
Mashup Development for Everybody

A Planning-Based Approach

Christian Kubczak1, Tiziana Margaria2, and Bernhard Steffen1

1 Chair of Programming Systems, TU Dortmund, Germany
{christian.kubczak,steffen}@cs.tu-dortmund.de

2 Chair Service and Software Engineering, Universität Potsdam, Germany
{margaria}@cs.uni-potsdam.de

Abstract. Today’s service mashup technologies usually focus on assist-
ing programmers to provide more powerful and valuable integrated ap-
plications to the users. A significant set of scripting languages, graphical
tools and web services are used for this purpose, all addressing users
with significant IT background. This paper aims at extending the power
of mashup development to end users and application experts by auto-
matically taking care of the tedious technical details like interface spec-
ifications, types, and syntactic constraints. In detail we support simple
and intuitive mashup specifications which are automatically completed
to runnable mashups by means of service discovery-like methods and
planning. We illustrate our approach by means of a concrete case study
executed within our jABC/jETI development and (remote) execution
framework.

1 Introduction

When talking about mashups in the context of service oriented computing one
usually means the combination of heterogeneous applications from different
providers that yield completely new and more powerful applications that make
extensive use of features of the reused services. Big internet companies and ven-
dors meanwhile attract programmers by providing a developer-friendly support
additionally to their pure web services. Examples are the Amazon Web Service
Developer Connection [1] or APIs like the Google Web Tool Kit [2]. These tech-
nologies are easy to use for programmers at the code level, but inappropriate
for domain experts as end users, who would like to combine their own special
service mashup without being IT experts.
In this paper we aim at extending the power of mashup development to the end
users and application experts by automatically taking care of the tedious techni-
cal details like interface specifications, types, and syntactic constraints. In detail
we support simple and intuitive mashup specifications which are automatically
completed to runnable mashups. In particular, this allows users to work with
specifications which are loose in two dimensions:



2 Christian Kubczak, Tiziana Margaria, and Bernhard Steffen

– horizontally, i.e. concerning the orchestration of the involved services. This
form of looseness, which is used to relax type matching and interfacing prob-
lems, is dealt with by means of planning along the lines proposed in [3–8]
and

– vertically, i.e. concerning the refinement of specifications of individual ser-
vices. This form of looseness is dealt with by means of service discovery
technology and refinement [3–5, 9, 6–8, 10–13].

This user-centric top-level development fits within the eXtreme Model-Driven
Design (XMDD) approach of [14]. XMDD is a new development paradigm de-
signed to continuously involve the customer/application expert throughout the
whole system’s life cycle. In technical practice, user-level models are successively
enriched and refined from the user perspective. Refinement stops at need, when-
ever a sufficient level of detail is reached, where elementary services that solve
well defined tasks at the application level, can be implemented. The realization
of these elementary services should typically be simple, they are often based on
functionality provided by third-party and standard software systems. As the con-
tinuously enriched model is the central and sole artifact of this methodology, we
also call this the One-Thing Approach [15, 16]. We illustrate here our approach
by means of a concrete case study, focussing on the top-level development.

Sect. 2 briefly introduces jABC, our flexible service composition framework
designed to support systematic development according to the XMDD paradigm,
and its enhancement for remote service integration jETI [17]. Sect. 3 demon-
strates our approach on the RichInfo Mashup case study and in Sect. 4 we
enhance our manual modeling approach by introducing automated synthesis
technologies. We then compare our work to related technologies and platforms
(Sect. 5) and conclude (Sect. 6).

2 eXtreme Model-Driven Design with jABC

The jABC [18, 19] allows users to develop service-oriented systems by composing
reusable building blocks (seen as services) into flow graph-like orchestrations
called Service Logic Graphs (SLG). These Service Independent Building Blocks
(SIBs) may represent single atomic service or also whole orchestrations (i.e.,
another SLG), thus SLGs can be hierarchical. This facilitates the refinement
along the lines of the One-Thing Approach and grants high reusability not only
of the building blocks, but also of entire models, as submodels within larger
systems. Business rules and other correctness/compliance constraints can be
defined for the SLGs, and they can be verified in jABC by formal methods like
model checking. Finally, modeled SLGs can be compiled to a running system for
a variety of target platforms [20].

SIBs arise typically from an available service description, like a WSDL or
an API for REST, CORBA, or other library services, with different degrees
of automation. They are grouped together by taxonomic descriptions, that are
used for display and retrieval. If more information is available, e.g. as (semantic)
annotations, we can use that too for service classification and discovery.



Mashup Development for Everybody 3

For the integration of remote services and tools into jABC we introduced
jETI [17] as an enhancement framework. jETI provides a powerful but easy
to use user interface to simplify both the integration and the use of remote
resources and services. Different technologies are supported with different degrees
of automation:

– Web services defined via WSDL documents [21] and handling communi-
cation via SOAP [22] can be automatically handled inside jABC.

– REST) services [23] in general provide no structured definitions. Their inte-
gration is done by using a guided import wizard which generates code stubs
for the SIBs.

– Proprietary 3rd party services are integrated using customized GUI
wizards integrated into the framework as needed. We support right now SAP
ERP [24] services as well as statistical components of the R-Project [25].

– Additionally, jETI provides an own lightweight remote service integra-
tion approach, to support also occasional users and vendors with the ”best of
both worlds” of REST and standard Web services. Tools and services hosted
on some remote server and described using an XML formatted document
that is published.

How this works in detail has been described in [26]. Here, we illustrate how
to use this technology for complex mashups, using as a case study the Rich
Information provision service we demonstrated at the CeBIT 2009 in Hannover
and at the IFA 2009 in Berlin.

3 Case Study: the RichInfo Service Mashup

The RichInfo service combines a variety of today’s most used web services on
the internet for the purpose of providing situated and consolidated information,
pictures, references, and literature, to a person in a certain location. Variants
thereof have been meanwhile tested as Assisted Living applications. This service,
whose SLG is shown in Fig. 1,

1. locates and displays an address using Google Maps and OpenStreetMap (A
and B).

2. tries to find nearby points of interest (POI) using GeoNames (C).
3. when a POI is selected, it looks for a related Wikipedia article, for pictures

on Flickr, and searches for likely related products on Amazon (D and E).
4. additionally, it can proactively start communication actions with friends or

peer located in the neighbourhood, using the completely web-service based
NGN IMS Platform of Fraunhofer FOKUS in Berlin (not included here).

The 3 main parts of the service orchestration are outlined in Fig. 1. The
central SIBs, that call the external services, are those highlighted with letters.
They provide the typical functionalities an end user who wishes to describe the
purpose of the service would be able and willing to mention. The other SIBs are



4 Christian Kubczak, Tiziana Margaria, and Bernhard Steffen

Fig. 1. RichInfo Mashup: using Google, OpenStreetMaps, Geonames, Wikipedia, Ama-
zon and Flickr services



Mashup Development for Everybody 5

supporting components needed to deal with internal data of the workflow. To
manually model the process, an application expert must either be aware of these
and include them, or program a corresponding glue and adaption code from
scratch. In Sect. 4 we show a synthesis approach where this need is eliminated,
since services are orchestrated automatically regarding their functionality. In this
service,

– a Google Map service (A) is called to return the geocode location (longitude
and latitude) of a given physical address

– which is displayed inside an OpenStreetMap window (B) using a graphical
waypoint.

– While the user now sees a detailed view of the specified address, a service
provided by GeoNames (C) returns a given number of nearby interesting
points and locations, that are added iteratively to the displayed map. The
returned locations also contain information about related Wikipedia entries.

– The control flow is split by a Fork SIB into several parallel threads, that
wait and listen to specified events that the user may trigger on the map.
The two upper threads react to a mouse hover on/off a waypoint by display-
ing/hiding its name. The lower thread reacts to a mouse click on a waypoint
by reading its returned location, opening a web browser, and displaying in
distinct windows the related Wikipedia entry, Flickr photos (D), and Ama-
zon articles (E).

This SLG can be further processed in the jABC: using the Genesys code gen-
erator, one can easily generate machine code for a mobile handheld, or generate
and deploy it as a stand alone Web service.

Using an XMDD environment like jABC/jETI has several advantages over
common technologies for mashup realization:

– even non-programmers can easily use this technology and graphically design
their appropriate workflows

– once access to a (web) service is available as a SIB (whether directly imple-
mented or imported), this service gains a high degree of immediate reusabil-
ity by sharing the corresponding SIB library. Any other mashup can in fact
reuse single features of the presented mashup by using that SIB, without
touching code at all. As an example, inside this mashup the viewInBrowser
service is reused several times

– agile evolution of the modeled application is intuitive, and actually native to
the XMDD approach. As an example, considering the mouse event listeners
of Fig. 1, Fig. 2(left) shows the three listener SIBs that react to mouse hover
on/off and POI clicks. If one wishes to deactivate the mouse hover effect, one
just needs to remove the corresponding edges, as in Fig. 1(right). Similarly,
to change the flow of an application one can simply redirect a branch to the
SIB or SLG of another service. For example, one could change this mashup
to show information about a POI while hovering over a waypoint, instead of
clicking it or deactivate the Amazon article lists.



6 Christian Kubczak, Tiziana Margaria, and Bernhard Steffen

Fig. 2. Modifying the mouse hover reaction of the RichInfo Mashup: (left) before,
(right) after

4 Intelligent Mashup Synthesis

Additionally to the modelling just shown, jABC also enables the user to au-
tomatically synthesize and verify service orchestrations, based on intuitive yet
formal declarative specifications of what it should achieve. This way, anybody
can focus on just describing the plain functional services of an application, even
if incomplete. As we already mentioned, in the Rich Info mashup, of the entire
SLG shown in Fig. 1 this concerns the services A to E. Ideally, one wishes that
all the other services necessary to e.g. handle or (re)format internal data types
could be ignored by the specifier (the real mashup designer) and be automatically
added by the framework during synthesis.

In this XMDD perspective, instead of requiring a domain expert to be able
to provide the whole set of components, we support an application expert, who
describes a need by simply pointing out the core functionalities and thereby
making use of an abstract view of the domain and of the orchestration. This
significantly lowers the threshold of technical competence, and eases the task of
providing powerful mashups. The following sections describe how we currently
support this in the jABC.

We demonstrate here how to synthesize a complex mashup by applying a
tableau-based software composition technique presented in [27, 4, 5]. It is an
instance of LTL planning (or configuration) that refers to abstract semantic
descriptions.

4.1 Abstract Semantics: Taxonomies for Categories and Types

The abstract information on the collection of basic services available for the
mashup is shown in Fig. 3. The services are coarsely grouped in categories, here
very simple, and each service is described by means of a name (here, the SIB
name) and of abstract annotations concerning which entities they require and
provide (input and output types, which are different from the programming-level
types described in their WSDL or API, which is typically just string). In order to
produce a running application these abstract SIB descriptions are then grounded
to the concrete SIBs within jABC [28].

Simple ontologies (called taxonomies) express properties of the types (here,
the SIB parameters) and services (here, the SIBs) of the mashup in terms of



Mashup Development for Everybody 7

Fig. 3. The abstract service information for the main mashup services

has-a and is-a relations we call taxonomies. The taxonomies for our simplified
RichInfo mashup are depicted in Fig. 4 and Fig. 5. This information serves as
the concrete knowledge base which is used by the synthesis algorithm.

4.2 Declarative specification of the mashup: concrete and loose

The user we consider wishes to produce a mashup that, given a textual rep-
resentation of an address, provides a map view of the corresponding location,
together with points of interest in the surroundings, in other words

The user enters an address and gets a map showing the

location with nearby points of interests.

If we have the information of Fig. 4 available, the loose specification of the
core services is simple: we need to query an address (SIB GetLocationFrom-
Google), show it inside a map (SIB ShowOpenStreetMap) and find the nearby
points of interest (SIB GetPOIsFromWikipedia). We may simply write:

(GetLocationFromGoogle < ShowOpenStreetMap < GetPOIsFromWikipedia)

using the services marked in Fig. 4, and using the symbol < that means before
or precedes.

The synthesis algorithm then generates one concrete solution that satis-
fies the requirement. This solution (see Fig. 6) contains only grounded services
(SIBs), whose orchestration is guaranteed to be compatible with respect to the
information on their input and output types.

However, the synthesis can take also a looser specification, containing tax-
onomic categories instead of concrete services and types. The loose specifica-
tion language we support is Semantic Linear-time Temporal Logic (SLTL) [3],



8 Christian Kubczak, Tiziana Margaria, and Bernhard Steffen

Fig. 4. The mashup’s category taxonomy with the abstract actions (A) and the
grounded SIBs (or concrete actions (CA))

a temporal (modal) logic comprising the taxonomic specifications of types and
activities.

The concrete types mapIn, centeredMapIn, waypointMapIn and zoomedMapIn
can be all seen as instances of an abstract type map, which decouples the rather
technical layer dealing with data types on an implementation level from the
domain specific business-level (Fig. 5). Similarly, instead of specifying concrete
start- and end-services one could also be more generic, and wish to use a location
service to get some kind of view and additional information of the surroundings:

(Location < Viewer < Information)

This makes it easy for an application expert to specify a rather loose wish,
yet, due to the taxonomies and the grounding knowledge present in the system, it
is already sufficient to obtain a concrete solution, as shown in Fig. 6. There we see
that the synthesized solution directly corresponds to the first three service calls
(A,B,C) in the original mashup of Fig. 1. Compared to the manual orchestration
shown before, the application expert now only defines the (abstract) core service
categories. The additional services used to provide supporting functionality are
automatically added by the framework (here, as mediators that achieve type
compatibility of the orchestration).

4.3 Declarative Refinement

The first solution generated by the system is not necessarily also the intended
one. This is typically due to under- and sometimes also overspecification, that
are dealt with in XMDD by means of agile change management and evolution.



Mashup Development for Everybody 9

Fig. 5. The mashup’s type taxonomy with the abstract types (T) and the bound SIB
parameters (or concrete types (CT))

In our example, seeing the proposed solution, the user would perhaps rather
prefer not to use the Google service, as its use in this specific context might be
forbidden by Google’s user license. SLTL properties can be used also to define
such additional constraints on the synthesis, and this way refine the result. Via

not(GetLocationFromGoogle)

we force the algorithm to replace the service that gets the location. The result
is shown in Fig. 7.

4.4 How to use the synthesis

The synthesis is steered from the jABC GUI. There, users can input the start/end
services as well as additional SLTL formulas that describe the goal, and can ask
for different kinds of solutions. The synthesis tool produces a graphical visu-
alization of the satisfying plans (concrete service compositions), which can be
executed or exported for later use. The synthesis algorithm takes as input a
knowledge base consisting of the category and type taxonomies (Fig. 4 and Fig.
5) and of the service descriptions of Tab. 3. This knowledge base implicitly de-
scribes the set of all legal executions, called the configuration universe. This



10 Christian Kubczak, Tiziana Margaria, and Bernhard Steffen

Fig. 6. The synthesized mashup solution

Fig. 7. The synthesized mashup solution avoiding Google services

universe could be very large as it contains all the compatible service composi-
tions with respect to the given taxonomies and the collection of categories. Users
are never confronted with the entire configuration universe. They see only the
satisfying solutions, and they can choose which kind of solutions they would like
to see:

– minimal solutions are plans (orchestrations) that achieve the goal without
repetition of configurations. In particular, this excludes cycles;

– shortest solutions return the set of all minimal plans that are also shortest,
measured in number of occurring steps;

– one shortest solution returns the first shortest plan satisfying the speci-
fication (as Fig. 6 of the above example);

– all solutions return all the satisfying solutions, including also cyclic ones.

The typical user interaction foresees a successive refinement of the declarative
specification by starting with an initial, intuitive specification, that is often un-
derconstrained, and asking for shortest or minimal solutions. Afterwards the
graphical output is used for inspection and refinement (as done in Sect. 4.2 and
Sect. 4.3).

5 Related Work

Many approaches try to lower the hurdles for dealing with (Web) service mashups.
The Google Web Toolkit, based on Asynchronous JavaScript and XML (AJAX)



Mashup Development for Everybody 11

Fig. 8. The synthesized mashup solution with all valid paths

[29], was introduced to quickly set up applications based on various services pro-
vided by Google itself. Another popular and widely used framework is Ruby on
Rails [30] which is based upon the Ruby object oriented programming language
[31]. Like Java for the jABC, Ruby serves as the basic technology for the Rails
framework. One of its goals is compactness, i.e. to minimize the lines of code a
programmer must write to achieve full featured applications. The Rails frame-
work extends this paradigm towards web based mashups by following the Don’t
Repeat Yourself (DRY) [32] and Convention over Configuration [33] principles,
which support the programmer in agile software development. More similar to
the jABC in the sense of semantics are frameworks introduced by Intel’s Mash-
maker [34], Yahoo Pipes, ORC [35] and Mashroom [36]: here, users are also able
to focus on a mashup’s data flow model and orchestrate given services. The com-
positions are realized using a minimal programming language containing basic
operators inspired by Kleene algebra (ORC), by using an expressive data struc-
ture with a set of formally defined mashup operators based on nested tables
(Mashroom) or by graphical, tree based representations of the data flow (Yahoo
Pipes, Intel Mashmaker).

All these technologies still have one thing in common: a user has to bring at
least some programming skills. Compared to jABC, Ruby On Rails, the Google
Web Toolkit, AJAX or even plain Java programming using a web service frame-
work like AXIS are more powerful when it comes to the degree of freedom a
programmer has in the own hands. This holds as long as one excludes writing
one’s own SIBs, which is of course also possible in jABC and which then extends



12 Christian Kubczak, Tiziana Margaria, and Bernhard Steffen

the bounds to the power of plain Java. On the other hand, our approach is at-
tractive for users not familiar with today’s programming techniques and tools.
This has been proven in several projects and courses involving non computer sci-
entist, and even non technical personnel, eg. biologists now able to combine their
own service mashups into agile and complex applications [37, 38]. The ORC pro-
gramming language is somehow positioned between both extremes: it follows the
philosophy of orchestrating services within a data flow structure, but it requires
the user to bring at least basic programming skills.

6 Conclusion

We extended the power of mashup development to non-IT application experts
by automatically taking care of the tedious technical details of correct composi-
tions, like interface specifications, types, and syntactic constraints. In detail, we
support simple and intuitive mashup specifications which are automatically com-
pleted to executable mashups by means of service discovery-like methods and
planning techniques. We have illustrated our approach by means of a concrete
case study implemented in our jABC/jETI framework. This RichInfo mashup
is highly heterogeneous, and makes use of new technologies and platforms like
Google’s Android [39] or Apple’s iPhone [40]. Since such platforms bring the idea
of service mashups to consumer and communication hardware, they also claim
the need for a mashup framework that is simple and easy to use for everybody.
We believe that with the presented approach and technologies we can fill the gap
between IT and business- or end users, thereby providing application experts a
good framework to produce their own complex service orchestrations, and also
covering business relevant domains like large scale enterprise systems, which can
be dealt with in the same fashion, as demonstrated in the case of SAP’s ERP
products.
We are currently extending our work to a complex open framework, built to
support profile-based best of breed technology. Concerning the underlying plan-
ning machinery, our framework already comprises, besides the tableaux-based
synthesis algorithm with data flow types [5] used in this case study, four more
approaches based on very different principles and techniques:

1. situation calculus with Golog [41], a tool that internally uses backward
chaining for solving planning/synthesis tasks. This work is based on the well
known situation calculus planner by Reiter and it is described in [42].

2. monadic second order logic on strings, M2L(Str) [43], which works
by compositional automata construction in jMosel [44]. The solution is de-
scribed in detail in [42].

3. a tableaux-based synthesis algorithm with local input and output
parameter types where services are combined according to their compat-
ibility using the inputs and outputs of their direct predecessor/successor as
well as temporal logic constraints specified in Semantic Linear-time Tempo-
ral Logic (SLTL) [3, 27]. This solution is described in detail in [4].



Mashup Development for Everybody 13

Fig. 9. The landscape of synthesis techniques in jABC

4. Goal-oriented Enterprise Management (GEM), an abductive synthe-
sis implemented in Prolog and based on [11, 12], that responds directly to
situational changes using event calculus and agent techniques. This approach
is explicitly described in [10].

Acknowledgment

We kindly would like to thank Stefan Naujokat for his work on the synthesis
algorithm and its integration into jABC.

References

1. Amazon: Web Services. (2009) http://aws.amazon.com/.
2. Google: Web Tool Kit. (2009) http://code.google.com/webtoolkit/.
3. Freitag, B., Margaria, T., Steffen, B.: A pragmatic approach to software synthesis.

In: Proc. of Workshop on Interface Definition Languages, ACM SIGPLAN Notices
Volume 29 , Issue 8 (August 1994). (1994) 46–58

4. Margaria, T., Steffen, B.: LTL guided planning: Revisiting automatic tool com-
position in ETI. In: 31st Annual Software Engineering Workshop (SEW). (March
2007)

5. Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Steffen, B.: Automatic gen-
eration of the sws-challenge mediator with jABC/ABC. In: Semantic Web Services
Challenge - Results from the First Year, Springer Verlag (2008) 119–138

6. Baier, J., Bacchus, F., McIlraith, S.: A heuristic search approach to planning with
temporally extended preferences. In: Proc. of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07). (January 2007) 1808–1815



14 Christian Kubczak, Tiziana Margaria, and Bernhard Steffen

7. Baier, J., McIlraith, S.: Planning with temporally extended goals using heuristic
search. In: Proc. ICAPS’06 Cumbria, UK,pp. 342-345, AAAI 2006, ISBN 978-1-
57735-270-9

8. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In:
Proceedings of the Eighth International Conference on Knowledge Representation
and Reasoning (KR2002), Toulouse, France (April 22-25 2002) 482–493

9. Kubczak, C., Margaria, T., Steffen, B., Winkler, C., Hungar, H.: An approach
to discovery with miAamics and jABC. In: Semantic Web Services Challenge -
Results from the First Year, Springer Verlag (2008) 199–234

10. Kubczak, C., Margaria, T., Kaiser, M., Lemcke, J., Knuth, B.: Abductive synthesis
of the mediator scenario with jABC and GEM. In: Proc. 6th Int. Workshop EON-
SWSC. Volume 359 of CEUR Workshop Proceedings. (June 1-2 2008) http://

ceur-ws.org/Vol-359/Paper-5.pdf.
11. Kaiser, M.: Towards the realization of policy-oriented enterprise management.

IEEE Computer Special Issue on Service-Oriented Architecture(11) (2007)
65–71

12. Kaiser, M., Lemcke, J.: Towards a framework for policy-oriented enterprise man-
agement. AAAI (2007)

13. Küster, U., König-Ries, B.: Semantic ssrvice discovery with DIANE service de-
scriptions. In: Semantic Web Services Challenge - Results from the First Year,
Springer Verlag (2008) 199–216

14. Kubczak, C., Jörges, S., Margaria, T., Steffen, B.: eXtreme model-driven design
with jABC. In: Proc. of the Tools and Consultancy Track of ECMDA 2009. Volume
WP09-12 of CTIT. (June 2009) 78–99

15. Margaria, T., Steffen, B.: Business process modelling in the jABC: The one-thing
approach. In: Handbook of Research on Business Process Modeling, IGI Global
(2009)

16. Margaria, T., Steffen, B.: Continuous model-driven engineering. IEEE Computer
42(10) (2009) 94–97

17. Margaria, T., Nagel, R., Steffen, B.: jeti: A tool for remote tool integration. In:
Proc. of TACAS. (2005) 557–562

18. Jörges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: Model-driven de-
velopment with the jABC. In: Proc. of HVC IBM Haifa Verification Conference.
LNCS 4383, pp. 92-108, Springer Verlag (October 2006)

19. Margaria, T., Steffen, B.: Service engineering: Linking business and it. IEEE
Computer issue for the 60th anniversary of the Computer Society (October
2006) 53–63

20. Jörges, S., Margaria, T., Steffen, B.: Genesys: service-oriented construction of
property conform code generators. ISSE 4(4) (2008) 361–384

21. W3 Consortium: Web Service Description Language. (2008) http://www.w3.org/
TR/wsdl.

22. Web Services: SOAP. (2008) http://www.w3.org/TR/soap/.
23. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-

chitectures. PhD thesis, University of California (2000) http://www.ics.uci.edu/

˜fielding/pubs/dissertation/rest_arch_style.htm.
24. SAP: ERP. (2009) http://www.sap.com/ERP.
25. R-Project: Statistical Language. (2009) http://www.r-project.org.
26. Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented mediation with

jabc/jeti. In: Semantic Web Services Challenge - Results from the First Year,
Springer Verlag (2008) 71–99



Mashup Development for Everybody 15

27. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
Concepts and design. Int. Journal on Software Tools for Technology Transfer
(STTT) 2(1) (1997) 9–30

28. Steffen, B., Narayan, P.: Full lifecycle support for end-to-end processes. IEEE
Computer 11(40) (November 2007) 64–73

29. Gustafson, A.: Asynchronous JavaScript and XML, Getting Started with Ajax.
(2006) http://www.alistapart.com/articles/gettingstartedwithajax/.

30. Ruby: Rails Framework. (2009) http://rubyonrails.org/.
31. Ruby: Programming Language. (2009) http://www.ruby-lang.org.
32. Ruby: Don’t Repeat yourself. (2008) http://wiki.rubyonrails.org/rails/

pages/DRY.
33. Chen, N.: Convention over Configuration pattern. (2006) http:

//softwareengineering.vazexqi.com/files/pattern.html.
34. Ennals, R., Gay, D.: User-friendly functional programming for web mashups. In:

Proc. of the 12th International Conference on Functional Programming (ICFP).
(2007) 223–234

35. Misra, J.: A programming model for the orchestration of web services. In: Proc. of
the Second International Conference on Software Engineering and Formal Methods
(SEFM). (September 2004) 2–11

36. Wang, G., Yang, S., Han, Y.: Mashroom: end-user mashup programming using
nested tables. In: WWW. (2009) 861–870

37. Kubczak, C., Margaria, T., Fritsch, A., Steffen, B.: Biological lc/ms preprocessing
and analysis with jABC, jETI and xcms. In: Proc. ISoLA 2006, 2nd Int. Symp. on
Leveraging Applications of Formal Methods, IEEE Computer Society (November
2006) 308–313

38. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design, and
provisioning platform for orchestrated bioinformatics processes. BioMed Central
(BMC) Bioinformatics Supplement on Network Tools and Applications in Biology
9(4) (2007) http://www.biomedcentral.com/1471-2105/9?issue=S4.

39. Google: Android. (2009) http://www.android.com.
40. Apple: iPhone. (2009) http://www.apple.com/iphone.
41. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-

menting Dynamical Systems. MIT Press (2001)
42. Margaria, T., Meyer, D., Kubczak, C., Isberner, M., Steffen, B.: Synthesizing

semantic web service compositions with jMosel and Golog. In: Proc. ISWC 2009.
(October 2009)

43. Church, A.: Logic, arithmetic and automata. In: Proc. Int. Congr. Math.,Uppsala
1963, pp. 23-35, Almqvist and Wiksells (1963)

44. Topnik, C., , Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A stand-alone tool
and jABC plugin for M2L(Str). In: Proc. of Model Checking Software 13th Inter-
national SPIN Workshop. Volume 3925 of LNCS. (2006) 293–298


