
Ontology-Driven Software: What We Learned From
Using Ontologies As Infrastructure For Software

Or How Does It Taste to Eat Our Own Dogfood

Csongor Nyulas, Natalya F. Noy, Michael Dorf, Nicholas Griffith,
Mark A. Musen

Stanford University, Stanford, CA 94305, US
{nyulas,noy,mdorf,ngriff,musen}@stanford.edu

Abstract. In recent years, researchers have argued that using ontologies to repre-
sent and drive knowledge infrastructure of software projects provides separation
of the declarative and procedural knowledge and enables easier evolution of the
declarative knowledge. We have validated these conjectures in the context of Bio-
Portal, a repository of biomedical ontologies, which was developed in our group.
We are using the BioPortal Metadata Ontology to represent details about all the
ontologies in the repository, including internal system information and the infor-
mation that we collect from the community such as mappings between classes in
different ontologies, ontology reviews, and so on. To the best of our knowledge,
BioPortal is the first large-scale application that uses ontologies to represent es-
sentially all of its internal infrastructure.
The BioPortal Metadata Ontology extends several other ontologies for repre-
senting metadata, such as the Ontology Metadata Vocabulary and the Protégé
Changes and Annotations Ontology. In this paper, we show that it is feasible
to describe the structure of the data that drives an application using ontologies
rather than database schemas, which are used traditionally to store the infrastruc-
ture data. We also show that such approach provides critical advantages in terms
of flexibility and adaptability of the tool itself. We demonstrate the extensibil-
ity of the approach by enabling representation of views on ontologies and their
corresponding metadata in the same framework.

1 Representing Knowledge Infrastructure: From Database
Schemas to Ontologies

The topic of using Semantic Web technology to facilitate software development, inte-
gration, and evolution has been an active area of Semantic Web research, with annual
workshops on Semantic-Web Enabled Software Engineering (SWESE). Researchers
have pursued several different directions in this line of work: generating software code
from ontologies [7] or using ontologies to describe inputs, outputs, or tasks of soft-
ware components to enable integration of software and services [12]; facilitating gath-
ering of requirements from domain experts [1]; using ontology-based reasoning to val-
idate integrity and consistency of software models [2]; or facilitating critical software-
engineering tasks, such as configuration management [16] and product management [8].
These novel applications, as well as the traditional ones, use ontologies to describe
only some of the artifacts, whereas the structure of the rest of the data is reflected in a



database schema. In this paper, we describe an approach to application development that
pushes this envelope to use ontologies and ontology instances to represent essentially
all data that the application requires in a single flexible framework, from declarative
high-level descriptions of the data as in the examples above to internal system data.

For large-scale distributed architectures today, the development stack includes sev-
eral technologies wrapped around a SQL database schema, such as persistence man-
agers (e.g., Hibernate), a web server, and so on. When the database schema changes,
these changes often need to be propagated through the development stack, thus making
such changes expensive in distributed web-based applications. We have encountered
this problem in developing BioPortal1—a community-based repository of biomedical
ontologies, containing 170 ontologies with more than one million classes among them
at the time of this writing. Users can submit their ontologies to BioPortal; search across
all ontologies; browse the ontologies, their different versions, and the associated de-
scriptions and provenance information; describe their ontology-related projects and link
the descriptions to the ontologies; leave comments on classes and on ontologies; create
mappings between concepts in one ontology and concepts in another ontology [11].

The BioPortal application is heavily knowledge-driven: most of what the users see
when browsing BioPortal (in addition to the ontologies themselves), is some rendering
of information that would traditionally be in a database. This internal information that
drives the application includes the metadata about ontologies in the repository, such as
ontology domain, authors, and other provenance information, as well as information on
which property to use for preferred name and synonyms in each ontology, information
on where the ontology itself resides in the system (e.g., the specific database table),
when it was uploaded, the name of the administrator of the ontology in BioPortal, and
so on. Some of this information (such as provenance) is intrinsic to the ontology artifact
and is relevant outside of BioPortal; some information is internal system information.

Because the BioPortal application is novel in many of its aspects, our internal in-
frastructure continues to evolve constantly, as we understand better user requirements,
learn what works and what does not, get new collaborators that would like to extend
BioPortal in a certain way. With the knowledge infrastructure constantly in flux, we
found that describing and representing the structure of the knowledge as a relational
database schema did not provide the flexibility and quick adaptability that our users
required. Making changes was cumbersome and put a bottleneck in the development of
the software code. It also made it much harder for anyone to adapt the BioPortal code
for their own purposes as the developers had to be familiar with the entire development
stack (including Protégé, Java, Spring, Hibernate, and Ruby-on-Rails).

Thus, we decided to “eat our own dog food:” we developed an ontology to describe
this infrastructure and represented the application data itself as ontology instances. Thus
the whole BioPortal application is driven by ontologies and ontology instances. Note
that while BioPortal is a repository of ontologies, the infrastructure that we describe is
not specific to the artifacts represented in a repository. It will work for a repository of
any other artifacts, not necessarily ontologies. To the best of our knowledge, BioPortal
is the first large-scale application of this approach.

This paper makes the following contributions:

1 http://bioportal.bioontology.org



– We developed an ontology to represent the infrastructure and run-time data of a
large community-based ontology repository.

– We implemented the infrastructure of BioPortal using an ontology to represent most
of the data required to drive the application.2

– We validated the extensibility of the approach by adding functionality to support
flexibly representation of ontology views.

2 Types of Metadata in the Repository

The BioPortal ontology repository is an active ontology repository with a large user
community that contributes its content and uses its web services in their applications.
In addition to more than 170 ontologies, it currently contains multiple versions of these
ontologies, submitted by their authors and almost one million mappings between con-
cepts in the ontologies. There are descriptions of ontology-based projects, and notes
and discussions on classes and ontologies. The BioPortal Resource index provides
ontology-based access to several biomedical data sets available online (e.g. entries in
GEO, ClinicalTrials.gov). All BioPortal functionality is supported by a rich metadata
infrastructure, which includes the following types of metadata:

– ontology metadata describing the ontologies and their provenance and includes
ontology name, domain, description and keywords, authors, license information,
versions, references, and metrics such as the number of classes and properties;

– mappings between concepts, and metadata associated with mappings, such as how
the mapping was created, whether it was created manually or computed automati-
cally by a particular algorithm (and which one) and context for the mapping [10];

– ontology reviews are contributed by users as part of their evaluation of ontologies
in BioPortal;

– notes on classes are user-contributed notes that can contain questions, comments,
and suggestions, usually addressed to the authors of specific ontology classes;

– projects that use ontologies, described by BioPortal users;
– user information such as user profiles, information on who administers each on-

tology and each project description, who contributed notes, mappings, and reviews
to BioPortal, and so on.

3 Functional and Architectural Requirements for Metadata
Support

The BioPortal application dictates the following functional and architectural require-
ments for the metadata support:

Efficient and scalable support of BioPortal main functions: Any metadata infrastruc-
ture must support fast access to metadata, flexible querying of specific metadata items
and their combination, and be scalable. We envision that the number of users, notes,
projects, and mappings will grow significantly in the coming months.

2 At the time of this writing, some data, such as mappings and user information, is still in
database tables from our initial implementation of BioPortal.



Support for ontology versioning: Users can upload successive versions of their ontolo-
gies and explore any ontology version. There must be services that always resolve to the
latest version of an ontology, with each ontology having a “virtual” location that always
redirects to the latest version. Metadata referring to an ontology or its components (e.g.,
reviews, notes, mappings) must be attached to a specific version of an ontology.

Flexible evolution of the metadata schema: One of the key requirements for metadata
support is its ability to adapt easily to new requirements and types of metadata. The
types of metadata that an ontology repository requires is still an active area of research.
Thus, the structure of the metadata and the specific properties change frequently. These
changes to the schema describing the metadata must be easy to implement and roll out.

Customizability of the metadata schema: Some groups install their own versions of
BioPortal software to support either a broader scope than just biomedicine (e.g., the
Open Ontology Repository sandbox3) or to maintain a repository open only to a spe-
cific set of users (e.g., the Marine Metadata Initiative4). Developers that maintain these
BioPortal installations usually customize the code to satisfy the local requirements. For
example, the fields that describe an ontology and its provenance are different for differ-
ent communities. Definitions of mappings and the associated metadata differ as well.
The representation of metadata schema must make it easy for these developers to cus-
tom tailor what gets represented and what gets presented in the user interface.

Reuse of existing technologies and ontologies: Wherever possible, we would like to use
existing technologies and standards for representing metadata. For example, the Ontol-
ogy Metadata Vocabulary (OMV) [14] provides a vocabulary for describing ontologies.
There are several ontologies and APIs for describing mappings (e.g., the alignment
API [4] or the Protégé mapping ontology [10]). Reusing these ontologies enables us
not only to use technologies that have already been tested but also to share the data
represented using these ontologies. For example, by using OMV to represent ontology
metadata, we can share these descriptions with other repositories that use OMV, such
as Oyster [13] and Cupboard [3]. Similarly, the comments on ontologies that BioPortal
users provide are useful for ontology authors when they evolve their ontology. In or-
der for ontology authors to see these comments alongside the ontology classes in their
favorite ontology-editing environment (such as Protégé). Thus, the comments must be
represented in the format that an ontology editor, such as Protégé, can understand (e.g.,
the Protégé Changes and Annotations Ontology, CHAO [9]).

In our initial implementation of BioPortal we used a database schema to describe
our metadata, with column names corresponding to metadata fields. This approach is
fairly traditional for many large-scale implementations and supports the first two re-
quirements in our list—efficient and scalable handling of metadata and support for on-
tology versioning. However, in our experience, this approach did not fare so well on
other requirements.

Any time we needed to add a new metadata field, we had to change not only the
database schema, but also the rest of the application stack (e.g., Hibernate) to reflect the

3 http://oor-01.cim3.net/home/release
4 http://mmisw.org/or/



change. These changes were time-consuming and cumbersome. Yet, the more we were
developing BioPortal, the more features we were adding, the more often we needed to
adjust the metadata representation. For instance, in addition to describing the ontolo-
gies themselves, we needed to add ontology views, to support ontology reviews along
several different dimensions, and to represent a large set of ontology metrics—all of
these requirements crystalized after the start of the development.

With the metadata schema encoded as a database schema, any customization of new
BioPortal installation requires changes to the schema as well. And, as we mentioned
earlier, this process is cumbersome and error-prone.

Reusing and sharing the metadata that we collect also was not straightforward: it
is hard to find two applications that use the same database schema. Thus, in order to
transform the metadata from our internal representation to the representation that an-
other repository (e.g., Oyster) uses or to represent comments in a format that a tool such
as Protégé would understand, we must write a script to export the data.

While none of these challenges are insurmountable, we decided to apply a com-
pletely different approach to representing metadata infrastructure in BioPortal to ad-
dress these requirements. As we show in the remaining sections, this approach satisfied
our requirements and proved to be extensible enough to support new requirements.

4 Architecture

Figure 1 shows the architecture of BioPortal. It is a traditional service-oriented lay-
ered architecture, with the front end (Ruby-on-Rails) accessing the backend informa-
tion through RESTful services.5 There are services to access ontology information (e.g.,
get information about a specific ontology, upload a new version, get a diff between two
versions), concept-level services (e.g., get class definition), hierarchy services (e.g., get
all subclasses of a class), search services (e.g., search for a term across all ontologies),
and other services. The business logic tier implements these services in Java, using the
Spring framework. This layer is the one that contains the logic to translate the internal
metadata representation into responses to service request (e.g., a service may request a
list of all versions for a specific ontology). Before we transitioned to the ontology-based
approach, the database schema of the underlying relational database (mySQL) was re-
flected directly in the implementation of this layer and its metadata functions. In our
current approach, the metadata structure is accessed through the Protégé ontology API.
This API, in turn, does use a database to store the ontology and the instances. However,
the schema of the database that the Protégé uses does not depend on the ontology itself.
It is a single table that stores both the ontology and the instance information.6

The types of metadata and their properties are describe in the BioPortal Metadata
Ontology.7 The metadata values are Protégé instances and property values (see Figure 2
for an example). We use the Protégé API to access the ontology and instances.

5 http://bioontology.org/wiki/index.php/BioPortal_REST_services
6 http://protege.cim3.net/cgi-bin/wiki.pl?JdbcDatabaseBackend
7 http://bioportal.bioontology.org/virtual/1148



NCBO BioPortal

JSF

.NET

PHP

FLEX

Jboss J2EE Server

Web Container

Ruby on Rails 

RESTful Services (HTTP)

Acegi Security Framework

Spring Framework Protégé

MySQL RDBMS

Hibernate ORM

Presentation
Tier

Service
Tier

Business
Logic
Tier

Persistence
Tier

Representing 
metadata 

infrastructure

BEFORE

AFTER

Fig. 1. Layered architecture of BioPortal: The Presentation Tier contains the user interface and
external applications that call BioPortal REST services. The Business Logic Tier implements the
logic of translating the data and metadata stored in the database into responses to the service calls.

5 The BioPortal Metadata Ontology

The BioPortal Metadata Ontology is an OWL ontology that imports a number of other
ontologies (Figure 3) and includes classes to describe an ontology itself, its versions,
information about the ontology, creators of an ontology, user-contributed content, such
as notes, reviews, and mappings. It also contains the system information that is rele-
vant for maintaining and representing the ontology in BioPortal, such as which users
administer the ontology in BioPortal, where the ontology itself is located in the Bio-
Portal system, internal ontology id and version ids, and so on. The instances of classes
in this ontology represent the actual metadata for the BioPortal content. The BioPor-
tal Metadata Ontologyis an OWL-Lite ontology, specifically, RDF Schema constructs,
plus owl:import, thus supports in a scalable manner any reasoning that BioPortal
requires (for example for transitivity in getting superclasses or subclasses of a class).

The BioPortal Metadata Ontology imports several ontologies that deal with the
types of metadata that BioPortal supports:

– The Ontology Metadata Vocabulary (OMV) describes most of the metadata for
ontologies themselves (e.g., domain, author, version, ontology language, etc.)

– The Protégé Changes and Annotations Ontology (CHAO) provides definitions
for generic annotations and ontology components that they annotate.



FMA, v.2.0

FMA, v.1.0

Review_1209
Text: Key enabler in bioinformatics

BioPortal Metadata Classes

Class
OMV:Ontology

Class
Review

Instances

rdf:typerdf:typerdf:type

reviewOn

Class
VirtualOntology

FMA

rdf:type

hasVersion
hasVersion

Fig. 2. Representing metadata as ontology and instances in BioPortal: The diagram shows
some examples of classes and instances that represent metadata in BioPortal. There is an in-
stance of the class VirtualOntology that corresponds to the Foundational Model of Anatomy
(FMA) and not any specific version of it. This instance points to instances of OMV:Ontology
describing specific versions of FMA in BioPortal. A review provided by a user (an instance of
the class Review) points to a specific version of the FMA for which the review was created.

– The Protégé Mapping Ontology provides vocabulary for describing one-to-one
mappings between concepts and corresponding metadata.

The OMV provides the vocabulary for describing a specific ontology version. An
instance of the class OMV:Ontology describes a single version of an ontology. This
class contains properties describing pertinent information about the ontology. The Bio-
Portal Metadata Ontology extends this class to add properties that are specific to BioPor-
tal as well as some missing properties that should have been in OMV.8 These properties
include system information such as the internal id, the user who submitted the ontology,
the internal status (e.g., scheduled for parsing, loaded, error), and associated reviews.

We use the instances of the Protégé CHAO ontology to represent comments that
BioPortal users contribute to the ontologies. Each comment is represented as an annota-
tion attached to a specific class (in a specific ontology version) or to another annotation
(if it is a response to a comment). Users can use the comments, for example, to carry
out discussions about modeling decisions, make suggestions for changes, ask questions.
The same mechanism exists in Collaborative Protégé, a version of the Protégé ontology
editor that supports collaborative ontology editing. Because BioPortal and Protégé share
the same structure for representing user comments and discussions, one can potentially

8 We collaborate with OMV developers to include these properties in future versions of OMV



BioPortal OWL ontologies

BioPortal Metadata Ontology

OMV

Protégé Changes ontology

Mappings ontology

owl:imports owl:imports owl:imports

FMA NCITGO

Class
OMV:Ontology

Class
changes:Annotation

Class
changes:Ontology

Class
changes:Ontology_Component

Class
mappings:One_to_one_mapping

Class
mappings:Mapping_Metadata

Represents an
ontology version

Represents 
comments,

reviews

References
an ontology 

verison

References a specific
version of 

a class or property

Represents 
a mapping

Represents 
mapping
metadata

Class
VirtualOntology

Class
User

Class
ProjectClass

Review

versions views

changes:annotates

subclasOf

Fig. 3. The BioPortal Metadata Ontology: Some classes and ontologies that the BioPortal Meta-
data Ontology imports. The BioPortal Metadata Ontology is itself in the BioPortal repository,
along with domain-specific ontologies such as the Gene Ontology (GO), the FMA, and others.

open a BioPortal ontology in Protégé and see the comments contributed by BioPortal
users. We are currently working on the tighter integration of the two tools.

The BioPortal Metadata Ontology adds classes that are specific to BioPortal func-
tionalities and that are not described in the imported ontologies. These classes represent
ontology projects and reviews on ontologies and dimensions that users can use to eval-
uate ontologies.

The BioPortal Metadata Ontology introduces some convenience classes that ab-
stract the information already present in other classes. This approach poses minor main-
tenance challenges, which we mitigate by changing instances only programmatically.
However, this approach greatly facilitates access to the information. Consider the fol-
lowing example: In OMV, the description of an ontology version (instance of OMV:Ontology)
points to a previous version of the same ontology. Thus, in order to present a table with
the information about all versions of an ontology (as in Figure 4), we must first find
the latest version of the ontology, and then traverse the instances to collect all versions.
Thus, we introduce the notion of VirtualOntology which is an object representing
the collection of all versions of the ontology. This object has the minimal information
that is shared among all versions, such as the ontology name (e.g., Gene Ontology);
the “virtual ontology id”—the global id that, when used to access an ontology, always
resolves to the latest version; the information on who administers the ontology and the
list of versions (instances of OMV:Ontology).



Fig. 4. Ontology metadata in BioPortal user interface: This page presents the metadata for one
of the BioPortal ontologies. It shows the provenance and other information about the ontology
itself, the list of different versions of this ontology in BioPortal, and links to notes that users
contributed to this ontology and mappings between concepts in this ontology and concepts in
other ontologies. The notes and mappings are presented as a tag cloud: classes that appear in a
larger font have more notes and mappings than others.

6 Validating Feasibility: Implementing BioPortal metadata

We have validated the feasibility of our approach by implementing it as an infrastructure
for BioPortal.9 The previous version of BioPortal used a database schema to reflect the
metadata schema and posed exactly the flexibility and customizability challenges that
we described in Section 3.

First, we replaced the databases in the storage layer with a Protégé ontology, im-
plemented in its own one-table ontology-independent schema (Figure 1). Second, we
replaced the metadata implementation in the business-logic layer with the appropriate
Protégé API calls. Third, we transferred the metadata from the old database to instances
in the metadata ontology. Our goal was to maintain the same API at the service layer so

9 Note to reviewers: At the time of the paper submission, the main BioPortal server at http://
bioportal.bioontology.org runs using the database-based metadata representation.
We use the new infrastructure in our development server that is not yet accessible to the public.
We expect to transition the new implementation to our production server before the end of the
Summer 2009.



that the user interface does not need to be modified and other applications that already
use our REST service API can continue to use it.

Since we access the metadata ontology through the Protégé API —which was suc-
cessfully used in other projects to access in a scalable manner ontologies having more
than 8000 classes and 5 million instances 10— we predict with confidence that the new
representation of the metadata about ontologies will scale well. The version of BioPor-
tal currently running on our development server uses this infrastructure successfully,
thus validating the approach. We plan to release this implementation to production at
end of August 2009.

At the time of this writing, the transition of metadata to ontology-based approach is
not complete. Currently, ontology details, ontology versions, and ontology views (see
Section 7) are represented as ontology instances. We are in the process of transitioning
the rest of the metadata.

7 Validating Extensibility: representing ontology views

As we discussed earlier, one of our main motivations to moving to the ontology-based
approach was greater flexibility and adaptability of the metadata. We validated these
properties by implementing support for ontology views in BioPortal, which did not
previously exist. In our implementation we store only materialized views computed
and submitted by the users, together with the metadata describing how the view was
generated (the language, engine, etc.)

In this context, a view is any subset of an ontology that is itself an ontology. A view
can be created manually or automatically by a view-generation tool. For instance, our
collaborators have several views of the Foundational Model of Anatomy (FMA) [15].
One of the views represents the subset of the FMA that would be of interest to a ra-
diologist; another view deals exclusively with Liver; yet another view focuses on the
representation of neuroanatomy. The first of these views was generated manually, by
starting with the FMA in Protégé and removing the unnecessary branches. The other
two views are the results of queries in an extension of SPARQL that our collaborators
have developed [17]. When ontology users generate and materialize the views, they of-
ten want to share them with other researchers in the field. Thus, when users view a page
for FMA, they can see not only its different versions, but also the views available for it.

7.1 Requirements for Representing Views

Discussions with our collaborators led to the following set of requirements on view
representation:

– Each view is itself an ontology and can have metadata, be explorable, have reviews,
statistics, and so on.

– A view is defined on a specific version of an ontology.

10 http://protegewiki.stanford.edu/index.php/Scalability_and_
Tuning



– There is a notion of a “virtual view” (cf. “virtual ontology”) such as a view of
Liver-related concepts in FMA created for a particular purpose.
• Each virtual view will have at least one version, but can have several.
• Each version of the view also has its own metadata (inherited from ontology

metadata, but with additional fields).
– We must be able to represent views on views (with the same requirements).
– We must be able to represent views that use more than one ontology.

Note that these requirements suggest a fairly complex structure for view representa-
tion, with many cross-references with different components of ontology metadata (on-
tologies and ontology versions).

7.2 Representing Views in BioPortal

When representing views in BioPortal, we treated them essentially in the same way as
regular ontologies, thus getting the browsing, annotation, and other features “for free.”
We extended the BioPortal Metadata Ontology to represent features that are specific to
describing views (Figure 5). A class VirtualView is a subclass of VirtualOntology
and points to the list of versions of the view. Each version of a view is an instance of
the class OntologyView, which is a subclass of OMV:Ontology. Thus, it inherits
all the properties that describe an ontology version (e.g., description, domain, author)
and adds its own. The view-specific properties include the following:

– The property viewDefinition is the textual representation of the view defi-
nition. This definition can be a query that was used to create the view, a set of
traversal directive (as in Prompt), or any other way that specifies how the view was
extracted.

– The property viewDefinitionLanguage defines the language that was used
to define the view (e.g., the query language, such as SPARQL, for a view that was
generated by a query). The range of the property is the class ViewDefinitionLanguage,
whose instances will have all the pertinent attributes of the language (name, creator,
url) as well as the specific version that was used for the view.

– The property viewGenerationEngine contains the engine that was used to
compute the view. The range of the property is the class ViewGenerationEngine,
whose instances will have all the pertinent attribute of the engine (name, creator,
url) as well as the specific version that was used to generate the view.

7.3 Providing Support for Views in BioPortal

In this ontology-based infrastructure for representing metadata, in order to handle views
to BioPortal and satisfying all the requirements that we have outlined earlier, we had to
do the following. First, we extended the BioPortal Metadata Ontology as we described
in Section 7.2 and Figure 5. After this step, we already had all the structure to repre-
sent the views. Second, we implemented the new view-specific REST services (e.g.,
returning all views for an ontology). This implementation uses the Protégé API to ac-
cess the view metadata. As we expected, in this implementation we indeed needed to



BioPortal Metadata Instances

FMA, v.2.0
Instance of 

OMV:Ontology

FMA, v.1.0
Instance of 

OMV:Ontology

FMA
Instance of 

VirtualOntology

isVersionOf

isVersionOf

NeuroFMA
Instance of 
VirtualView

virtualViewOf

NeuroFMA, v.0.1
Instance of 

OntologyView

NeuroFMA, v.0.2
Instance of 

OntologyView

isVersionOf

isViewOn
isViewOn isVersionOf

NeuroFMA, v.1.0
Instance of 

OntologyView

isViewOn

isVersionOf

Class
OMV:Ontology

Class
VirtualOntology

hasVersion

hasVirtualView

Class
OntologyView

Class
VirtuallView

hasVersion

hasVirtualView

hasView subclassOf

subclassOf

isVersionOf

isVersionOf

isViewOfisVirtualViewOf

BioPortal Metadata Classes

Fig. 5. Classes and instances for representing views: The class VirtualView corresponds
to the logical description of a specific view (e.g., NeuroFMA, which is an extraction of FMA
concepts relevant to Neuroimaging). It is a subclass of VirtualOntology because each view
is an ontology itself. Similarly, the class OntologyView extends the class OMV:Ontology
and describes specific versions of the view. The right-hand side of the figure shows some example
instances of these classes and properties that link them.

focus exclusively on the view-specific logic and structures and did not need to change
anything else (e.g., the application infrastructure or the architecture). Some of the func-
tional requirements for handling the views crystallized while we were already working
on the implementation, and the only changes that were necessary were the changes to
the ontology itself. We did not need to change any database schemas or to add any ad-
ditional structures (e.g., Hibernate stubs). The work that was required was limited to
implementing the logic for the services directly.

In comparison, adding views to the old (Hibernate-based) infrastructure, would have
involved some additional changes like: (a) creating new database tables (for views and
virtual views), (b) creating a number of foreign keys in order to represent superclass-
subclass relationships and relationships expressed by object properties, (c) creating in-
tegrity constraints to enforce data integrity along those relations, and (d) generate Hi-
bernate classes (so called “entity beans”) from the database tables.

Figure 6 shows the extended ontology-metadata page that includes the information
about the views.

8 Discussion and Lessons Learned

The new implementation of BioPortal infrastructure validates the use of ontologies and
ontology instances to represent all the metadata as well as system data for a repository
of this kind. To the best of our knowledge, BioPortal is the first large-scale web-based
application that uses ontologies to represent its internal data. Our experience has shown
that using an ontology to describe the knowledge infrastructure of an application does
indeed provide the flexibility and adaptability that our application required. Our obser-



Fig. 6. The user interface for representing view metadata in BioPortal. The screenshot shows two
views of the NCI Thesaurus. Each view has two different versions.

vations and discussions with developers show that it was easier and far more efficient to
implement view support that satisfied the requirements that we outlined in Section 7.1
using this approach than using a database schema to describe the views and to link
them to ontologies. It also enabled us to reuse much of the infrastructure that we have
already developed for ontology metadata, as we could treat views as special cases of
ontologies. As our requirements for view representation continue to evolve, we know
that our changes will be easy to implement as we will need only to evolve the ontology
representation and the corresponding service implementations.

It is important to note that some of the design choices in the BioPortal Metadata On-
tology are driven purely by application and implementation considerations. Thus, there
are parts of this ontology that are specific to the context of BioPortal implementation.
We also made some of the ontology-design choices not because they were “ontologi-
cally correct” in an abstract sense but because they simplified access to information (cf.
VirtualOntology class to collect information about all versions of an ontology).
Thus, we used the ontology not only as a conceptualization of our domain (metadata
representation) but also to represent the physical properties and location of the data.

There are a number of systems that use ontologies to represent some of their meta-
data. These include Oyster [13], the alignment server [5], and Cupboard [3]. However,
in these systems the items in the repository (such as ontologies or alignments) are sepa-
rate from the part that represents the metadata. Furthermore, the ontology-based meta-
data does not expand to representing internal system information. The ontology-based
representation of metadata focuses on describing intrinsic properties of ontologies and
other objects that are shared across applications.



Another class of applications that uses ontologies actively are semantic desktops
(e.g., [6]). However, most semantic desktop applications do not represent system data
itself using the ontologies. Furthermore, semantic desktop applications focus on creat-
ing a “semantic web” of desktop resources rather than representing the internal system
data itself.

In our work, we have extended other metadata ontologies. In the future, we plan to
integrate other standards. Specifically, we plan to replace the Protégé Mapping ontology
that we used here for expediency with an ontology that extends SKOS with mapping-
specific metadata.

Our current effort leaves some questions and concerns, however. The main con-
cern is scalability. While Protégé is quite scalable and has been used with ontologies
that have hundreds of thousands of classes and instances, we do not know how it will
behave with millions of instances describing metadata. As we noted in Section 6, we
have not yet moved mappings to this infrastructure. At the same time, we have just up-
loaded one million new mappings to BioPortal. We are yet to test whether our current
Protégé-based infrastructure will be sufficiently scalable for this number of mappings.
If we learn that it is not, it will be the limitation of the Protégé implementation itself
as modern triplestore implementations easily handle this amount of data. If scalability
turns out to be an issue, we will transition to a triplestore to store the instances.

We would like to emphasize that our solution is not limited to the biomedical do-
main. It so happens that our repository is a repository of biomedical ontologies. How-
ever, there is nothing in the BioPortal Metadata Ontology itself or in our use of it that
is specific to biomedicine (except perhaps, the list of possible ontology categories). We
will install the new infrastructure in other local BioPortal installations, such as the OOR
sandbox that we mentioned earlier (and that accepts ontologies in any domain).

Finally, the BioPortal software is open-source. The software is domain-independent
and can be used for an ontology repository in any domain or for a domain-independent
one. The BioPortal Metadata Ontology is available in BioPortal and can be accessed
through the BioPortal user interface or its web services.11 We have created a snapshot
of the instances of the BioPortal Metadata Ontology for our development version of
BioPortal. This ontology and instances can be accessed directly through the WebProtégé
server at http://bmir-protege-dev1.stanford.edu/webprotege/. 12

Acknowledgments

This work was supported by the National Center for Biomedical Ontology, under roadmap-
initiative grant U54 HG004028 from the National Institutes of Health and by NIH grant HL087706.
We are grateful to Jim Brinkeley, Todd Detwiller, Onard Mejino, and other members of the Struc-
tural Informatics Group at Univesity of Washington for helping us identify requirements for views
in BioPortal.

11 http://bioportal.bioontology.org
12 Please use the Firefox browser to access the server. Select “BioPortal Metadata Ontology” and

then go to the “Individuals” tab to view the instances.



References

1. M. V. Bossche, P. Ross, I. MacLarty, B. V. Nu?elen, and N. Pelov. Ontology driven soft-
ware engineering for real life applications. In 3rd International Workshop on Semantic Web
Enabled Software Engineering (SWESE 2007), Innsubruk, Austria, 2007.

2. M. Bräuer and H. Lochmann. An ontology for software models and its practical implications
for semantic web reasoning. In The 5th European Semantic Web Conference (ESWC 2008),
pages 34–48, Tenerife, Spain, 2008. Springer.

3. M. dAquin and H. Lewen. Cupboard a place to expose your ontologies to applications
and the community. In 6th European Semantic Web Conference (ESWC 2009), Heraklion,
Greece, 2009.

4. J. Euzenat. An api for ontology alignment. In Third International Semantic Web Conference
(ISWC 2004), pages 698–712, Hiroshima, Japan, 2004. Springer.

5. J. Euzenat. Alignment infrastructure for ontology mediation and other applications. In
Workshop on Mediation in Semantic Web Services, 2005.

6. T. Groza, S. Handschuh, K. Moeller, G. Grimnes, L. Sauermann, E. Minack, C. Mesnage,
M. Jazayeri, G. Reif, and R. Gudjnsdttir. The nepomuk project - on the way to the social
semantic desktop. In T. Pellegrini and S. Schaffert, editors, Proceedings of I-Semantics’ 07,
pages 201–211. JUCS, Sept. 2007.

7. L. Hart, P. Emery, R. Colomb, K. Raymond, D. Chang, Y. Ye, E. Kendall, and M. Dutra. Us-
age scenarios and goals for ontology definition metamodel. In 5th International Conference
on Web Information Systems Engineering (WISE 2004), pages 596–607, Brisbane, Australia,
2004. Springer.

8. T. Lehmann. A framework for ontology based integration of structured it-systems. In 3rd
International Workshop on Semantic Web Enabled Software Engineering (SWESE 2007),
Innsubruk, Austria, 2007.

9. N. F. Noy, A. Chugh, W. Liu, and M. A. Musen. A framework for ontology evolution in
collaborative environments. In Fifth International Semantic Web Conference, ISWC, volume
LNCS 4273, Athens, GA, 2006. Springer.

10. N. F. Noy, N. Griffith, and M. A. Musen. Collecting community-based mappings in an
ontology repository. In 7th International Semantic Web Conference (ISWC 2008), Karlsruhe,
Germany, 2008.

11. N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet, D. L. Rubin,
M.-A. Storey, C. G. Chute, and M. A. Musen. Bioportal: ontologies and integrated data
resources at the click of a mouse. Nucleic Acids Research, 2009.

12. C. I. Nyulas, M. J. O’Connor, S. W. Tu, A. Okhmatovskaia, D. Buckeridge, and M. A. Musen.
An ontology-driven framework for deploying jade agent systems. In IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology, Sydney, Australia, 2008.

13. R. Palma, P. Haase, and A. Gomez-Perez. Oyster: sharing and re-using ontologies in a peer-
to-peer community. In 15th international conference on World Wide Web (WWW 2006),
pages 1009–1010, Edinburgh, Scotland, 2006. ACM.

14. R. Palma, J. Hartmann, and P. Haase. OMV: Ontology Metadata Vocabulary for the Semantic
Web. Technical report, http://ontoware.org/projects/omv/, 2008.

15. C. Rosse and J. L. V. Mejino. A reference ontology for bioinformatics: The Foundational
Model of Anatomy. Journal of Biomedical Informatics., 2004.

16. H. H. Shahri, J. A. Hendler, and A. A. Porter. Software configuration management using
ontologies. In 3rd International Workshop on Semantic Web Enabled Software Engineering
(SWESE 2007), Innsubruk, Austria, 2007.

17. M. Shaw, L. T. Detwiler, J. F. Brinkley, and D. Suciu. Generating application ontologies
from reference ontologies. In AMIA Annual Symposium, Washington, DC, 2008.


