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Abstract. A crucial task in process management is the validation of
process refinements. A process refinement is a process description in a
more fine-grained representation. The refinement is with respect to either
an abstract model or a component’s principle behaviour model. We define
process refinement based on the execution set semantics. Predecessor and
successor relations of the activities are described in an ontology in which
the refinement can be validated by concept satisfiability checking.

1 Introduction

With the growing interest about applying semantic web technologies on business
process modelling, many frameworks and ontological models have been proposed
to facilitate a more unified semantic representation [5, 6].

In model-driven software development, process models are usually created
and refined on different levels of abstraction. A generic process describes the core
functionality of an application. A refinement is a transformation of a process
into a more specific process description which is developed for a more concrete
application and based on more detailed process behaviour knowledge. In this pro-
cedure, the refined process should refer to the intended behaviour of the abstract
process and satisfies behaviour constraints. To check and ensure the consistency
of refinement becomes a crucial issue in process management. Currently, such
consistency check is mainly done manually and few methods have been investi-
gated to help automation. Hence the validation is error-prone, time-consuming
and increases the costs during the development cycle.

In this paper, we use execution set semantics to describe two types of process
refinements and present an ontological approach to represent and check them.
We first apply topological transformations to reduce the refitment checking w.r.t.
execution set semantics into checking of predecessors and successors of process
elements. Then we encode process models into OWL DL ontologies. Finally we
show that the refinement checking on the process models can be accomplished by
concept ussatisfiability checking in the ontology. We implemented our approach
and conducted performance evaluation on a set of randomly generated process
models. Experiment results showed that, 80% of the refinement validation tasks

? This work has been supported by the European Project Marrying Ontologies and
Software Technologies (EU ICT 2008-216691).



can be performed within 1s, which is significantly faster than manually consistency
checking and the correctness of the validation is guaranteed.

The rest of the paper is organised as follows: in Sec.2 we define the problem
of process refinement with its graphical syntax, semantics and mathematical
foundation. The representation and validation of processes with the corresponding
execution constraints is demonstrated in Sec.3. In Sec.4 we present the evaluations
and in Sec.5 we review related works and conclude the paper.

2 Preliminary

In this section, we introduce preliminary knowledge about process models, process
refinement w.r.t. execution set semantics and DL-based ontologies.

Syntax of Process Models A process model—or short: process—is a non-
simple directed graph P = 〈E, V〉 without multiple edges between two vertices.
As a graphical representation, we use the business process modelling notation
(BPMN: http://www.bpmn.org/) due to its wide industry adoption. However,
we consider a normal form of process models for the sake of this paper as opposed
to the full set of partly redundant constructs in BPMN.

In our definition, vertices (V) include activities, gateways (A, G ⊆ V), and
the specific vertices start and end event (v0, vend ∈ V). Fig. 1a shows a BPMN
diagram which consists of two activities between the start and end events.
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Fig. 1. Wrong process refinement

A gateway is either opening or closing (GO, GC ⊆ G), and either exclusive
or parallel (G , G ⊆ G). The process models (c) and (d) in Fig. 1 contain



exclusive and parallel gateways, respectively. We call a process normal if it does
not contain parallel gateways (G = ∅)—as, for example, process model (c).

The edge set (E) is a binary relation on V. We define the predecessor and the
successor functions of each v1 ∈ V as follows: pre(v1) := {v2 ∈ V | (v2, v1) ∈ E},
suc(v1) := {v3 ∈ V | (v1, v3) ∈ E}. The start (end) event has no predecessor
(successor): |pre(v0)| = |suc(vend)| = 0 and exactly one successor (predecessor):
|suc(v0)| = |pre(vend)| = 1. Each open gateway o ∈ GO (close gateway c ∈ GC)
has exactly one predecessor (successor): |pre(o)| = |suc(c)| = 1. Each activity
a ∈ A has exactly one predecessor and successor: |pre(a)| = |suc(a)| = 1. We can
then construct gateway-free predecessor and successor sets as follows:

PS(v1) := {v2 ∈ A | v2 ∈ pre(v1) or ∃u ∈ G s.t. u ∈ pre(v1) and v2 ∈ PS(u)}
SS(v1) := {v3 ∈ A | v3 ∈ suc(v1) or ∃u ∈ G s.t. u ∈ suc(v1) and v3 ∈ SS(u)}

These two definitions make gateways “transparent” to ordering relations. For
example in Fig.1b, SS(a1) = {b1, a2}, in Fig.1c, PS(C) = {C, D}.

Execution Set Semantics of Process Models We define the semantics of a
process model using the execution set semantics [18]. An execution is a proper
sequence of activities (ai ∈ A): [a1a2 . . . an]. A proper sequence is obtained by
simulating token flow through a process model. A token is associated to exactly
one vertex or edge. Initially, there is exactly one token, associated to the start
event. Tokens can be created and consumed following the rules below. Whenever
a token is created in an activity, the activity is appended to the sequence. Exactly
one of the following actions is performed at a time:

– For creating a token in an activity or in the end event v1 ∈ A∪{vend}, exactly
one token must be consumed from the incoming edge (v2, v1) ∈ E.

– Exactly one token must be removed from an activity or from the start event
v1 ∈ A ∪ {v0} in order to create one token in the leaving edge (v1, v2) ∈ E.

– For creating a token in a parallel close gateway g ∈ (G ∩GC), exactly one
token must be consumed from every incoming edge (v, g) ∈ E.

– For creating a token in an exclusive close gateway g ∈ (G ∩GC), exactly
one token must be consumed from exactly one incoming edge (v, g) ∈ E.

– Exactly one token must be removed from a close gateway g ∈ GC in order to
create one token in the leaving edge (g, v) ∈ E.

– For creating a token in an open gateway g ∈ GO, exactly one token must be
consumed from the incoming edge (v, g) ∈ E.

– Exactly one token must be removed from a parallel open gateway g ∈
(G ∩GO) in order to create one token in each leaving edge (g, v) ∈ E.

– Exactly one token must be removed from an exclusive open gateway g ∈
(G ∩GO) in order to create one token in exactly one leaving edge (g, v) ∈ E.

If none of the above actions can be performed, simulation has ended. The result
is a proper sequence of activities—an execution. It is to be noted that each



execution is finite. However, there may be an infinite number of executions for a
process model. The execution set of a process model P , denoted by ESP , is the
(possibly infinite) set of all proper sequences of the process model.

For example, ES1a for process (a) in Fig. 1 is {[AB]}: first A, then B (for
brevity, we refer to an activity by its short name, which appears in the diagrams
in parenthesis). Process (b) contains parallel gateways ( ) to express that some
activities can be performed in any order: ES1b = {[a1a2b1b2b3], [a1b1a2b2b3],
[a1b1b2a2b3]}. Exclusive gateways ( ) are used in process (c) both to choose
from the two activities and to form a loop: ES1c = {[C], [D], [CC], [CD], [DC],
[DD], . . .}. Process (d) shows that gateways can also occur in a non-block-wise
manner: ES1d = {[EFGH], [EFHG], [FHEG], [FEGH], [FEHG]}.

Correct Process Refinement For refinement validation we have to distin-
guish between horizontal and vertical refinement. A horizontal refinement is a
transformation from an abstract to a more specific model which contains the
decomposition of activities. A vertical refinement is a transformation from a
principle behaviour model of a component to a concrete process model for an
application. The validation have to account for both refinements.

Fig. 1 shows a refinement horizontally from abstract to specific while vertically
complying with the components’ principle behaviour. In our example scenario,
Fig. 1a is drawn by a line of business manager to sketch a new hiring process.
Fig. 1b is drawn by a process architect who incrementally implements the sketched
process. Fig. 1c and d are the principle behaviour models of different components.

To facilitate horizontal validation, the process architect has to declare which
activities of Fig. 1b implement which activity of Fig. 1a: hori(a1) = hori(a2) = A,
hori(b1) = hori(b2) = hori(b3) = B. For vertical validation, the process architect
needs to link activities of Fig. 1b to service endpoints given in Fig. 1c and d:
vert(a1) = E, vert(a2) = F, vert(b1) = G, vert(b2) = H, vert(b3) = D.

Correct horizontal refinement. We say that a process Q is a correct horizontal
refinement of a process P if ESQ ⊆ ESP after the following transformations.

1. Renaming. Replace all activities in each execution of ESQ by their origina-
tors (function hori()). Renaming the execution set {[a1a2b1b2b3], [a1b1a2b2b3],
[a1b1b2a2b3]} of Fig. 1b yields {[AABBB], [ABABB], [ABBAB]}.

2. Decomposition. Replace all sequences of equal activities by a single activity
in each execution of ESQ. For Fig. 1b this yields {[AB], [ABAB]}.

As {[AB]} 6⊇ {[AB], [ABAB]}, Fig. 1b is a wrong horizontal refinement of Fig. 1a.
The cause is the potentially inverted order of AB by b1a2 or b2a2 in Fig. 1b.

Correct vertical refinement. We say that a process Q is a correct vertical refine-
ment of a process P if ESQ ⊆ ESP after the following transformations.

1. Renaming. Replace all activities in each execution of ESQ by their grounds
(function vert()). Renaming the execution set {[a1a2b1b2b3], [a1b1a2b2b3],
[a1b1b2a2b3]} of Fig. 1b yields {[EFGHD], [EGFHD], [EGHFD]}.



2. Reduction. Remove all activities in each execution of ESQ that do not
appear in P . For our example, reduction with respect to Fig. 1c yields {[D]}.
Reduction with respect to Fig. 1d yields {[EFGH], [EGFH], [EGHF]}.

Fig. 1b is a correct vertical refinement of Fig. 1c because {[C], [D], [CC], [CD], [DC],
[DD], . . .} ⊇ {[D]} and a wrong vertical refinement of Fig. 1d because {[EFGH],
[EFHG], [FHEG], [FEGH], [FEHG]} 6⊇ {[EFGH], [EGFH], [EGHF]}. The cause for the
wrong refinement is the potentially inverted execution of FG by b1a2 in Fig. 1b.

As enumerating the execution sets for validation is infeasible, our solution
works with descriptions in ontology instead of using the execution sets themselves.

Description Logics and Ontologies DL-based ontologies have been widely
applied as knowledge formalism for the semantic web. An ontology usually consists
of a terminology box (TBox) and an assertion box (ABox). In TBox the domain
is described by concepts and roles with DL constructs. In this paper, we use DL
ALC. Its concepts are inductively defined by following constructs:

>,⊥, A,¬C, C uD,C tD,∃r.C, ∀r.D

where > is the super concept of all concepts; ⊥ means nothing; A is an atomic
concept; C and D are general concepts and r is an atomic role. In DL, the
subsumption between two concepts C and D is depicted as C v D. If two concepts
mutually subsume each other, they are equivalent, depicted by C ≡ D. When a
concept can not be instantiated in any model, i.e., C v ⊥, it is unsatisfiable. Two
concepts are disjoint if C v ¬D. In this paper we write Disjoint(C1, C2, . . . , Cn)
to denote that all these concepts disjoint with one another.

3 Validation with Ontologies

In this section, we present our solution of validating process refinement in
detail. We first eliminate all the parallel gateways in a process, then translate
such a process into ontologies based on the predecessor and successor sets of
activities, finally we show that the refinement checking can be reduced to concept
unsatisfiability checking

3.1 Process Transformation

As we can see from ES1c, the execution ordering relations between successors of
some g ∈ GO are implicit in the original process. For example, b1 and a2 does
not have any explicit edge, the semantics of parallel gateway still implies that
b1a2 or a2b1 must appear in some execution. In order to make such relations
explicit, we eliminate all the parallel gateways while retain the execution set. Our
strategy is to generate exclusive gateways to represent the executions.

Given a process P , its normal n(P ) can be obtained as follows:



1. Repeatedly replace each penning-parallel gateway g by an opening-exclusive
gateway e. For each v ∈ suc(e), construct a new penning-parallel gateway g′

with pre(g′) = v, suc(g′) = suc(v) ∪ suc(e) \ {v} and then make suc(v) = g′.
2. Remove all the edges from an opening- to a closing-parallel gateway.
3. If an opening-gateway has only one successor, remove the gateway
4. If an closing-gateway has only one predecessor, remove the gateway

In step 1 direct successors of parallel gateways are “pulled” out of the gate-
way. Here a loop block is considered as a single successor. In this procedure, a
parallel gateway with n successors is transformed into n parallel gateways with n
successors but one of the successive sequence is shortened by one successor. Due
to the finite length of these sequences, this replacement always terminates. Step
2 then reduces the number of successors for these remaining parallel gateways
by removing “empty” edges. Step 3 and 4 finally remove the gateways. When a
gateway is removed, its predecessors and successors should be directly connected.

It’s obvious that this normalisation will always result in a normal process. An
example of normalisation of Fig.1b and Fig.1d can be seen in Fig.2.

The size of n(P ) can be exponentially large w.r.t. P in worst case: suppose P
contains only a pair of parallel gateways with n sequences of one activity, then
n(P ) will contains a pair of exclusive gateways with n! sequences of n activities.
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Fig. 2. Transformation to execution diagrams for Fig. 1b and d

In normalisation, some activities will be duplicated in the process. These
duplications have different predecessors (successors). We distinguish them by
an additional numerical subscript. We depict such a transformed process n(P )
with distinguished activities by P ?. Obviously, ESP ? is the same as ESn(P ) after
replacing all the distinguished activities by their original names. Thus, relation
between two execution sets can be characterised by the following theorem:

Theorem 1. Given two processes P = 〈EP , VP 〉 and Q = 〈EQ, VQ〉, ESQ ⊆
ESP iff ∀ai ∈ AQ? , there exists some aj ∈ AP ? such that PSQ?(ai) ⊆ PSP ?(aj)
and SSQ?(ai) ⊆ SSP ?(aj).

Proof. (1) For the → direction the lhs ESQ ⊆ ESP holds. We demonstrate the
subsumption for PS. For an arbitrary activity ai ∈ AQ? , the activity ai

′ is the
corresponding activity before normalisation (i.e. without additional subscripts).



The activity aj
′ is the originator or ground activity of ai

′ in P after renaming and
aj ∈ AP ? is the the corresponding activity after normalization of P . From the
prerequisite it directly follows that the predecessors of ai ∈ AQ? are predecessors
of aj in Q?. The subsumption of the successor set is demonstrated likewise.
(2) To prove the other direction we assume that the rhs holds. Consider an
execution s ∈ ESQ we demonstrate that s ∈ ESP . For each activity ai

′ of an
arbitrary execution s ∈ ESQ the corresponding activity ai ∈ AQ? is received
after normalization. From the rhs it follows that there exists an activity aj ∈ AP ?

so that each predecessor of ai is also a predecessor of aj in P ? and likewise for
the successors of ai. After activity renaming and demonstrating for all activities
of each execution of ESQ the inclusion of the lhs follows.

Therefore, we reduce the process refinement w.r.t. execution set semantics
into the subsumption checking of finite predecessor and successor sets. We then
show that the transformation operations of execution sets can be equivalently
performed on the its process model and the predecessor and successor sets:

– Reduction on the process diagrams has the same effect on the execution
sets. That means, given a component model P and a process model Q, if we
reduce Q into Q′ by removing all the activities that do not appear in P , and
connect their predecessors and successors directly, the resulting ESQ′ will be
the same as the reduced ESQ with respect to P .

– Renaming can also be directly performed on the process diagram, i.e.
ESP [a → A] = ESP [a→A]. Thus, the renaming can be performed on the
predecessor and successor sets as well, i.e. PSP (x)[a → A] = PSP [a→A](x)
(SSP (x)[a→ A] = SSP [a→A](x)).

– Decomposition can be done on the predecessor and successor sets as well.
Theorem 1 shows that the subsumption of execution sets can be reduced to
subsumption of predecessor and successor sets. Decomposition means, an
activity x can go from not only predecessors of x, but also another appearance
of x, and can go to not only successors of x, but also another appearance of
x. Any sequence of x in the execution will be decomposed.

Thus, for horizontal refinement, we can first obtain the predecessor and suc-
cessor sets of activities, and then perform the Renaming and Decomposition
on these sets, and then check the validity. For vertical refinement, we can first
perform the Reduction on processes, then obtain the predecessor and successor
sets and perform the Renaming on these sets, and finally check the validity.

In this paper, we perform Reduction directly on the a process P and
obtain the predecessor and successor sets from P ?, then encode Renaming and
Decomposition into ontology and check the validity with reasoning.

3.2 Refinement representation

In this section we represent the predecessor and successor sets of activities with
ontologies. In such ontologies, activities are represented by concepts. The prede-
cessors/successors relations are described by two roles from and to, respectively.



On instance level, these two roles should be inverse role of each other. However
this is not necessary in our solution. Composition of activities in horizontal refine-
ment is described by role compose. Grounding of activities in vertical refinement
is described by role groundedTo. To facilitate the ontology construction, four
operators are defined for pre- and post- refinement process:

Definition 1. : Given S a predecessors or successors set, we define four operators
for translations as follows:

Pre-refinement-from operator Prfrom(S) = ∀from.
⊔

x∈S x
Pre-refinement-to operator Prto(S) = ∀to.

⊔
y∈S y

Post-refinement-from operator Psfrom(S) =
d

x∈S ∃from.x
Post-refinement-to operator Psto(S) =

d
y∈S ∃to.y

The effect of the above operators in refinement checking can be characterised
by the following theorem:

Theorem 2. PSQ(a) ⊆ PSP (a) iff
Disjoint(x|x ∈ AP ∪ AQ) infers that Prfrom(PSP (a))uPsfrom(PSQ(a)) is
satisfiable.

SSQ(a) ⊆ SSP (a) iff
Disjoint(x|x ∈ AP ∪AQ) infers that Prto(SSP (a))uPsto(SSQ(a)) is satisfiable.

For sake of a shorter presentation, we only prove the first part of the theorem.
The proof for the second part is appropriate to the first part.

Proof. (1) We demonstrate the → direction with a proof by contraposition.
The disjointness of activities holds. Supposed the rhs is unsatisfiable, i.e.
Prfrom(PSP (a))uPsfrom(PSQ(a)) is unsatisfiable. Obviously, both concept def-
initions on its own are satisfiable, since Prfrom(PSP (a)) is just a definition with
one all-quantified role followed by a union of (disjoint) concepts. The concept
definition behind this expression is ∀from.

⊔
x∈PSP (a) x which restricts the range

of from to all concepts (activities) of PSP (a). Psfrom(PSQ(a)) is a concept
intersection which only consists of existential quantifiers and the same from
role. This definition is also satisfiable. Therefore the unsatisfiability is caused by
the intersection of both definitions. In Psfrom(PSQ(a)) the same role from is
used and the range is restricted by Prfrom(PSP (a)). Therefore the contradiction
is caused by one activity b ∈ PSQ(a) which is not in PSP (a), but this is a
contradiction to the precondition PSQ(a) ⊆ PSP (a).
(2) The ← direction can be proved similarly by contraposition.

Now we can represent horizontal and vertical refinements by ontologies:

Horizontal Refinement For conciseness of presentation, we always have a
pre-refinement process P and a post-refinement process Q and we refine one
activity z of P in this step. z may have multiple appearances zj in P ?. For each
zj we define component zj ≡ ∃compose.zj . Simultaneous refinement of multiple
activities can be done in a similar manner of single refinement. Then we construct
an ontology OP→Q with following axioms:



1. for each activity ai ∈ AQ? and hori(a) = z
ai v

⊔
∃compose.zj

These axioms represent the composition of activities with concept sub-
sumption, which realise Renaming in horizontal refinement. For example,
b31 v ∃compose.B and a11 v ∃compose.A.

2. for each ai ∈ AQ? where a is not refined from z
ai vPrfrom(PSP ?(ai))[zj → component zj ],
ai vPrto(SSP ?(ai))[zj → componennt zj ],
These axioms represent the predecessor and successor sets of all the unre-
fined activities in the pre-refinement process. Because in the post-refinement
process, any activity refined from zj will be considered as a subconcept of⊔

component zj , we replace the appearance of each zj by corresponding
component zj . For example, Start v ∀to.component A.

3. for each zj ∈ AP ? ,
component zj vPrfrom(PSP ?(zj)∪{component zj})[zj → componennt zj ],
component zj vPrto(SSP ?(zj) ∪ {component zj})[zj → componennt zj ],
These axioms represent the predecessor and successor sets of all the refined
activities in the pre-refinement process. Due to the mechanism of Decompos-
ing, we add corresponding component zj to their predecessor and successor
sets, and replace the zj with component zj for the same reason as before.
For example, component A v ∀from.(Start t component A).

4. for each ai ∈ AQ? ,
ai vPsfrom(PSQ?(ai)),
ai vPsto(SSQ?(ai)),
These axioms represent the predecessor and successor sets of all the activities
in the post-refinement process. For example, a22 v ∃from.b12, b23 v ∃to.a23.

5. Disjoint(ai|ai ∈ Q and Hori(a) = z)
These axioms represent the uniqueness of all the sibling activities refined
from the same zj . For example, Disjoint(a11, a21, a22, a23)

6. Disjoint( all the activity in P , and all the component zj).
This axiom represents the uniqueness of all the activities before refinement.
For example, Disjoint(Start, End,A, B, component A, component B).

With the above axioms, ontology OP→Q is a representation of the horizontal
refinement from P to Q by describing the predecessor and successor sets of
corresponding activities with axioms.

Vertical Refinement Similar as horizontal refinement, suppose we have prin-
ciple behaviour model P and a concrete process model Q, which has already
been reduced w.r.t P to eliminate ungrounded activities. Any activity in Q can
be grounded to some activity in P . Thus, after reduction, ∀a ∈ AP ,∃b ∈ AQ

that b is grounded to a, and vice versa. Therefore for each xj ∈ AP ? , we define
grounded xj ≡ ∃groundedTo.xj .Then we construct an ontology OP→Q with
following axioms:

1. for each activity ai ∈ AQ? and vert(a) = x
ai v

⊔
∃groundedTo.xj



These axioms represent the grounding of activities by concept subsumption,
which realise the Renaming in vertical refinement. For example, a11 v
∃groundedTo.E, b11 v ∃groundedTo.F .

2. for each ai ∈ AP ?

grounded ai vPrfrom(PSP ?(ai))[xj → grounded xj ],
grounded ai vPrto(SSP ?(a))[xj → grounded xj ],
These axioms represent the predecessor and successor sets of all the activities
in the pre-refinement process. Due the mechanism of Renaming we replace
all the xj ∈ AP ? by grounded xj . Because Decomposition is not needed
in vertical refinement, we stick to the original predecessor and successor sets.
These axioms become the constraints on the activities in Q?.

3. for each ai ∈ AQ? ,
ai vPsfrom(PSQ?(ai)),
ai vPsto(SSQ?(ai)),
These axioms represent the predecessor and successor sets of all the activities
in the post-refinement process. Notice that the ungrounded activities have
been removed from the process.

4. for each x ∈ AP ,
Disjoint(ai|ai ∈ Q? and vert(a) = x)
These axioms represent the uniqueness of all the sibling activities refined
from the same x.

5. Disjoint(Start, End, all the grounded xj).
This axiom represents the uniqueness of all the activities before refinement.
For example, Disjoint(Start, End, grounded C, grounded D).

With above axioms, ontology OP→Q is a representation of the refinement
from P to Q by describing the predecessor and successor sets of corresponding
activities with axioms.

In both horizontal and vertical refinement, the number of axioms are linear
w.r.t. the size of P ? and Q?. The language is ALC.

3.3 Concept satisfiability checking

In ontology OP→Q, all the activities in Q? satisfy the ordering relations in
P ? by satisfying the universal restrictions and satisfy the ordering relations
in Q? by satisfying existential restrictions. Given the uniqueness of concepts,
the inconsistency between P ? and Q? will lead to unsatisfiability of particular
concepts. The relation between the ontology OP→Q and the validity of the
refinement from P to Q is characterised by the following theorems:

Theorem 3. An execution path containing activity a in Q is invalid in the
refinement from P to Q, iff there is some ai ∈ Q? such that OP→Q |= ai v ⊥.

Proof. For each a in Q the ontology OP→Q contains the axioms
a vPsfrom(PSQ(a)) and a vPsto(SSQ(a)). The axioms a vPrfrom(PSQ(a))
and a vPrto(SSQ(a)) are derived from the axioms (item 1,2). Depending on
the refinement either the axioms a v ∃groundedTo.xj and grounded xj ≡



∃groundedTo.xj or a v ∃compose.zj and component zj ≡ ∃compose.zj are in
the ontology. (1) For the → direction the lhs holds, we demonstrate that a is
unsatisfiable. Since a is invalid either PSQ(a) 6⊆ PSP (a) or SSQ(a) 6⊆ SSP (a).
From Theorem 2 it follows that either Prfrom(PSP (a))uPsfrom(PSQ(a)) or
Prto(SSP (a))uPsto(SSQ(a)) is unsatisfiable and therefore a is unsatisfiable since
a is subsumed. (2) The ← direction is proved by contraposition. Given a is unsat-
isfiable in OP→Q. Assumed a is valid in the refinement then PSQ(a) ⊆ PSP (a)
and SSQ(a) ⊆ SSP (a) holds. From Theorem 2 the satisfiability of Prto(SSP (a)),
Prfrom(PSP (a)), Psfrom(PSQ(a)) and Psto(SSQ(a)) follows which leads to a
contradiction to the satisfiability of a.

This theorem has two implications:

1. The validity of a refinement can be checked by the satisfiability of all the
name concepts in an ontology;

2. The activities represented by unsatisfiable concepts in the ontology are the
source of the invalid refinement.

we check the satisfiability of the concepts to validate the process refinement.
Every unsatisfiable concept is either an invalid refinement or related to an invalid
refinement.

With the help of reasoning, we can easily see that Fig.1b is an invalid
horizontal refinement w.r.t. Fig.1a: a22 v ∃from.b12, also a22 v ∃compose.A
thus a22 v ∀from.(Start t component A). However, b12 disjoints with both
Start and component A therefore a22 is unsatisfiable. Similarly, we can detect
that b12, b23 and a23 are unsatisfiable. This implies the invalid routes in Fig.2a
and further the invalid refinement of Fig.1b. Also, the vertical refinement w.r.t.
Fig.1d is wrong while the vertical refinement w.r.t. Fig.1c is correct.

According to the underlying logic, reasoning complexity is ExpTime.
Helped by our analysis, the process architect remodels their process (Fig. 3).

Now, the execution set of Fig. 3 is {[a1a2b1b2b3], [a1a2b2b1b3], [a1a2b1b3b2]}. Re-
naming of Fig. 3’s execution set with respect to Fig. 1a yields {[AABBB]}. After
decomposition, we conclude that Fig. 3 correctly horizontally refines the process
in Fig. 1a because {[AB]} ⊇ {[AB]}. As for validating vertical refinement with the
component models, renaming yields {[EFGHD], [EFHGD], [EFGDH]}. After reduc-
tion with respect to Fig. 1c and Fig. 1d, we conclude that Fig. 3 correctly grounds
on Fig. 1c and Fig. 1d because {[C], [D], [CC], [CD], [DC], [DD], . . .} ⊇ {[D]} and
{[EFGH], [EFHG], [FHEG], [FEGH], [FEHG]} ⊇ {[EFGH], [EFHG]}.

4 Evaluation

We have implemented the transformation of BPMN process models and refine-
ment information to OWL-DL ontology. In addition to the transformation, we
implemented a generator which creates random, arbitrarily complex refinement
scenarios. Flow correctness is ensured by constructing the process models out
of block-wise patterns that can be nested. The generator is parameterized by
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Fig. 3. Adapted specific process for correct refinement

the maximum branching factor B, the maximum length L of a pattern instance,
the maximum depth of nesting N , and by the probability for loops, parallel,
or exclusive flow. Most realistic appearing process diagrams were created with
B = 3, L = 6, N = 3, and with a mixture of loops, parallelism, and exclusive
flow to the ratio of 2 : 1 : 2.

With the given parameters, we generated 1239 refinement scenarios (197
correct, 1042 wrong) with the average and maximum number of activities in the
generic and refined models printed on the left-hand side below.

Generic Specific Total Transf. OWL-DL Reasoning
Activities Activities Activities Time Axioms Time

Average 5.79 17.4 23.2 4ms 154 2.8s
Maximum 30 53 69 0.4s 1159 3.4min

The generated scenarios were used to evaluate the refinement analysis on
a laptop with a 2 GHz dual core CPU, 2 GB of RAM using Java v1.6 and
Pellet 2.0.0. Two factors contribute to the overall complexity of the analysis:

1. Transformation to OWL-DL. As we pointed out earlier, theoretically,
the complexity of the transformation can be exponential in the worst case.
However, our experiments show that in many practical cases, the size of the
OWL-DL knowledge base—measured by the number of axioms—remains
relatively small. In particular, for 80% (90%) of the scenarios, the number of
axioms was below 220 (400) (see Fig. 4). Some unusual nesting of parallel flow
causes the exceptions in the diagram that have a higher number of generated
axioms. Remarkably, the appearance of such cases seems to uniquely distribute
over the scenarios independently of the size of the original processes due to
the artificial nature of the generated scenarios.

2. OWL-DL Reasoning. The theoretical complexity of OWL-DL reasoning
is exponential as well. However, our evaluation runs in Fig. 5 suggest that for
the practical cases evaluated, reasoning time grows less than exponentially
(less than a straight line on a logarithmic scale) compared to the number of
axioms in the OWL-DL knowledge base. We separately plot the reasoning
times of the correct and wrong refinements because classifying a consistent
knowledge base is more expensive in general.

When comparing absolute times, reasoning consumes about two orders of
magnitude more time than transformation as can be seen from the right-hand
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Fig. 5. Reasoning time for axioms on logarithmic scale

side of the table above. This determines our future research to seek improvements
in the reasoning rather than in the transformation.

As for the complete run time, the above table indicates that the refinement
analysis of an average scenario—with a generic process of about 6 activities and a
refining process of about 17 activities—would take about 3 seconds. We consider
this a simpler, yet realistic problem size.

In one of the larger evaluated scenarios, 15 generic activities were refined to
48 specific activities (for comparison: our running example contains 5 specific
activities). The 63 activities in total (= 15+48) were transformed to 402 activities
due to many parallel flows in that scenario. Analysis of the 765 generated axioms
was performed in 18 seconds.

In the most complicated scenario of our evaluation, where a large knowledge
base had to be constructed due to the heavy use of parallel gateways, total
analysis time remained below 4 minutes. Although this is definitely too much
for providing a real-time refinement check to process modelers, analysis took
less than 1 second for 80% (≤ 220 axioms) and less than 10 seconds for 90%
(≤ 400 axioms) of the examined practical cases. Compared to the manual efforts
a human is required today, our approach provides a significant improvement.
Furthermore, the check performed by our approach is—in contrast to the manual



approach—guaranteed to be correct and thus helps to avoid costly follow-up
process design errors.

5 Related Works and Conclusion

There are many existing works related to our study. Some of them [17, 14]
come from the business process modelling and management community which
investigated process property checking with model checkers.

Researchers in system transition and communication systems [13, 11, 10, 12]
also developed behaviour algebra to analyse the bisimulation, i.e. matching
between processes. In some of the works, execution set semantics are also applied
[18]. However, these models do not validate refinement with activity compositions.

Other models use mathematical formalisms to describe concurrent system
behaviour. [3] describes concurrent system behaviour with operational semantics
and denotational semantics. But the analyzed equivalence between process models
does not distinguish between deterministic and non-deterministic choices.

Semantic web community contribute to this topic by providing first semantic
annotations for process models such as service behaviour and interaction [4, 16,
15] and later automatic process generation tools [7]. However, these approaches
do neither consider process refinement nor a DL based validation of relationships.

In [8] actions and services, which are a composition of actions are described
in DL. Actions contain pre- and post-conditions. The focus is on a generic
description of service functionality. As inference problems, the realizability of
a service, subsumption relation between services and service effects checking is
analyzed. Services are described similarly with DL in [2]. The reasoning tasks
are checking of pre- and post-conditions of services. The main focus of this work
is the reasoning complexity.

The DL DLR is extended with temporal operators in [1] for temporal con-
ceptual modelling. In this extension, query containment for specified (temporal)
properties is analyzed. In [9] the DL ALC is extended with the temporal logics
LTL and CTL. Still, neither of them considers process modelling and refinements.

Our contribution is this paper includes:

1. Devising a general approach to represent and reason with process models
containing parallel and exclusive gateways;

2. Applying graph-based topological approach with DL reasoning to provide
automatic solution of process refinement checking;

3. Implementing and evaluating a prototype that performs process transforma-
tion and refinement checking as proposed.

In the future, there are several potential extension of this work. We will
continue our implementation and evaluation to support larger and more complex
process models. We will also try to extend the process representation with more
expressive power. Another interesting topic is whether the process transformation
itself can be automatically inferred by reasoning. We also want to integrate our
refinement representation with other business process modelling ontologies.
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