information about the ontology. The Bio-
Portal Metadata Ontology extends this class to add properties that are specific to BioPor-
tal as well as some missing properties that should have been in OMV.8 These properties
include system information such as the internal id, the user who submitted the ontology,
the internal status (e.g., scheduled for parsing, loaded, error), and associated reviews.

We use the instances of the Protégé CHAO ontology to represent comments that
BioPortal users contribute to the ontologies. Each comment is represented as an annota-
tion attached to a specific class (in a specific ontology version) or to another annotation
(if it is a response to a comment). Users can use the comments, for example, to carry
out discussions about modeling decisions, make suggestions for changes, ask questions.
The same mechanism exists in Collaborative Protégé, a version of the Protégé ontology
editor that supports collaborative ontology editing. Because BioPortal and Protégé share
the same structure for representing user comments and discussions, one can potentially

8 We collaborate with OMV developers to include these properties in future versions of OMV
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Fig. 3. The BioPortal Metadata Ontology: Some classes and ontologies that the BioPortal Meta-
data Ontology imports. The BioPortal Metadata Ontology is itself in the BioPortal repository,
along with domain-specific ontologies such as the Gene Ontology (GO), the FMA, and others.

open a BioPortal ontology in Protégé and see the comments contributed by BioPortal
users. We are currently working on the tighter integration of the two tools.

The BioPortal Metadata Ontology adds classes that are specific to BioPortal func-
tionalities and that are not described in the imported ontologies. These classes represent
ontology projects and reviews on ontologies and dimensions that users can use to eval-
uate ontologies.

The BioPortal Metadata Ontology introduces some convenience classes that ab-
stract the information already present in other classes. This approach poses minor main-
tenance challenges, which we mitigate by changing instances only programmatically.
However, this approach greatly facilitates access to the information. Consider the fol-
lowing example: In OMV, the description of an ontology version (instance of OMV:Ontology)
points to a previous version of the same ontology. Thus, in order to present a table with
the information about all versions of an ontology (as in Figure 4), we must first find
the latest version of the ontology, and then traverse the instances to collect all versions.
Thus, we introduce the notion of VirtualOntology which is an object representing
the collection of all versions of the ontology. This object has the minimal information
that is shared among all versions, such as the ontology name (e.g., Gene Ontology);
the “virtual ontology id”—the global id that, when used to access an ontology, always
resolves to the latest version; the information on who administers the ontology and the
list of versions (instances of OMV:Ontology).
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Fig. 4. Ontology metadata in BioPortal user interface: This page presents the metadata for one
of the BioPortal ontologies. It shows the provenance and other information about the ontology
itself, the list of different versions of this ontology in BioPortal, and links to notes that users
contributed to this ontology and mappings between concepts in this ontology and concepts in
other ontologies. The notes and mappings are presented as a tag cloud: classes that appear in a
larger font have more notes and mappings than others.

6 Validating Feasibility: Implementing BioPortal metadata

We have validated the feasibility of our approach by implementing it as an infrastructure
for BioPortal.9 The previous version of BioPortal used a database schema to reflect the
metadata schema and posed exactly the flexibility and customizability challenges that
we described in Section 3.

First, we replaced the databases in the storage layer with a Protégé ontology, im-
plemented in its own one-table ontology-independent schema (Figure 1). Second, we
replaced the metadata implementation in the business-logic layer with the appropriate
Protégé API calls. Third, we transferred the metadata from the old database to instances
in the metadata ontology. Our goal was to maintain the same API at the service layer so

9 Note to reviewers: At the time of the paper submission, the main BioPortal server at http://
bioportal.bioontology.org runs using the database-based metadata representation.
We use the new infrastructure in our development server that is not yet accessible to the public.
We expect to transition the new implementation to our production server before the end of the
Summer 2009.
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that the user interface does not need to be modified and other applications that already
use our REST service API can continue to use it.

Since we access the metadata ontology through the Protégé API —which was suc-
cessfully used in other projects to access in a scalable manner ontologies having more
than 8000 classes and 5 million instances 10— we predict with confidence that the new
representation of the metadata about ontologies will scale well. The version of BioPor-
tal currently running on our development server uses this infrastructure successfully,
thus validating the approach. We plan to release this implementation to production at
end of August 2009.

At the time of this writing, the transition of metadata to ontology-based approach is
not complete. Currently, ontology details, ontology versions, and ontology views (see
Section 7) are represented as ontology instances. We are in the process of transitioning
the rest of the metadata.

7 Validating Extensibility: representing ontology views

As we discussed earlier, one of our main motivations to moving to the ontology-based
approach was greater flexibility and adaptability of the metadata. We validated these
properties by implementing support for ontology views in BioPortal, which did not
previously exist. In our implementation we store only materialized views computed
and submitted by the users, together with the metadata describing how the view was
generated (the language, engine, etc.)

In this context, a view is any subset of an ontology that is itself an ontology. A view
can be created manually or automatically by a view-generation tool. For instance, our
collaborators have several views of the Foundational Model of Anatomy (FMA) [15].
One of the views represents the subset of the FMA that would be of interest to a ra-
diologist; another view deals exclusively with Liver; yet another view focuses on the
representation of neuroanatomy. The first of these views was generated manually, by
starting with the FMA in Protégé and removing the unnecessary branches. The other
two views are the results of queries in an extension of SPARQL that our collaborators
have developed [17]. When ontology users generate and materialize the views, they of-
ten want to share them with other researchers in the field. Thus, when users view a page
for FMA, they can see not only its different versions, but also the views available for it.

7.1 Requirements for Representing Views

Discussions with our collaborators led to the following set of requirements on view
representation:

– Each view is itself an ontology and can have metadata, be explorable, have reviews,
statistics, and so on.

– A view is defined on a specific version of an ontology.

10 http://protegewiki.stanford.edu/index.php/Scalability_and_
Tuning
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– There is a notion of a “virtual view” (cf. “virtual ontology”) such as a view of
Liver-related concepts in FMA created for a particular purpose.
• Each virtual view will have at least one version, but can have several.
• Each version of the view also has its own metadata (inherited from ontology

metadata, but with additional fields).
– We must be able to represent views on views (with the same requirements).
– We must be able to represent views that use more than one ontology.

Note that these requirements suggest a fairly complex structure for view representa-
tion, with many cross-references with different components of ontology metadata (on-
tologies and ontology versions).

7.2 Representing Views in BioPortal

When representing views in BioPortal, we treated them essentially in the same way as
regular ontologies, thus getting the browsing, annotation, and other features “for free.”
We extended the BioPortal Metadata Ontology to represent features that are specific to
describing views (Figure 5). A class VirtualView is a subclass of VirtualOntology
and points to the list of versions of the view. Each version of a view is an instance of
the class OntologyView, which is a subclass of OMV:Ontology. Thus, it inherits
all the properties that describe an ontology version (e.g., description, domain, author)
and adds its own. The view-specific properties include the following:

– The property viewDefinition is the textual representation of the view defi-
nition. This definition can be a query that was used to create the view, a set of
traversal directive (as in Prompt), or any other way that specifies how the view was
extracted.

– The property viewDefinitionLanguage defines the language that was used
to define the view (e.g., the query language, such as SPARQL, for a view that was
generated by a query). The range of the property is the class ViewDefinitionLanguage,
whose instances will have all the pertinent attributes of the language (name, creator,
url) as well as the specific version that was used for the view.

– The property viewGenerationEngine contains the engine that was used to
compute the view. The range of the property is the class ViewGenerationEngine,
whose instances will have all the pertinent attribute of the engine (name, creator,
url) as well as the specific version that was used to generate the view.

7.3 Providing Support for Views in BioPortal

In this ontology-based infrastructure for representing metadata, in order to handle views
to BioPortal and satisfying all the requirements that we have outlined earlier, we had to
do the following. First, we extended the BioPortal Metadata Ontology as we described
in Section 7.2 and Figure 5. After this step, we already had all the structure to repre-
sent the views. Second, we implemented the new view-specific REST services (e.g.,
returning all views for an ontology). This implementation uses the Protégé API to ac-
cess the view metadata. As we expected, in this implementation we indeed needed to
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BioPortal Metadata Instances

FMA, v.2.0
Instance of 

OMV:Ontology

FMA, v.1.0
Instance of 
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Instance of 

VirtualOntology

isVersionOf

isVersionOf

NeuroFMA
Instance of 
VirtualView

virtualViewOf

NeuroFMA, v.0.1
Instance of 

OntologyView

NeuroFMA, v.0.2
Instance of 

OntologyView

isVersionOf

isViewOn
isViewOn isVersionOf

NeuroFMA, v.1.0
Instance of 

OntologyView

isViewOn

isVersionOf

Class
OMV:Ontology

Class
VirtualOntology

hasVersion

hasVirtualView

Class
OntologyView

Class
VirtuallView

hasVersion

hasVirtualView

hasView subclassOf

subclassOf

isVersionOf

isVersionOf

isViewOfisVirtualViewOf

BioPortal Metadata Classes

Fig. 5. Classes and instances for representing views: The class VirtualView corresponds
to the logical description of a specific view (e.g., NeuroFMA, which is an extraction of FMA
concepts relevant to Neuroimaging). It is a subclass of VirtualOntology because each view
is an ontology itself. Similarly, the class OntologyView extends the class OMV:Ontology
and describes specific versions of the view. The right-hand side of the figure shows some example
instances of these classes and properties that link them.

focus exclusively on the view-specific logic and structures and did not need to change
anything else (e.g., the application infrastructure or the architecture). Some of the func-
tional requirements for handling the views crystallized while we were already working
on the implementation, and the only changes that were necessary were the changes to
the ontology itself. We did not need to change any database schemas or to add any ad-
ditional structures (e.g., Hibernate stubs). The work that was required was limited to
implementing the logic for the services directly.

In comparison, adding views to the old (Hibernate-based) infrastructure, would have
involved some additional changes like: (a) creating new database tables (for views and
virtual views), (b) creating a number of foreign keys in order to represent superclass-
subclass relationships and relationships expressed by object properties, (c) creating in-
tegrity constraints to enforce data integrity along those relations, and (d) generate Hi-
bernate classes (so called “entity beans”) from the database tables.

Figure 6 shows the extended ontology-metadata page that includes the information
about the views.

8 Discussion and Lessons Learned

The new implementation of BioPortal infrastructure validates the use of ontologies and
ontology instances to represent all the metadata as well as system data for a repository
of this kind. To the best of our knowledge, BioPortal is the first large-scale web-based
application that uses ontologies to represent its internal data. Our experience has shown
that using an ontology to describe the knowledge infrastructure of an application does
indeed provide the flexibility and adaptability that our application required. Our obser-
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Fig. 6. The user interface for representing view metadata in BioPortal. The screenshot shows two
views of the NCI Thesaurus. Each view has two different versions.

vations and discussions with developers show that it was easier and far more efficient to
implement view support that satisfied the requirements that we outlined in Section 7.1
using this approach than using a database schema to describe the views and to link
them to ontologies. It also enabled us to reuse much of the infrastructure that we have
already developed for ontology metadata, as we could treat views as special cases of
ontologies. As our requirements for view representation continue to evolve, we know
that our changes will be easy to implement as we will need only to evolve the ontology
representation and the corresponding service implementations.

It is important to note that some of the design choices in the BioPortal Metadata On-
tology are driven purely by application and implementation considerations. Thus, there
are parts of this ontology that are specific to the context of BioPortal implementation.
We also made some of the ontology-design choices not because they were “ontologi-
cally correct” in an abstract sense but because they simplified access to information (cf.
VirtualOntology class to collect information about all versions of an ontology).
Thus, we used the ontology not only as a conceptualization of our domain (metadata
representation) but also to represent the physical properties and location of the data.

There are a number of systems that use ontologies to represent some of their meta-
data. These include Oyster [13], the alignment server [5], and Cupboard [3]. However,
in these systems the items in the repository (such as ontologies or alignments) are sepa-
rate from the part that represents the metadata. Furthermore, the ontology-based meta-
data does not expand to representing internal system information. The ontology-based
representation of metadata focuses on describing intrinsic properties of ontologies and
other objects that are shared across applications.
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Another class of applications that uses ontologies actively are semantic desktops
(e.g., [6]). However, most semantic desktop applications do not represent system data
itself using the ontologies. Furthermore, semantic desktop applications focus on creat-
ing a “semantic web” of desktop resources rather than representing the internal system
data itself.

In our work, we have extended other metadata ontologies. In the future, we plan to
integrate other standards. Specifically, we plan to replace the Protégé Mapping ontology
that we used here for expediency with an ontology that extends SKOS with mapping-
specific metadata.

Our current effort leaves some questions and concerns, however. The main con-
cern is scalability. While Protégé is quite scalable and has been used with ontologies
that have hundreds of thousands of classes and instances, we do not know how it will
behave with millions of instances describing metadata. As we noted in Section 6, we
have not yet moved mappings to this infrastructure. At the same time, we have just up-
loaded one million new mappings to BioPortal. We are yet to test whether our current
Protégé-based infrastructure will be sufficiently scalable for this number of mappings.
If we learn that it is not, it will be the limitation of the Protégé implementation itself
as modern triplestore implementations easily handle this amount of data. If scalability
turns out to be an issue, we will transition to a triplestore to store the instances.

We would like to emphasize that our solution is not limited to the biomedical do-
main. It so happens that our repository is a repository of biomedical ontologies. How-
ever, there is nothing in the BioPortal Metadata Ontology itself or in our use of it that
is specific to biomedicine (except perhaps, the list of possible ontology categories). We
will install the new infrastructure in other local BioPortal installations, such as the OOR
sandbox that we mentioned earlier (and that accepts ontologies in any domain).

Finally, the BioPortal software is open-source. The software is domain-independent
and can be used for an ontology repository in any domain or for a domain-independent
one. The BioPortal Metadata Ontology is available in BioPortal and can be accessed
through the BioPortal user interface or its web services.11 We have created a snapshot
of the instances of the BioPortal Metadata Ontology for our development version of
BioPortal. This ontology and instances can be accessed directly through the WebProtégé
server at http://bmir-protege-dev1.stanford.edu/webprotege/. 12
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Abstract. With “Linked Data Driven Software Development” (LD2SD)
we have introduced a light-weight, linked data-based framework that al-
lows to integrate software artefacts, such as version control systems and
issue trackers, as well as discussion forums. The so created interlinked
data-space enables uniform query and browsing facilities. In this paper
we elaborate on the interaction part of LD2SD, and demonstrate how
the LD2SD-interaction can be integrated into an Integrated Develop-
ment Environment (IDE). We have performed an end-user evaluation
and report on our findings and outline future steps.

Key words: linked data, interaction, Software Engineering, IDE

1 Introduction

In the software development process, both humans and so called software arte-
facts are involved (cf. Fig. 1 from [IUHT09]). Some of the software artefacts are
directly under the control of the developers, while others are shared among users
and developers, such as bug tracking system, documentation, discussion forums
etc.

Developers use different mediums of communication to interact with each
other and to solve problems. For example, Java source code and bugs are of-
ten discussed in forums or project mailing lists. However, the interconnections
among software artefacts in the various data sources are typically not explicit.
Developers nowadays have to perform keyword-based searches on the Web to
find examples for source code or need to manually trace discussions about a bug
on a blog. The attraction of using semantic technologies in order to address this
issue is based on the idea to transform software artefacts into an conceptually
organised and interlinked data-space, incorporating data from different software
artefacts [DB08].

With “Linked Data Driven Software Development” (LD2SD) [IUHT09] we
have introduced a linked data [BHBL09] based, light-weight framework that
allows to integrate software artefacts. The so created interlinked data-space en-
ables uniform query and browsing facilities. In this paper we elaborate on the
interaction [Hea08] part of LD2SD, and demonstrate how the LD2SD-interaction
can be integrated into an Integrated Development Environment (IDE).
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Fig. 1: The software development process, including its participants.

With the work at hand, we aim at enabling Java developers to explore related
information about software artefacts. We present an interface that developers can
use as a plug-in in their development environment (IDE), such as Eclipse1 to
find related information about Java source code, which might be found in a bug
tracking systems, Subversion logs or in a blog discussion.

The paper is structured as follows: in Section 2, we discuss our LD2SD-
based approach. We report on a concrete use case and an implementation of the
LD2SD interaction in Section 3. The Section 4 presents the results from an end-
user evaluation. In Section 5 we review related and existing work and eventually,
in Section 6, we conclude our work and give an outlook on future work regarding
LD2SD.

2 Linked Data Driven Software Development (LD2SD)

There are manifold ways to integrate different software artefacts. In order to
provide a unified access to the different software artefacts, one needs to interlink
and integrate these software artefacts, as we have argued in [IUHT09]. The over-
all concept of Linked Data Driven Software Development (LD2SD)—depicted in

1 http://www.eclipse.org/
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Fig. 2: The layered LD2SD approach for software artefacts integration.

Fig. 2 from [IUHT09]—is a layered, linked data based integration of software
artefacts.

In this paper we elaborate on the top-most part of the LD2SD approach, the
interaction part. We have chosen a particular setup, assuming a Java developer
using Eclipse. The goal was to create an Eclipse plug-in that allows the developer
to consume LD2SD data.

To enable a rapid development of our demonstrator, we decided to build upon
an already available indexing service for the integration layer. The data layer,
including RDFication and Interlinking was reused from [IUHT09].

In Fig. 3 our setup is described in detail:

1. RDFizing the software artefacts based on the linked data principles, yielding
LD2SD datasets;

2. Using an indexing engine, Apache Lucene/Solr2 to index the LD2SD datasets;
3. Develop a lookup service on top of the indexing service to enable keyword-

based search over the LD2SD datasets;
4. Deliver the information to the developer via an Eclipse plug-in.

In order to achieve the linked data functionality for software artefacts, one
needs to generate RDF data and interlink them. We have shown elsewhere [IUHT09]
how to achieve the RDFizing and interlinking of the software artefacts.

2 http://lucene.apache.org/solr/
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Fig. 3: LD2SD Interaction Setup.
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After RDFizing and interlinking, the datasets are indexed by the Apache Solr
indexing service. Each document is split into multiple documents based on the
number of resources described in it and each resource is indexed as a separate
document. The advantage of splitting an RDF document into sub-documents
is that the lookup service returns the specific resource as a result rather than
the whole document. For example, the Java2RDF [IUHT09] parser generates a
single RDF dump of a software project, which contains description about the
Java packages, the Java source in each package and the Java methods in each
class along with JavaDoc.

Fig. 4: Document indexing process.

The Document Indexer (cf. Fig. 4) indexes each package, Java classes and
Java methods as a separate document. This approach allows the user to query
for a Java class or a Java method and the Apache Solr indexing service will
return the specific document instead of the RDF document for the entire software
project. In order to query for the documents stored by the indexing service,
the lookup service enables keyword-based queries against the indexing service.
Although, different software artefacts are indexed by the indexing service, the
Document Indexer does not only store content, but also the URI of document
and the type of document, for example JavaClass, Package, Discussion etc.
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3 Implementation

For the concrete implementation of the LD2SD plug-in, we have chosen Eclipse,
a popular Java IDE. Software developers spend most of their time in IDEs such
as Eclipse, though need to access bug tracking system to log bugs or discuss
development issues in blogs or mailing lists, etc. As we wanted to offer a cross-
platform, extensible solution, we decided to implement the actual interface of
the plug-in as a linked data application [Hau09] based on HTML and utilising
the Eclipse-internal Web browser. Alternatively, the LD2SD-interaction is also
possible via a standalone Web browser.

3.1 Interaction via Eclipse plug-in

To enable developers to search for documents or to find related information
about software artefacts without leaving their development environment, we have
implemented an Eclipse plug-in. This enables the developer to retrieve related
information about entities (such as classes, methods, etc.) in the Java source
code of a software project. Say, the developer is interested in related information
about a certain Java class. One way to trigger the LD2SD plug-in is to right
click on the Java class and select the “Show Related Information” command (cf.
bottom of Fig. 5) from the context menu.

Fig. 5: Triggering the plug-in via the context menu.

In response, the lookup-service provides URIs as entry points and issues
automatically a SPARQL query, which is executed on the entire LD2SD datasets
to retrieve related information about that Java class as shown in Fig. 6.
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Fig. 6: Related information about a Java class in the Eclipse IDE.

3.2 Interaction via standalone Web browser

Alternatively to the Eclipse plug-in, the interaction is possible via a standalone
Web browser. Developers can issue simple keyword-based queries and can navi-
gate the search results concerning related information for that resource.

Let us assume the developer is interested about related information concern-
ing a certain Java package. He can query the LD2SD data by using Web browser.
Typically, the developer will enter, say, a package name and the lookup service
returns relevant information about all Java classes belonging to that package
(Fig. 7). Additionally, the developer can browser for related information about
a Java class by clicking the “Related Information” link displayed next to it.

Fig. 7: Search results for a Java package in the Web interface.
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4 Evaluation

To evaluate our approach, we have prepared data from a software project (bug
tracking data, subversion logs, blogs and Java source code). We assessed the us-
ability of our Eclipse plug-in approach via end-user evaluations requiring partic-
ipants to perform a set of tasks. We measured the time it took them to complete
the tasks and asked questions around the usability.

No. Software Artefact Familiarity (%)

1 Eclipse IDE 80

2 Bug tracking systems 60

3 Discussion blogs 100

4 Subversion plug-in for bug tracking system 42

5 Mylyn plug-in for Eclipse IDE 45

Table 1: Familiarity of the participants with the tools.

Twelve participants took part in the evaluation. The participants have de-
velopment experience ranging from one to five years with different backgrounds.
Table. 1 shows the familiarity of the participants with the different software
artefacts.

The participants were asked to carry out a set of tasks on the test data:

Task 1 Identify all blog posts that mention a specific Java class.
Task 2 Identify all bugs that have been fixed by modifying a specific Java class.
Task 3 Identify all developers that are working on a Java package.
Task 4 Identify all blog posts that mention a specific Java package.
Task 5 Identify all bugs that belong to a specific Java package.

For the Task 2 and Task 5 we have installed a Subversion plug-in for, which
shows the logs for bugs, if any. We conducted our evaluation in two phases:

Manual Approach In the first phase, we gave participants access to the soft-
ware project, the bug tracking system, and the blog. The participants searched
through blog posts, traversed bug reports and searched source files for au-
thors to carry out each task.

Plug-in Approach In the second phase, we asked participants to carry out the
tasks by using our LD2SD plug-in for the Eclipse IDE.

In the first phase, we found that participants used different heuristics to
list the results of each task. After the second phase, we asked the participants
to compare the results of both approaches. We found that some participants
missed certain results using the first approach while carrying out the tasks.
Further, participants apparently had difficulties going through each bug report
to identify corresponding bug entries in Subversion. During the evaluation, we
asked the participants to answer a set of yes/no questions as shown in Table. 2.
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Question Yes No

Is the tool useful to discover related information? 12 0

Does our approach added value compared to the usual explo-
ration of related information?

12 0

Is the design and layout of the tool suited enough for usage? 9 3

Does the integration of software artefacts as an Eclipse plug-in
offer an advantage?

10 2

Table 2: User-study regarding tool.

The time for each task has been measured in both phases of the evaluation;
the resulting graph (Fig. 8) is plotted based on the average time each participant
spent in carrying out the task.

A big majority of the participants found our approach of extracting related
information and presenting it in an integrated manner inside Eclipse interesting
and useful. For example: “... single point access within the Eclipse IDE seems a
natural tool to use. It provides information much faster than accessing individual
sources. The integrated view is very convenient”.

Participants liked the LD2SD approach to interlink the Java sources with
subversion logs and bugs using linked data principles. They were able to answer
questions such as: (1) who has fix the certain bug and which source files he has
modified in fixing the bug, (2) who should i talk to, and (3) which blog posts
are talking about that certain bug; an exemplary comment highlights this: “...
it saves time for a developer and provides a unique interface to have a look at
all relevant information in a single view ... all relevant information is available
on a single click ... the idea looks promising, the tool would be more useful as it
evolves and add features”.

The evaluation helped us identifying the limitations of the tool as well. Some
participants commented on the interface: “... interface is relatively small, might
be an usability issue for large amount of data ... would be interesting to see how

Fig. 8: Time required to perform tasks (manual vs. plug-in approach).
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well it works with large amount of data–may be difficulties with presentation”.
Participants showed considerable interest in using our tool, especially in the case
when they had to search information within hundreds of blog posts and bugs for
a software project. (e.g., “... I would definitely use the tool once it is available”).

5 Related Work and Discussion

There are technologies available in the open source community that allow the
integration of software artefacts. An interesting and closely related approach
is Tesseract [SMWH09], a socio-technical dependency analyzer to enable ex-
ploration of cross-linked relationships between artefacts, developers, bugs and
communication.

A related work concerning the combination of software artefacts has been de-
scribed by Damljanovic et. al. [DB08]. The annotations are based on Key Con-
cept Identification Tool(KCIT) which is capable of producing ontology-aware
annotations. To interlink documents based on mentions of key concepts, the
authors have used the PROTON KM ontology3. To enable semantic-based ac-
cess through text-based queries, they used QuestIO (Question-based Interface
to Ontologies), allowing to translate text-based queries into the relevant SeRQL
queries, execute them and presents the results to the user. Their approach dif-
fers from our approach in that we have used Apache Solr, which provides high-
performance engine for full-featured text search.

Another related approach has been described by Ankolekar et. al. [AS+06].
Dhruv is a Semantic Web enabled prototype to support problem-solving pro-
cesses in web communities. The main focus of their research is how open source
communities deals with bugs in their software under development. Their ap-
proach helps to connect the communication of developers (via forums and mail-
ing lists) with bug reports and source code of the software. They have provided
an ontology to model software, developers and bugs. The ontology is semiau-
tomatically populated with data from different information sources to support
bug resolution. Their approach assists the communication between developers
for bug resolution. In contrast to their approach, we have provided an Eclipse
plug-in which allows software developer or project manager to search for related
information about a certain Java class or Java package on a single click without
leaving their IDE.

In [AGS07], Antunes et. al. have presented SRS, a Semantic Reuse System
designed to store and reuse knowledge for software development. The knowledge
about software artefacts is represented using Representation Ontology, mapped
with the concepts of Domain Ontology and stored in the SDKE (Software
Development Knowledge Element) repository, which is managed using Apache
Lucene4. Concepts are extracted from software artefacts using linguistics tools
from Natural Language Processing (NLP) [JM02] prior to indexed by the Apache
Lucene.
3 http://proton.semanticweb.org/2005/04/protonkm
4 http://lucene.apache.org
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In [KBT07], Kiefer et. al. have presented EvoOnt5, a software repository data
exchange format based on OWL. EvoOnt includes software code, code reposi-
tory and bug information. The authors have used the iSPARQL6 engine which
is an extension of SPARQL, to query for similar software entities. iSPARQL is
based on virtual triples which are used to configure similarity joins [Coh00].
Their approach differs from our approach in that we have provided a methodol-
ogy [IUHT09] to integrate the software artefacts by RDFizing and interlinking
them.

Mylyn7 is a sub-system for the Eclipse IDE allowing multitasking for devel-
oper and task management. It provides the means to render bug-related data in
the Eclipse IDE for developers to work efficiently in their development environ-
ment without having to log in to the Web based application to update or create
new bugs. Mylyn is limited to issue trackers such as JIRA8 or Bugzilla9, and
hence not able to cope with the variety of software artefacts as we desire it.

Further, there are plug-ins10 which integrate Subversion with bug trackers.
The plug-in display all Subversion commit messages related to a specific issue.

To the best of our knowledge there is no tool available that is able to deal
with software artefacts in a flexible and open way as we have provided it based
on the LD2SD approach.

In [IUHT09] we have already demonstrated the methodology of RDFizing and
interlinking heterogeneous software artefacts. In LD2SD we address the issue of
heterogeneous software artefacts by using a common data model (RDF) along
with global unique identifiers (URIs). The current version of LD2SD relies on
the open access to the different data sources to extract metadata, interlink and
query them. As pointed out in [IUHT09], a number of ontologies (BAETLE,
FOAF, SIOC, iCalendar) have been used to deal with the domain semantics.

6 Conclusion and Future Work

We have motivated and described LD2SD, a light-weight, linked data-based
framework allowing to integrate software artefacts, such as version control sys-
tems and issue trackers, as well as discussion forums. In this paper we have
focused on the interaction layer, that is, providing means for developers to con-
sume LD2SD-based data from existing software artefacts.

Based on a concrete use case and implementation of the LD2SD interaction
part, an Eclipse plug-in, we have conducted an end-user evaluation. Our evalua-
tion shows that the plug-in is relatively easy to use and valuable for developers.

Our future work will focus on the improvement of the current Eclipse plug-
in. Currently, our keyword-based lookup service returns a list of all relevant
5 http://www.ifi.uzh.ch/ddis/evo/
6 http://www.ifi.uzh.ch/ddis/isparql.html
7 http://www.eclipse.org/mylyn/
8 http://www.atlassian.com/software/jira/
9 http://www.bugzilla.org/

10 http://subversion.tigris.org/links.html#misc-utils
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documents, without ranking. Based on [GGM97] we will focus on the ranking
of the results, taking into account the context of the developer. Motivated by
the outcome of the evaluation, we want to provide plug-ins for other IDEs, for
example for NetBeans.

We want to integrate even more software artefacts (such as mailing lists, Java
test cases, developers profiles, etc.) and aim at increasing the interlinking quality
and quantity.

Eventually, we plan to perform follow-up evaluations on a real world open
source project with a broader target audience (real world developers, etc.).
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Abstract. Experience from recent projects helps illuminate the 
promises and limitations of OWL to specify, review, refine, harmon-
ize and integrate diverse data and concept models. One of the attrac-
tive features of OWL is that it can be used by inference engines to 
help augment queries through inferred semantic relationships. But 
OWL, like SQL, is only a computer programming language. Using it 
to review and refine representations of data, metadata, and concept 
systems, including terminologies, thesauri, and ontologies, requires a 
well-defined abstraction layer  which itself can be specified in 
terms of OWL. In order to optimize, harmonize and integrate such 
information effectively for large scale projects, OWL definitions and 
relationships should be specified in terms of a standard metamodel, 
such as ISO/IEC 11179-3, Edition 3. 

 
Keywords: OWL, metadata, UML, ISO 11179, metadata 
registration, data modeling  

1 Introduction  

Information technology experts are beginning to recognize the need to 
combine multi-disciplinary data, metadata, and concepts from a variety of 
related fields to address complex and/or large scale problems.  Doing so re-
quires integrating content from diverse communities with long established 
but different terminologies, concepts, and ways of naming and organizing 
their data. This paper explores how OWL (Web Ontology Language [1]) can 
be used to help advance decades-long efforts to represent, manage, harmon-
ize, and integrate metadata and semantics for concept systems (including 
taxonomies, thesauri, and ontologies), databases, data elements, and value 
domains (i.e., data types, and sets of valid values).  For the purpose of this 
paper, the word “ontology” refers to a domain specific conceptualization, 
for a specific purpose [2]. 
 

As elaborated further below, OWL, like other computer languages, is in-
tended for a specific purpose, it is a declarative representation language for 
representing knowledge and used for authoring ontologies. OWL does not 
provide built-in, standard modeling constructs to harmonize between ontol-
ogies, let alone describe their interrelationships or external relations to data, 
metadata about databases or application systems, nor to manage the evolu-
tion of such relationships over time. Several recent projects illustrate how 
OWL provides some very useful constructs that complement capabilities of 
other software engineering technologies and paradigms and can be used in 
conjunction with them to support new ways to model concept and data se-
mantics. One such paradigm for concept and data management is the meta-
data registry, (MDR) particularly those based on the ISO/IEC 11179 Meta-
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data registries (MDR) – Part 3: Registry metamodel and basic attributes Edi-
tion 3 (E3), [3] and related ISO/IEC 19763 Metamodel Framework for Inte-
roperability (MFI) [4] specifications which are being extended to represent 
relationships between and across ontologies, as well as relationships be-
tween ontologies, terminologies, data models and web services that imple-
ment or reuse them.  
 

Our discussion is based in part on results from three recent data and se-
mantic modeling projects that all employed OWL, each for different pur-
poses. The first of these projects used the Ontology Definition Metamodel 

(ODM)[5] to represent the BRIDG
1
 model [6, 7], and transform it to OWL 

to help analyze and identify potential shortcomings in BRIDG [8]. The 
second project attempted to use an automatic ODM-based conversion tool to 
transform the LexGrid [9] terminology model from XML Schema into 
OWL. The eXtended Metadata Registry (XMDR) project [10] has used 
OWL in conjunction with other tools to develop a prototype system that im-
plements extensions and enhancements included in the current CD of 
ISO/IEC 11179 E3, Standard. Lessons learned from these efforts will be 
highlighted in the sections that follow. 

2 Background and Motivation 

Descriptions of data, how it was collected, and what it means are an es-
sential component of modern information systems. These descriptions, 
called metadata (i.e., data about data), help ensure that data is interpretable 
by both humans and computers over time. Large organizations like the U.S. 
Environmental Protection Agency (EPA), National Cancer Institute (NCI), 
and Department of Defense (DOD) perform research that utilizes large 
amounts of data drawn from a variety of disparate systems.  They have long 
recognized the need for standardized metadata registry systems to help 
manage and harmonize data elements from different databases and applica-
tion systems [10].  At the same time, such organizations, along with others 
in Europe and Asia, were among the first proponents of national and inter-
national standards for terminologies, thesauri, concept systems and ontolo-
gies2. 
 

In parallel, NCI and small communities of data modelers and software 
engineers have been using ontologies to extend the capabilities of their me-
tadata registry and software systems to enhance the semantics, identify po-
tentially duplicate metadata, and increase the potential for reuse [11, 12]. 
Ontologies and ontology tools can facilitate automation supporting categori-
zation and reasoning about increasingly massive amounts of data and meta-
data that many large organizations have to cope with. Despite apparent po-
tential benefits from cross pollination between data management, data 
governance, and related disciplines that use semantic technologies, little 
progress has been made in marrying the two communities outside of a few 
isolated United States and European government agency activities. The 
overlap between the enterprise data and semantic web communities is very 
small at present, as evidenced by discussions at recent workshops at the En-

                                                            
1 The Biomedical Research Integrated Domain Group (BRIDG) Model is a domain 

analysis model that describes biomedical/clinical research data.   
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terprise Data World3 and Semantic Technology Conferences4 earlier this 
year.   
 

The National Cancer Institute (NCI)’s data management infrastructure, 
comprised of the Cancer Data Standards Registry (caDSR) and Enterprise 
Vocabulary System (EVS), is a notable exception to the low level of syner-
gy between data management and ontology communities. caDSR and EVS 
have enabled NCI to collect, harmonize and integrate detailed metadata and 
concepts describing some 5,500 data elements and case report forms in hun-
dreds of clinical studies from over 90 different projects. The semantics of 
these elements are tied directly to over 10,000 concepts drawn from the 
NCI’s Enterprise Vocabulary System (EVS) [13]. The U.S. Environmental 
Protection Agency's Environmental Data Registry (EDR), which has infor-
mation covering water, air, and soil in databases and application systems, 
with many data elements, value domains, and terms from different terminol-
ogy systems (though not directly linked) also illustrates the synergy between 
utilization of terminology systems and data management (e.g., GEMET, 
Chemical Substances Taxonomy, etc.) [14]. 
 

Use of formal languages such as OWL to represent data semantics linked 
to terminologies can provide a tremendous opportunity for novel research 
and discovery, in particular if the expression of the data semantics is based 
on a well-defined, shared metadata model and the terminologies are well 
formed. World Wide Web Consortium founder Tim Berners-Lee, speaking 
about the “semantic web,” stated that “The concept of machine-
understandable documents… indicates a machine's ability to solve a well-
defined problem by performing well-defined operations on existing well-
defined data. Instead of asking machines to understand natural language, it 
involves asking people to make the extra effort” [15].  (Italics are ours). The 
implication is that people will have to take additional steps to create ma-
chine-understandable documents. Utilizing ISO/IEC11179-3 Ed 3 integrated 
metamodel for data and concept systems provides well-defined data descrip-
tions for use with the OWL representation , making data comparable within 
and across communities because  the common structure of the metadata al-
lows programmers to develop well-defined operations  for machine interpre-
tation. Recent projects have demonstrated the power of such integrated in-
frastructures, but achievement of this level of integration does not come 
automatically simply by adopting a new language such as OWL [16].  

3 Levels of Abstraction for Data, Metadata and Ontologies 

To elucidate these ideas more concretely, consider a hypothetical exam-
ple of something in the real world about which we want to capture data, re-
presentation of the data in a database,  information about this data (metada-
ta), and a concept system fragment (which could be part of an ontology). 
Figure 1 shows this example with three “levels” of information – concepts, 
data and metadata, and some of the relationships between them. The picture 
at the top left represents two streams and a lake, each with its own monitor-
ing station (A, B, and X). A formalized concept system could describe the 
relationships between these bodies of water and monitoring stations. The ta-
ble at the top right contains three rows of data, one collected from each of 

                                                            
3 See http://edw2009.wilshireconferences.com/.  
4 See http://www.semtech2009.com/.  
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those stations on a particular date.  Each column in the table contains data 
for a particular observation of the variables (ID, Date, Temperature, and 
Mercury contamination), while each row represents values observed at a 
particular monitoring station location (A represents the row of values for the 
Lake monitoring station, B the values for the second monitoring station, and 
X the values for the monitoring station further downstream  

ID Date Temp Hg

A Jan-09-02 4.4 4

B Jan-09-02 9.3 2

X Jan-09-02 6.7 78

Sign Datatype Definition Units

ID text
Monitoring 
Station Identifier

not 
applicable

Date date Observation date yy-mm-dd

Temp number

ambient 
Temperature (to 
0.1 degree C)

degrees 
Celcius

Hg number

amount of 
mercury per unit 
volume of water

micrograms 
per liter

Data Table:

Metadata Table:

ological Radioactive

Contamination

lead cadmiummercury

Chemical

Figure 1: Data, Metadata, and Concept Systems

Concept System Fragment

A

X B

 
 

The table on the lower right contains “metadata” – a description of the 
meaning and purpose of each column in the Data table -- (ID, Date, Temp, 
and Hg). Each column in the metadata table (i.e. Sign, Datatype, Descrip-
tion, Units) contains a piece of information about a column of the Data ta-
ble, while each row represents a particular column in the Data table. De-
picted at the lower left  is  an excerpt from the General European Multi-
lingual Environmental Thesaurus (GEMET) concept system that shows 
Contamination of a body of water in three forms (Biological, Radioactive, 
and Chemical), along with three kinds of Chemical Contaminants, namely 
mercury, lead, and cadmium. Dotted lines in Figure 1 indicate some of the 
important relationships between different components of the three types of 
information. For example, the ID with the value “A” in the first cell of the 
first row of the Data table is the identifier for the Lake monitoring station in 
the picture. All the values in that row refer to the monitoring station with the 
ID “A”.  Likewise the first cell in the bottom row of the Metadata table re-
fers to the label of the fourth column in the Data table and all the values in 
that metadata row pertain to the values in that column e.g. the cell of the 
second column in the bottom row refers to the Datatype of the fourth col-
umn in the Data table. Another dotted line shows a relationship between the 
Definition cell for the bottom row of the Metadata table (which relates to the 
4th column of the Data table) to a particular item in the hierarchical diagram 
of terms from GEMET. 

   
Ideally, we would like to be able to answer queries that span all three le-

vels of information, Data, Metadata and Concept Systems, such as find wa-
ter bodies downstream from Fletcher Lake where the level of chemical con-
tamination for any of a specified set of substances was greater than the 
allowable tolerance between December 2001 and March 2003. Constructing 
and answering these kinds of queries, which was difficult at best using tradi-
tional database technology, is now possible through the open world reason-
ing facilities supported by OWL in conjunction with the metadata registry 
capabilities specified in ISO/IEC 11179-3 Ed 3.  
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3.1 Information Models, Concept Systems, and Ontologies  

From a data engineering perspective, a conceptual or information model 
typically defines a set of properties and relationships that describe real 
world entities. Frequently, in order to define information models that will 
ultimately result in business applications or services, multiple information 
models are needed, each of which may define various aspects of the same 
set of entities focusing on different perspectives, context and/or processes. 
Each such conceptual information model may, in turn, correspond to one or 
more logical data models that refine various aspects of the conceptual mod-
el, which may then be realized in a number of physical models, or schemas 
that correspond to platform-specific implementations (e.g., XML schema, 
relational databases, etc.). Depending on the level of formality imposed by 
the organization responsible for designing the business services, the concep-
tual modeling part of this process may be short circuited, or even skipped. In 
some cases where conceptual models are developed, they may not be well 
documented, especially if the models are only shared among a small group 
of developers where assumptions are implicitly understood.  Consider the 
data values in Figure 1. if the organization had only the headings for the da-
ta table, but no other metadata, concept systems, or asserted relationships 
between them and the data to aid with human or machine interpretation. 
  

From the Semantic Web perspective, an ontology provides the semantic 
grounding for an information model.  They can be one and the same; or ad-
ditional vocabularies or ontologies can be used to provide terminological 
support for the core business information model. Consider the often-used 
example of students, classes and teachers that occurs in literally hundreds of 
Database textbooks. These examples work because there is a relatively con-
sistent and shared understanding of schools, teachers, students, classes, sub-
jects, etc. within 20th century western school systems. Schools hire teachers, 
teachers teach classes, students attend classes, classes have schedules, etc.  
There are literally thousands of different information models scattered 
throughout these textbooks that reference this set of topics.  While there is a 
component of each of these specific conceptualizations of these topics that 
is invariant, it is highly unlikely that any two of the independently devel-
oped information models or ontologies, are identical. 
 

Typically, the purpose of developing an ontology is to define a particular 
conceptualization for use in a particular application or context (e.g., if we 
are describing teachers and students, the fact that students are composed of 
cells, require a certain amount of nutrition each day to survive, may vote in 
elections and may have a preferred medical doctor, etc. are probably not re-
levant and are probably not included in a description of an ontology focused 
on schools.).  Information models, particularly at the logical or physical lev-
el, may add features that are not required at the conceptual level, for exam-
ple, details regarding primary or foreign keys, unique identifiers that are ap-
plication specific GUIDs, and so forth. Obviously an information model 
attempts to maintain some sort of correlation between these identifiers and 
the things being identified, but these are still artifacts of the information 
model, not of the conceptual level. 
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3.2 Harmonizing Data across Multiple Systems and Ontologies   

Metadata registries provide an abstraction "layer" to systematically de-
scribe, manage, and query metadata for databases, applications, and concept 
systems, and are particularly useful for large-scale, distributed environ-
ments. The ISO/IEC 11179 Metadata Registry family of standards also pro-
vides guidance for managing the evolution of such information over time.  
Figure 2 shows conceptually NCI’s caDSR metadata model and Enterprise 
Vocabulary System’s supported mappings – using concept systems to defin-
ing semantics from high-level, conceptual definitions of  ISO/IEC 11179 
Object Class and Property, to increasing refinement of meaning at the value 
set level.   
 
 

 
Figure 2.  Refinement from Conceptual to Logical Definitions Using 
ISO/IEC 11179 MDR (left to right) 
 

Just as SQL can be used to describe tables, columns, and relationships 
between columns (such as foreign keys), OWL is well suited for describing 
terminologies, concept systems or ontologies and various different types of 
relationships between their components (e.g., subsets, inverses, aggrega-
tions, etc.). SQL in and of itself does not provide built-in constructs to de-
scribe, manage and query metadata registries. It can be used to construct 
standard tables and columns containing metadata registry information so it 
can be stored, managed and queried using SQL, however. As noted earlier, 
OWL does not provide built-in constructs to create or harmonize ontologies. 
Absent standard constructs or techniques for anchoring the semantics of the 
elements represented in OWL to an external reference that could render 
them comparable across models, even if those elements are grounded in the 
same higher-level ontologies, reasoning over multiple OWL representations 
may be limited to evaluation of potentially related content solely on the ba-
sis of text labels for the elements and relations. But like SQL, OWL is a 
powerful language that can be used to create standard constructs for regi-
stries of multiple ontologies, metadata, and their inter-relationships, either 
through an additional external ontology or via annotations, and through a 
combination of open and closed world reasoning, can enable new capabili-
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ties that make such registries invaluable to their users, particularly for ques-
tion answering over large distributed repositories.  
 

One recent effort employed OWL to evaluate the BRIDG Domain Analy-
sis Model (DAM)  a multi-agency effort to develop a shared view of the 
data, relationships, and processes which collectively define “protocol-driven 
research and its associated regulatory artifacts.” The first formal release of 
BRIDG, using the Unified Modeling Language (UML) [14] was published 
in June 2007 [5].  In late 2008, NCI commissioned a study to use the Ontol-
ogy Definition Metamodel (ODM) [8] to translate the BRIDG DAM from 
UML to OWL in order to help identify potential problems with BRIDG as a 
data model.  The absence of built-in constructs for comparative purposes re-
sulted in a lot of manual effort to ensure that comparisons between versions 
of the model were apples-to-apples.  The assignment of immutable identifi-
ers and versions to the elements of the owl model emulate an ISO/IEC 
11179 MDR approach. 
 

The resulting analysis concluded that there were several flaws and ambi-
guities in the BRIDG model, including problems with relationship names 
and types, and what was termed an "explosion of attributes in the mod-
el...due to the creation of a new Common Data Element (CDE) when the 
concept is the same but the context of use is different." The report cites post-
alAddress as an example: "This attribute occurs 8 times in the model, all 
with the same AD datatype expression, and all referencing a physical postal 
address of an entity but all with a slightly different definition." In this case, 
however, showing different variants could be considered a feature or 
strength of the BRIDG model rather than a "bug," depending on what pur-
poses the model is intended to serve. A more general solution might be to 
have a single generic postalAddress class, with subclasses for different va-
riants that are used by different groups and agencies. The new draft ISO/IEC 
11179 (E3) metadata registry standard and XMDR prototype support just 
this kind of capability to document and manage the evolution of application 
and database-specific variants while at the same time showing their commo-
nalities and translation requirements.  If the semantics of each component of 
a particular variant are identical then they should be modeled as one object, 
but if they differ even slightly, it often is helpful to be able to distinguish 
and identify those subtle differences, as well as to note how one may be 
transformed to the other, with or without loss of information in one or both 
directions. 
 

Whether we use OWL, UML, or other representation paradigms such as 
Entity-Relationship modeling, each of which can serve multiple purposes in 
the context we’ve described, we still need an additional level of abstraction 
for management of both data model and ontology information, along with 
the relationships between them in order to document, manage, and harmon-
ize data and semantics from diverse systems  particularly as they evolve 
over time.  

4 ISO/IEC 11179 Metadata Registry Standard 

 
The first edition of ISO/IEC 11179, which became a formal standard in 

1994, established a discipline for standardization of data elements such as 
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those found in databases and data interchange. Organizations leading the 
development of this standard, including DOD, EPA, and NCI, recognized 
the need for better ways to represent relationships, and to express relational 
semantics sufficient to enable machine-processing and elementary logical 
operations. Subsequent editions add tighter linkage between the semantics 
found in data, metadata and concept systems. Edition 3 of ISO/IEC 11179 
Part 3 provides explicit specifications for registering ontologies, thesauri, 
taxonomies and other semantic artifacts useful in managing the semantics of 
data.  Work on additions and extensions to ISO/IEC 11179 Edition 2 began 
in 2004. At the same time, staff at the Lawrence Berkeley National Labora-
tory began to develop a prototype system to demonstrate the feasibility of 
implementing software that could be used to load, manage, and query an 
eXtended Metadata Registry, as specified by the evolving third edition 
working drafts. 
 

ISO/IEC 11179-3 (E3) provides a means by which multiple definitions of 
particular terms (be they defined via ontologies, taxonomies, other kinds of 
models, or other metadata), can be articulated and reused across systems and 
modeling paradigms. It includes a rich model for provenance about the 
models managed in a compliant registry, providing a means by which one 
can say "what sources were used to develop this model/concept", "where is 
this model/concept used", "who depends on it", "what domain was it in-
tended for", etc. -- which the modeling paradigms themselves do not do (nor 
do they claim to do). It also supports data stewardship, change manage-
ment/change control, management of technical status and management of 
the status of organizational acceptance. Figure 3 shows a summary of the 
top level classes and a few of their major sub-classes from the current draft 
of ISO/IEC 11179-3 (E3). 

 

 
 

Figure 3. Current Draft ISO/IEC 11179-3 (E3) Consolidated Class Hie-
rarchy 
 

Leading the progression from ISO/IEC 11179 (E2) to (E3), NCI added 
linkage from the semantic metadata content of the metadata registry to con-
trolled terminology, thus providing a more granular way to compare Object 
Classes and Properties, and providing a way to link other metadata to con-
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trolled terminology so researchers can explore/discover what might be simi-
lar or related, to the data item of interest.  An overview of the architecture, 
current implementation, including the use of OWL and UML models, and 
directions this work is taking at NCI as a part of the cancer Biomedical In-
formatics Grid (caBIG) program is presented in [17]. 

5 OWL AND THE 11179 XMDR PROTOTYPE 

UML models, OWL ontologies, and XML schemas each capture impor-
tant, but not identical content useful for design and implementation of in-
formation systems.  The XMDR project demonstrated this at two levels for 
metadata registries.  First, based on formative ISO/IEC 11179 (E3) specifi-
cations, the XMDR was designed to capture and interrelate selected content 
of UML models, XML schemas, and OWL ontologies, as well as concept 
systems in terms of semantic relationships as well as traditional metadata.  
Second, UML models, XML schemas and OWL based technologies were 
used to implement the XMDR prototype.  
  

In response to user needs for extensions to the ISO/IEC 11179 (E2) me-
tamodel such as the extensions implemented in NCI’s caDSR, plus the need 
to test whether such extensions could be practically implemented and dep-
loyed using real data and concept systems, the XMDR project developed 
several types of metadata registry extensions including: 

 
1. standardized representation of logical and other types of relationships; 

 
2. a metamodel framework to facilitate controlled and well-documented 

management and evolution of terminologies, thesauri, concept systems 
and ontologies in the same way that data elements, value domains, and 
related types of information are managed in the ISO/IEC 11179 (E2) 
framework; 
 

3. use of OWL to permit and facilitate reasoning based on logical inference. 
 
After reviewing a number of candidate languages and software packages, 

LBNL implemented the XMDR prototype as a modular, open architecture 
system, which makes it relatively easy to substitute software modules for 
particular components (e.g., database system, reasoner).  

 
Figure 4 shows the over-all modular component architecture of the 

XMDR prototype, along with particular open source software used for its 
current components. In this schematic diagram, ovals or rounded boxes de-
pict major components of the XMDR system, while rectangles represent da-
ta, metadata, and indexes. Planned extensions are shown in shaded ovals. 
The XMDR Prototype used Poseidon and Protégé to create and edit UML 
and an OWL ontology that describes the XMDR metamodel. These specify 
how metadata is organized within the metadata registry store. The diagram 
also shows how content is transformed and loaded -- using LexGrid and cus-
tom XSLT scripts to create standard "XMDR files." XMDR files are in-
dexed using Jena and Pellet to create RDF files that are stored in a Postgres 
database, and then further processed using Lucene to create a text index. 
Human users (using web browsers) can create queries and display results us-
ing a combination of JSP code and a standard REST interface. Other soft-
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ware (such as Exhibit[http://www.simile-widgets.org/exhibit/], from MIT's 
Simile Project [http://simile.mit.edu/]) can make use of the REST Applica-
tion Programming Interface (API) to provide a "plug and play" Graphical 
User Interface (GUI).  

 

Figure 4: XMDR Prototype Modular Architecture:
with current open source software selections
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The XMDR prototype demonstrates how technologies based on UML, 

OWL and XML Schemas can be used to create a metadata registry, which is 
used to register, manage, and curate selected content from UML models, 
XML Schemas, and concept systems (including ontologies, thesauri, tax-
onomies,  etc.) along with traditional metadata such as descriptions of com-
mon data elements, value domains, etc.  Future plans include replacing 
Poseidon with ODM-based UML capabilities to leverage forward and re-
verse engineering of OWL from UML, completion of planned modules, and 
revision to support the evolving ISO/IEC 11179-3 (E3) standard as it ap-
proaches formal adoption. 

 

6 Future Research 

While the ISO/IEC 11179 standard itself has been in use for over a dec-
ade, its application to the management and use of ontologies and other con-
cept systems is relatively new.  Some of the organizations involved in the 
writing of this paper, and other colleagues within the US/ANSI DM32.8 
task force and in the broader international metadata standards community 
have been actively involved in this evolution for at least the last five years.  
Implementations are nascent, and the standard itself is just now reaching fi-
nal committee draft stage.  We anticipate additional work will be needed to 
support development of reference implementations and further evolve the 
standard, informed by those efforts, before finalization is complete.  Integra-
tion of increasing levels of automation, through ODM-based tools, through 
the use of reasoning to facilitate validation, search and retrieval, and other 
analysis activities are also planned.  Evolution of the core ISO/IEC 11179 
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ontology, potentially reflecting the availability of new features in OWL 2, is 
also on our roadmap. 

 

7 Conclusion 

UML, OWL, and ODM have been instrumental in enabling better ways 
of characterizing and documenting information models and knowledge but 
they only provide the basic representation language constructs required as a 
starting point.  Our experiences with the BRIDG 2.0 domain analysis model, 
development of the new draft ISO/IEC 11179 (E3) Metadata Registry Stan-
dard, and implementation of the Extended Metadata Registry (XMDR) Pro-
totype System help illustrate the need to combine these technologies with 
those such as UML/ODM, OWL, and the Semantic Web with more tradi-
tional metadata registry tools and procedures to begin to address some of the 
really difficult information interchange issues faced by large organizations 
today.  Utilizing a combination of ontology and knowledge representation 
languages, linked with standard metamodels for describing data and metada-
ta provide an unprecedented opportunity to leverage semantic web for 
knowledge mining and discovery of hidden links and improve their utility in 
data management.  
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Protection Agency, Department of Defense, National Cancer Institute, and 
the National Science Foundation under NSF Grant No. 0637122. Any opi-
nions, findings, and conclusions or recommendations expressed in this ar-
ticle are those of the authors and do not necessarily reflect the views of the 
sponsors. 

References 

1. Mike Dean and Guus Schreiber, eds., Sean Bechhofer, Frank van Harmelen, Jim 
Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and 
Lynn Andrea Stein.  OWL Web Ontology Language 1.0 Reference, W3C Rec-
ommendation, World Wide Web Consortium, Amsterdam, The Netherlands, 10 
February 2004. Latest version is available at http://www.w3.org/TR/owl-ref/. 

2. Tom Gruber (1993). "A translation approach to portable ontology specifications". 
In: Knowledge Acquisition. 5: 199 

3. ISO/IEC 11179 – Metadata Registries - Part 3 (Edition 3), Available at 
http://metadata-stds.org/11179/index.html#A3.  

4. ISO/IEC 19763, Information Technology – Metamodel Framework for Interope-
rability (MFI), Available at http://metadata-standards.org/19763/index.html.  

5.  Christopher A. Welty and Elisa F. Kendall, eds. Ontology Definition Metamodel 
(ODM), Version 1.0 Specification, Object Management Group, Inc., Needham, 
MA, May 2009.  Latest version is available at: 
http://www.omg.org/spec/ODM/1.0/.  

6. http://gforge.nci.nih.gov/projects/bridg-model and  
7. http://bridgmodel.org/  
8. https://gforge.nci.nih.gov/projects/bridgrev 
9. http://informatics.mayo.edu/LexGrid/ 

SWESE 2009: 5th International Workshop on Semantic Web Enabled Software Engineering

96



 

 

10. http://XMDR.org/ 
11. Peter A. Covitz , Frank Hartel, Carl Schaefer, Sherri De Coronado, Gilberto Fra-

goso, Himanso Sahni, Scott Gustafson and Kenneth H. Buetow, caCORE: A 
common infrastructure for cancer informatics, Bioinformatics, Vol. 19 no. 18 
2003, pages 2404–2412 

12.    Komatsoulis, GA, Warzel, D.B, Hartel, F.W., Shanbhag, K, Chilukuri, R, Fra-
goso, G., de Coronado, S, Reeves, D.M, Hadfield, J.G., Ludet, C., and  Covitz, P. 
A. (2008) caCORE version 3; Implementation of a model driven service-oriented 
architecture for semantic interoperability. Journal of Bioinformatics, 41:1 

13. caDSR http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr and 
EVS http://bioportal.nci.nih.gov/ncbo/faces/index.xhtml statistics citation 

14. EDR http://iaspub.epa.gov/sor_internet/registry/datareg/home/overview/home.do 
15. Berners-Lee, T, http://www.w3.org/DesignIssues/RDFnot.html 
16.  Unified Modeling Language™ (UML®) Infrastructure and Superstructure Speci-

fications, Version 2.1.2, Object Management Group, Inc., Needham, MA, No-
vember 2007. Latest versions of this and related UML specification components 
is available at: http://www.omg.org/spec/UML/2.1.2/. 

17. Alejandra González Beltrán, Anthony Finkelstein, J. Max Wilkinson, and Jeff 
Kramer (forthcoming). “Domain Concept-Based Queries for Cancer Research 
Data Sources”. 
 

 

SWESE 2009: 5th International Workshop on Semantic Web Enabled Software Engineering

97


