
Discovery Pervasive Services based on their Expected Use

R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

1FBK-Irst, via Sommarive 18, Povo, Italy
{raman,pistore}@fbk.eu

2 Faculty of Computer Science, Free University of Bozen-Bolzano
 kerhet@inf.unibz.it

3 DOCOMO Euro-Labs, Landsbergerstrasse 312, Munich, Germany
{paolucci,wagner}@docomolab-euro.com

Abstract. Pervasive services accomplish tasks that are related with common
tasks in the life of the user such as paying for parking or buying a bus ticket.
These services are often closely related to a specific location and to the
situation of the user; and they are not characterized by a strong notion of goal
that must be achieved as part of a much broader plan, but they are used to
address the contingent situation. For these reasons, these services challenge the
usual vision of service discovery and composition as goal directed activities. In
this paper we propose a new way to look at service discovery that is centered
around the activities of the user and the information that the user has available
rather than the goals that a given service achieves.

Keywords: Mobile&Telco Services, Pervasive Services, Service Discovery

1 Introduction

The last few years have seen the deployment of an increasing number of pervasive
services that support everyday tasks of our life. Such services range from SMS-based
services for paying for parking in a number of European cities such as Milan1 and
Vienna to train ticketing in Germany2, to RFID-based food selection at McDonalds’
restaurants in Seoul3.

Pervasive services, like the ones listed above, provide two major challenges to
service oriented computing. First, they are closely related to specific locations and
context of the user, because they are provided through short range protocols such as
RFID and Bluetooth, or because their use is intrinsically related to the environment in
which the user operates, as in the case of the SMS-based parking services. Second,
these services challenge the idea that service discovery and composition are goal
oriented processes; rather users exploit these services without ever creating an explicit

1 www.atm-mi.it/ATM/Muoversi/Parcheggi/SOSTA_MILANO_SMS.html (l.v. 15.12.08)
2 http://www.bahn.de/p/view/buchung/mobil/handy_ticket.shtml (l.v. 22.03.09)
3 http://www.koreatimes.co.kr/www/news/tech/2007/09/133_10034.html (l.v. 15.12.08)

2 R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

notion of goal. Consider for example a performance ticket: to go to the performance,
the user may take advantage of a number of services such as navigation services to go
to the show, “Point of Interest” service to suggest restaurants where to eat nearby the
theatre; on-line social services to share comments and suggestions with friends;
contextual services such as parking services which depend on the exact location of the
parking: on the street side vs in a private parking lot. Crucially all these services are
of interest for the user and provide added value to the performance ticket, and yet the
performance ticket itself is neither the input of any of them, nor these services
contribute to explicitly stated goals of the user.

Since there is no explicit notion of goal, discovery algorithms that are based on
input/output matching (see [9,11] among the many others) or on precondition and
effect matching [1], and possibly quality of service [12,13] hardly apply. Instead,
there is a need of different algorithms that organize the available services around the
tasks that the user is pursuing. To this extent, in this paper we propose use-based
service discovery as a new framework for service discovery that aims at matching
services with the user’s tasks. The resulting discovery framework recommends
services that may be useful in the given situation, leaving to the user the task of
deciding whether to use them or not.

The intuition behind Use-based discovery is to rely on a trend that sees the mobile
phone as a collector of very important pieces of information about our life. Already
now objects like Deutsche Bahn’s “handy ticket”, a train ticket delivered to the
mobile phone4, and electronic boarding passes provided by airCanada5 among the
many other airlines are evidence of this trend. Crucially, these objects are evidence of
(possibly future) activities of the user. The objective therefore is to envision a service
discovery mechanism that given a new object, such as a new ticket, selects the known
services that are relevant for this object; and, conversely, that given new services
selects the user’s objects to which they most likely apply.

The results of Use-based discovery is a contextualized discovery mechanism that
reacts to changes in the life of the user trying to support her through her daily life by
offering services that may address problems of the user. Ultimately, Use-based
discovery is an essential piece to transform the mobile phone from a collector of the
user’s data to an organizer of such data.

The rest of the paper is organized as follows. First, we address the technological
problems related with Use-based discovery, namely section 1 addresses the
representation of services and section 3 the matching algorithms. We will then
proceed with an evaluation discussed in section 4.1; and finally, in section 5 we will
discuss the remaining open problems and conclude in section 6.

2 Specification of Service Advertisement

The first problem to address when facing a new discovery algorithm is the process of
service advertisement and the description of the services. Mobile phones have many
different ways discover available services. These range from UPnP protocols [3], to

4 http://www.bahn.de/p/view/buchung/mobil/handy_ticket.shtml (l.v.4.4.2009)
5 http://www.aircanada.com/en/travelinfo/traveller/mobile/mci.html (lv 24.06.2009)

Discovery Pervasive Services based on their Expected Use 3

Bluetooth discovery9, to the reading of 2D bar codes such as QR Codes10 or Near
Field Communication transmission [8], to P2P interactions [14] to the simple typing
of URLs of service advertisements. Whereas, these algorithms concentrate in finding
the services, there is though very limited support into organizing the services so that
they can be automatically associated to the activities of the user, and invoked.

The intuition behind Use-based discovery is that services, exploiting the channels
reported above, advertise themselves to mobile phones by declaring for which type of
objects a mobile user would use such service. More formally, we define
advertisements through the relation USE:S×T that maps services (S) to types (T),
where types are classes in an ontology11 that are used to specify for which types of
objects a service may be used. For example, a navigation service may be described as
to be “used” for locations, meaning that the developer of the service expects it to be
good to handle location information.

Fig. 1 shows more in details the relation between types of data and services that are
advertised. In the figure, the cyrcles represent data types organized in a hierarchy as
they are known to a system. Specifically, on the right side the node marked with M
corresponds to the class Money, the one marked with T that corresponds to the
class Time, and the third with label L that corresponds to the class Location; on
the left side there are three nodes labeled Ticket, Train Ticket, and Flight
Ticket representing different types of tickets that are known to the system. In
addition to the types, Fig. 1 shows the services that are known to be available. In the
figure, services are represented as filled gray labeled hexagons; specifically in the
figure are the following services are shown: e-wallet, Calendar,
Navigation, Track Info, and Check-in. As the figure shows, services
advertise themselves through the types to which they associate themselves. These
types are decorated by empty hexagons overlapping on the corresponding types; as
shown in the figure the e-wallet service is used in conjunction with data of type
Money, the Calendar with data of type Time, the Navigation with data of
type Location, the Track Info with data of type Train Ticket, and the
Check-in with data of type Flight Ticket respectively.

Whereas in the figure services associate to fundamental classes, as pointed out
above, service advertisements can exploit the whole expressive power of the ontology
language, which is OWL in our case. Therefore, other restrictions can be expressed.
For example, the navigation system may specify that it works only in specific
locations such as the United States, or only in Europe, or only in a shopping mall by
specifying that the relations nav USE US, nav USE Europe or nav USE

9 See www.bluetooth.org (lv 25.06.2009)
10 See http://www.denso-wave.com/qrcode/index-e.html (lv 25.06.2009)
11Although our implementation of use-based discovery has been based on a description of the
services in OWL and it relates the use to OWL classes, the discovery algorithms proposed do
not necessarily depend on OWL, but rather on taxonomy of types which could also be modeled
in Object Oriented programming. Using OWL ontologies still may take advantage of the richer
expressivity of OWL compared with OO languages, as well as of the logic inference performed
by OWL inference engines.

4 R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

ShoppingMall, where of course US, Europe and ShoppingMall are all
restrictions or subtypes of Location that are supported by the ontologies used to
represent the data processed by the services. Similarly, depending on the availability
of type conjunction and disjunction it is possible to say that the navigation service can
be used in for both Location and Routes meaning that it is good for both types of
information.

3 Matching Algorithms

In Use-based discovery the matching process should satisfy two requirements: first,
the discovery should be bidirectional; and, second, the discovery should support
partial matching of objects and services. The bi-directionality means that the
matching process should be triggered by both objects and services. Triggering the
process from objects leads to the discovery of services which apply to a given object;
while triggering the discovery from services leads to the discovery of objects to which
a given service applies. The solution that we adopt is described in details in sections
3.1 and 3.2 below.

The second requirement, namely the partial matching of objects and services,
relates services to only some of the aspects of objects. For example, in Fig. 1, the
navigation system does not relate to the ticket as a whole, but only to its location

Fig. 1 A representation of service and objects in the ontology

Discovery Pervasive Services based on their Expected Use 5

component. To this extent, we need to compute an extension of the USE relation that
relates services to some properties of objects. We compute this extension through an
association function that relates the data to the types of its properties. The service
discovery can then follow associations to find the different parts of the data to which
services may apply.

To this extent, given some data d with properties k1,…,kn, the set of types A⊆ T
that can be associated to d (T being the set of all types), is defined by the following
associate function:

a. ∀t ∈ Type(d) ⇒ t ∈ A
b. if d=<k1,…,kn>, ∀k

i
 ∈{k1,…,kn} ∧ ∀t ∈ associate(ki) ⇒ t ∈ A

Definition 1: Definition of associate function

The first condition specifies that a data instance d is associated with its own types; the
second condition specifies that if a data has a set of properties k1,…,kn, then it is
associated to these attributes. As an example consider the train ticket “user Ticket” in
Fig. 1, for a show at a given destination “Berlin Hbf”, at a given date “20.10.2008”,
with a given cost “30 €”. Using the formalism outlined above we define:

user Ticket =< Berlin Hbf, 20.10.2008, 30 € >

Using the definition of associate above results in the following set.

associate(tkt)={TrainTicket, Location, Time, Cost}

Here TrainTicket has been added because it is the type of tkt, while Location,
Time and Cost have been added because they are the types of the properties of tkt.

The example also highlights the difference between the classification and
association. A train ticket is by no means a location, so it cannot be classified as
belonging to the type such Location, but it is associated with such type by virtue of
its destination property; equivalently, a train ticket is not a cost or a moment, but it is
associated to Time and Cost through its properties departure date and cost
properties.

3.1 Discovery Services from Objects

The objective of the algorithm presented in Fig. 3 is to find all the services that can be
used in conjunction with some given data. This is the process that was highlighted in
the previous example in which we found services for people and locations to be used
in conjunction with appointments.

The algorithm is essentially a search across the taxonomy of types to find all
services that can be utilised in conjunction with some given data. More precisely, line
1 specifies the data that is the input parameter, line 2 specify a variable to store the
services found (FoundList); line 3 specifies the set of types from which to start the

6 R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

search: these are the types that are associated to the data d on the bases of the
association function defined above. Line 5 starts the search through the type
hierarchy. Line 6 selects all services that can be used to process data of type t by
searching all its subclasses and superclasses; line 7 applies filters that can weed out
services on the bases of different criteria; line 8 records the services found so far, and
finally line 9 returns the list of services found.

It is easy to see that the algorithm always terminate when there is a finite set of
types that are not recursive, since in the worse case all of them will need to be
checked and none of them is checked more than once. To deal with the recursive
types it is enough to keep track of the types crossed in the associate function, and
make sure that no type is visited twice.

Line 5 and 7 may prove confusing and potentially controversial aspects of the
algorithm. Specifically, line 5 directs the discovery to both the sub-types as well as
the super-types of the type t. Indeed, in object oriented programming given a piece
of data, the search for appropriate methods proceeds upwards toward crossing all
super-types up to the root of the type tree and does not analyze all the methods
available to the sub-types. The point to be noticed here is that the USE relation is
looser than the type association in object oriented programming, therefore although
the a service is specified for more specific data, there may be enough information in
the data d to invoke the service anyway. Instead the filters specified in line 7 have
been introduced as placeholders to enforce user customization. Such filters may
select only services from a given provider, or it may provide only services that are
proven to be of a given quality and so on. In this paper we do not concern ourselves
with the definition of such filters, we just notice that they will be indeed required.

3.1.1 Example of Service Discovery

Referring back to Fig 1, above, the data of the user is represented through labeled
gray circles, which are linked to the corresponding types through a type_of

1. Let d the data to start from

2. Let FoundList=∅

3. Let A = associate(d)

4. For all types t ∈ A

5. For all types u such that u t or u t or u≡t

6. For all services s such that (s USE u)

7. if not filter(d,s)

8. then FoundList= FoundList∪{s}

9. return FoundList

Fig. 2: Algorithm Relating Services to Objects

Discovery Pervasive Services based on their Expected Use 7

relation. In the example, the user purchases a train ticket represented by the label “tkt”
which is specified of type Train Ticket. “tkt” contains three attributes: the cost
which is “30 €” specified of type Money, the date of travel “20.10.2008” of type
Time; and “Berlin Hbf” of type Location.

When the ticket is added to the data of the user’s data, the above algorithm is
performed and the first step is to compute the list of associated types to be stored in
the variable A. Such computation is driven by the conditions specified in definition 1
above. As discussed above, the type Train Ticket is added to through the first
condition of the definition, while the types Money, Time, Location are added
through the second condition.

The next step in the algorithm is the search through the type system. In this
example, such search is quite trivial since, for simplicity reasons, the type
classification is underspecified. Nevertheless, through the loops defined in lines 5 and
6 of the algorithm the services e-wallet, Calendar, and Navigation are
found. Under the assumption that none of them is filtered, they are added to the
FoundList and returned as discovered services. The discovery of the services is
represented in Fig. 1 by the underline under the service labels. Crucially, the service
Check-in is not discovered because it is to be used with a type that is not
recognized as associated with “User Ticket”.

3.2 Discovery Objects for services

In mobile and ubiquitous computing, services may be local; therefore new services
may become available when the user enters a new environment. An example of this
type of services is the gate notification service at the Manchester airport that reports
directly on the mobile phone gate that reports directly on the mobile phone gate
information on the flights departing at the airport. Ideally, the discovery process
should relate gate information to the airline ticket that is bound to be also stored in the
mobile phone.

The algorithm shown in Fig 2 above finds the services that are relevant for the
given data, but it fails to find to which data a new service can be applied. This
problem is addressed by the algorithm shown in Fig. 3 that maps a service to the
available data exploiting both the USE relation and the “attribute” relation between
data objects in the mobile phone. Therefore, when applied to the service at the
Manchester airport, this algorithm should be able to relate the service to the flight
tickets of the passengers.

More in details, the algorithm starts from a service s (line 1) that is in a USE
relation with a type u (line 2) and establishes a storage variable FoundList (line 3).
In Line 4 starts the search that for each super- and sub-types of the type u and for
each data instance of those types (line 5). If the data is not filtered out (line 6) a call to
the procedure findAssociated is issued to find the data that is associated with
the type (line 7) and its results are added to FoundList. Finally FoundList is
returned in line 8. The procedure findAssociated is the inverse of the associate
function defined above. The filtering mentioned in line 6 are similar to the filters
proposed in the algorithm in Fig 2: they are just placeholders for personalization
filters that may be used in conjunction with the algorithm.

8 R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

3.2.1 Example of Object Discovery

As an example of how the algorithm works consider a slight variation on the example
presented in conjunction with Algorithm 1 above. In this example, the user has
already purchased a train ticket to Berlin for the 20.10.2008 costing him 30€. Now
consider two use cases. In the first use case, upon arriving at the train station, the
mobile phone of the user detects that there is a service that reports track information
(Track Info service), whose declared use is the type Train Ticket. Line 2 of
the algorithm extracts the service use, namely Train Ticket. Line 4 and 5 perform
the search for relevant data in the type Train Ticket or in its super and sub types.
The tkt, being an instance of Train Ticket, is found among the data found.
Assuming that tkt is not filtered out in line 6, a search for the data that is associated
with it is triggered in line 7 through the invocation of findAssociated. Finally,
in line 8, all data found will then be returned as candidate data for the newly found
Track Info service. Therefore, the user can be communicated that a new service
has been found, which is relevant for her train ticket.

In the second use case, assume that the user is provided with new calendar service
that uses Time objects. In this case, the search for relevant data is equivalent to the
previous case. Specifically, first the procedure looks for all data of type Time or of
its super or sub types. As a result the date 20.10.2008 is found among possibly other
data. Assuming that the data is not filtered in line 6, in line 7 the search for all
associated data is triggered. This time findAssociates is invoked on the
parameter 20.10.2008. This function, pursuing the association in the opposite
direction will return the set {tkt}. In this case, the new calendar can be offered to
store the date of the train travel.

Crucially, in the second use case, the calendar is not associated to the time instance,
but directly with the train ticket. This is because the train travel is the activity that the
user intends to perform and the train ticket is the object that has the greater relevance
to the user. At this time it is an empirical question whether any service should also
be reflected in the time of travel.

1. Let s be the service to start from
2. Let u such that s USE u
3. Let FoundList = ∅
4. For all types t∈{u} ∪ super(u) ∪ sub(u)
5. For all data d such that type_of(d,t)
6. if not filter(d,s)
7. FoundList = FoundList ∪ findAssociated(d)
8. return FoundList

Fig. 3: Discovery of services that match a given data

Discovery Pervasive Services based on their Expected Use 9

4 Initial Evaluation

Whereas “use-based” discovery made sense in the scenarios that we were looking
while developing our work, we run the risk that the overall framework works only
under the idealistic assumptions that are made while developing a new way to think of
a problem. Under those idealistic assumptions we cannot predict whether “use-
based” discovery will fail to provide any interesting result.

To provide an initial evaluation of our ideas, we referred to the OWLS-MX [6]
toolkit, which provides the description of more than 1000 services and the ontologies
that are used to interpret those service descriptions. These services have been defined
independently of our project, therefore they are challenging for our framework.

Table 1. Results of the experimental evaluation

 Ontology Metrics Services /
objects

Time

 Classes Object
properties

Data
properties

Individuals

1 2678 527 78 895 36 16
2 2673 527 78 860 18 12
3 2674 527 78 887 36 17

4.1 Performance Evaluation

First, we wanted to evaluate “quantitative” characteristics of the algorithm with
respect to the OWLS-MX toolkit and the OWL-based reasoning. For this experiment
we selected 81 services from different domains, relevant for our scenarios, since most
of the services in OWLS-MX can hardly be deployed in pervasive settings. We have
augmented the service definitions with the necessary USE descriptions, and also
created a set of 37 data objects with complex structure to test the presented discovery
algorithm. The algorithm implemented on the OWL-API 2.2.0. We conducted a series
of experiments with different ontologies and services both for the discovery of
services for objects and for the discovery of objects for services. The results of this
quantitative analysis are summarized in Table 1 which shows the size of the domain,
number of services/objects tested, and the total amount of time (sec.) to discover those
objects and services. As it follows from the results, the algorithm is rather efficient.

4.2 Usability Evaluation

Second, we aimed at evaluating the “qualitative” applicability of the use-based
service discovery approach. Indeed, while the description of service inputs and
outputs is uniquely defined by the service signatures, the definition of service “use”
may be rather subjective, and thus the discovery results may vary when the same
services are advertisements are defined by different engineers. The goal of the
evaluation was, therefore, to understand the “degree” of these variations, and to see
how much the presented algorithm is able to abstract them away.

10 R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

To perform such an evaluation, we split in two teams, one based at DOCOMO
Euro-Labs in Munich, the other based at FBK-Irst in Trento, and we used the
available ontologies to describe the selected services independently. Finally, we
performed two different evaluations: the first one to analyze the differences between
the descriptions provided by two groups, and the second one to match the selections
of one team against the other using the implementation of the matching algorithms
proposed above. With the first evaluation we measured the intuition about the “use”
of a service. With the second evaluation we verified the ability of the matching
algorithm to abstract the differences between different advertisements.

4.2.1 Analysis of Descriptions

With this evaluation we obtained the following results. Among the 81 service
descriptions, 9 were equivalent (i.e., the same or equivalent concepts were used for
specifying service advertisement), 22 were overlapping (i.e., the concept used by one
group was more general than the other). In the remaining cases the advertisements
used completely disjoint concepts. These numbers show that service advertisement is
very subjective, and it is possible to advertise the same services in very different
ways. Consequently, one could expect that objects will be mapped to completely
different (and arbitrary) set of services. However, if we consider only those services
that intrinsically refer to certain context (e.g., to locations), this number becomes
much better: only for 21 services the description is disjoint.

In defining these descriptions we had to deal with two important problems. The
first one was that the derivation of USE relation from the description of the service in
many cases degrades to the input specification (e.g., relating parking service to the
concept of “car” rather than to the location of parking).

The second problem was related to the ontologies loaded by OWLS-MX that do
not describe user objects and user activities, and therefore were hardly applicable in
our case. Furthermore, they make a very limited use of OWL properties, limiting the
possible specializations. For example, it would be nice to claim that the service
Francemap_service.owls (service that provides a map of France) is restricted
to locations in France, but when we specified that the service can be used in
conjunction with “SUMO:Geographic Region” or “SUMO:Translocation” it was
impossible to restrict the scope of the service to France only. Such a lack of
expressivity of the ontologies contained in OWLS-MX worsened the quality of the
service representation, providing an intrinsic bias against our algorithsm.

4.2.2 Analysis of Discovery Results

We tested algorithm with both descriptions, matching the service description
produced by one team against the service descriptions of the other team (FBK vs
DOCOMO), and vice versa. As a result, we obtained the following outcome.

The precision and recall of the test was 0.63/0.54, and in only 8% of cases no
services were found. One of the main reasons behind this result is that we considered
not only the services and object that are related to specific user activities, but also
generic services and object that were unrelated and created considerable noise.

Discovery Pervasive Services based on their Expected Use 11

In a second measurement, we restricted to objects and services that correspond to
certain context and activities and the results improved: the precision and recall rose
to 0.73/0.55. Furthermore, even if the service advertisement specifications do not
match, the discovery algorithm manages to smooth down the differences between the
service advertisements. The reason of this abstraction is that the relation between
services and objects is based on the properties of these objects, which lowers the
dependence on the specific advertisement.

The experimental results show that the proposed approach is indeed applicable in
the scenarios and domains like those discussed in this paper: where pervasive services
are explored and where objects associated to the user activities are considered. In
addition it shows that the more structured objects are, the better discovery results may
be obtained.

5 Discussion

Use-based discovery, as discussed so far has a form of advertisement that is
completely unrelated from the description of the service as a computation entity. In
this sense, it is very different from our Web services languages, such as OWL-S [7],
SAWSDL [2] or WSML [10] which directly ground on computational features of the
service like Inputs, Outputs, message formats and so on. On the opposite of what can
be done with these languages, a service can be declared to be useful for all sort of
objects, even though such definition is totally meaningless.

The lack of direct relation with the service has both positive and negative effects.
On the positive side, the USE relation can be used to describe any information source,
and therefore it is not limited to services. Indeed one could specify the expected use
of Web pages, and of RSS feeds. Indeed, the user train ticket in Fig. 1 may be related
to a Web page reporting the train schedule, or a RSS reporting news about the rail
system, expected delays and so on. Ultimately, Use-based discovery contributes to
bridge the gap between Web services and the rest of the Web.

On the negative side, the USE relation is too subjective; therefore the same service
may be described in very different ways. Furthermore, the USE relation does not
provide any information about the invocation of services: ultimately the user may
know that a service relates to a given object, but she may still have the problem of
invoking the service.

In our current work, we are trying to address these two problems. Specifically, the
problem of handling invocation can be addressed by defining lifting and lowering
functions that given a USE description describe how to generate the service inputs
and interpret service outputs. These functions are described in details in section 5.1.
As for a more precise definition of the relation between USE and services, we are
evaluating different approaches that can be used to address the problem of tightening
the relation between the service and the description. These ideas will be discussed
more in details in section 5.2.

12 R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

5.1 Exploiting USE for Invocation

As pointed out above, the USE relation specifies what a service can be used for, but it
does not specify how to invoke the service, therefore it does not provide any guidance
to the user in the actual use and invocation of the service. To address the problems
listed above, the USE specification needs to be supplemented with invocation
information. Although the service invocation is beyond the scope of this paper, the
relation to the invocation information can be performed by leveraging on existing
solutions such as OWL-S [7] and SAWSDL [2]. Specifically, the USE specification
can be mapped to a workflow language that specifies which operations of the service
should be performed to realise a given use of the service and in which order they
should be performed. The relation between the USE specification and the workflow
language is equivalent to the relation between the OWL-S Profile and the OWL-S
Process Model, whereas the Profile specified the capabilities of the service, and the
Process Model how those capabilities are realised by the service.

In addition, the specification of the USE of a service needs to relate to the inputs of
the service, so that the given the use it is possible to generate the inputs of the service
itself. This relation was specified in OWL-S [7] by using in the Profile the input and
outputs of processes specified in the process model. The OWL-S solution of course is
not possible in the context of the discovery proposed in this paper since the USE
specification is not based on the inputs and outputs of the service. Instead, we adopt
the solution proposed by SAWSDL [1] that proposes the use of lowering functions to
map the inputs and outputs of operations to the corresponding concepts in the
ontology. Therefore, the USE specification should be enriched by lowering functions
that specify how the data specified in the use can be mapped in the data needed by the
operations that the user wants to do with the service.

Specifically, given a service s, let I be the inputs of service s and U be the
specified usage for s; we define the lowering function for s, lowers:Us → Is, which
specifies how data that is defined consistently with the use of s (Us) can be
transformed in the set of inputs of s (Is) required by the service. For example, given
an appointment, the lowering function may specify how to extract the location and
format it in a way that can be processed by a routing service. Crucially, when such a
lowering function is complete, then the usage specification Us guarantees that the
service client has all the information that is required to invoke the service.

In addition to a lowering function, consistently with SAWSDL we need to specify
lifting functions that how the outputs of the service reflect in the ontology. Formally,
the lifting functions is defined as lifts:Os → C, where Os are the outputs of the
service, while C is a concept in the ontology. The definition of the lifting function
highlights an asymmetry with lowering functions. Whereas, lowering functions need
to relate the service directly to the service specification because at the time of
invocation the service client needs to map the use into the inputs of the service, the
lifting functions may result in the specification of data items that may be unrelated to
the specified use. An example of this behaviour are recommendation services, for
example a movie recommendation service may be called in conjunction to a movie
title or a movie ticket, yet, it does not extend the definition of either the movie title or
the movie ticket.

Discovery Pervasive Services based on their Expected Use 13

As an example of using the lifting and lowering functions consider the use of the
calendar service. The calendar service may be advertised to be used in conjunction
with data of type Time; furthermore, the service may provide the typical three
operations that associated to calendars: record, view and delete. Furthermore,
record may take a time instance as input and return a record number; view may
return a record number and display the results on the screen; while delete may take
a record number and remove the corresponding record from the calendar.

The USE of the calendar service may be specified as being objects of type Time.
Once the USE is specified, the lifting and lowering functions for the different
operations can also be specified. The lowering function for record map Time into
the format that is required by the record operation, while the lifting function maps the
record number either in a new object or in a new property to be added to a
specialisation of Time. Similarly, the lowering for view and delete take the
inputs objects that contain a calendar record number and map to the inputs of the
respective functions. Finally, the lifting functions for the two operations may not be
interesting since given the description above neither operation return any value.

The use of lifting and lowering functions provide one of the ways to guide the
invocation and to filter results of the matching algorithms described below.
Considering the example in the paragraph above, it can be noted that until a record
number is generated there is no way to use the view and delete operations,
therefore the invocation of such operations on a given object will be delayed until the
record operation is performed. Similarly, services for which the input cannot be
filled by the data available to the client can be discarded.

5.2 Improving USE precision

To improve the precision of the USE relation, we need to tighten the relation between
a service and its specified use. To achieve this goal, we are following two different
approaches. The first one attempts to weaken the original statements on which USE
was based. Namely, that USE is independent of inputs and outputs of the service. In
this sense, we could exploit the lifting functions described above to figure out what
inputs the service requires, and then relate these inputs to objects through the relation
of these concepts to the existing objects in the ontology. From an implementation
point of view, this process can proceed along the “associate” links described in
section 3. While this approach may prove able to describe the relation between
services and objects to which they relate, its weakness is that it is not able to describe
Web pages and RSS feeds that could be useful for the user.

A second approach is to relate services, web pages and objects with the concepts
representing the “resources” that they manipulate. The idea of relating services and
objects such as tickets with resources is described in [5] with the idea of pushing the
service composition as a whole. In this approach the USE relation will then be
inferred by the declarations of both services and objects, and likely it will not be as
generic as it is defined so far.

14 R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner

6 Conclusions

The service discovery mechanisms that have been proposed in literature fail to
address the problem of discovering the pervasive services that are emerging in the
mobile environment The reason of this failure is that discovery is thought as a goal
directed process in which the service is found because it achieves (part of) the goals
of the requester. As a consequence service discovery concentrates on the technical
aspects of the services, such as its inputs and outputs trying to derive from them the
potential use of the service.

On the opposite of this view, discovery in pervasive service provisioning is not
goal directed, rather services associate to the activities of the user adding value and
information to the data that the user needs to utilize. To address this different use of
services, in this paper we proposed “use-based” discovery: a framework in which the
expected use of a service is specified, and then this use is matched against the data
that to the services. To evaluate this idea, we tried to describe 81 services from the
OWLS-TC testbed and we showed that even if the service advertisement strongly
depends on the requirements and objectives of the provider of the description, the
proposed algorithm is able to smooth this aspect and to deliver reasonable enough set
of services that correspond to the user objects and activities.

7 References

1. Akkiraju R., Srivastava B, Ivan A., Goodwin R, Syeda-Mahmood T;Semantic Matching to
Achieve Web Service Discovery; Conference on Enterprise Computing, 2006

2. J. Farrell, and H. Lausen “Semantic Annotations for WSDL and XML Schema -W3C
Recommendation 28 August 2007” Available at http://www.w3.org/TR/sawsdl/; Last
viewed 1.October 2008

3. Yaron Y. Goland, Ting Cai, Paul Leach, Ye Gu, Shivaun Albright; "Simple Service
Discovery Protocol/1.0

4. Operating without an Arbiter";Internet Engineering Task Force, INTERNET DRAFT
5. Raman Kazhamiakin, Piergiorgio Bertoli, Massimo Paolucci, Marco Pistore, Matthias

Wagner: Having Services "YourWay!": Towards User-Centric Composition of Mobile
Services. FIS 2008: 94-106

6. Klusch, M.; Fries, B.; Sycara, K. (2006): Automated Semantic Web Service Discovery with
OWLS-MX. Proceedings of 5th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Hakodate, Japan, ACM Press.

7. D. L. Martin, M. H. Burstein, D. V. McDermott, D. L. McGuinness, S. A. McIlraith, M.
Paolucci, E. Sirin, N. Srinivasan, K. Sycara; Bringing Semantics to Web Services with
OWL-S; World Wide Web Journal 2006

8. C. Enrique Ortiz; “An Introduction to Near-Field Communication and the Contactless
Communication API”; available at
http://java.sun.com/developer/technicalArticles/javame/nfc/#11 (lv: 25.06.2009)

9. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, "Semantic Matching of Web
Services Capabilities," in Proceedings of the 1st International Semantic Web Conference
(ISWC2002)

10. Dumitru Roman, Holger Lausen, and Uwe Keller; "Web Service Modeling Ontology
(WSMO)"; http://www.wsmo.org/TR/d2/v1.2/ (lv 25.06.2009)

Discovery Pervasive Services based on their Expected Use 15

11. K. Sycara, S. Widoff, M. Klusch and J. Lu, "LARKS: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace." Autonomous Agents and Multi-Agent
Systems, 5, 173–203, 2002.

12. K. Sivashanmugam, K. Verma, A. Sheth, J. Miller; Adding Semantics to Web Services
Standards; The 2003 International Conference on Web Services (ICWS'03); 2003

13. M. Hamdy, B. König-Ries, U. Küster; “Non-functional Parameters as First Class Citizens in
Service Description and Matchmaking - An Integrated Approach”; in Proceedings of
NFPSLA-SOC 2007

14. G. Zhou, J. Yu, R, Chen, H. Zhang; Salable Web service discovery on P2P overlay; Service
Computing Conference, 2007

