
On User Views in Scientific Workflow Systems
Susan Davidson

University of Pennsylvania
Email: susan@cis.upenn.edu

Yi Chen, Peng Sun
Arizona State University

Email: {yi, psun5}@asu.edu

Sarah Cohen-Boulakia
Universite Paris-Sud
Email: cohen@lri.fr

Abstract—An increasing number of scientific workflow systems
are providing support for the automated tracking and storage
of provenance information. However, the amount of provenance
information recorded can become very large, even for a single
execution of a workflow – [6] estimates a ten-fold blowup of
the size of the original input data. There is therefore a need
to provide ways of allowing users to focus their attention on
meaningful provenance information in provenance queries. We
highlight recent work in this area on user views, showing how
they can be efficiently computed given user input on relevance,
or and how pre-existing views can be corrected to provide
accurate provenance information. We also discuss how to search
a repository of workflow specifications and their views, returning
workflows at an appropriate level of complexity with respect to
a hierarchy of views.

I. INTRODUCTION

Scientific workflow management systems (e.g., my-
Grid/Taverna [11], Kepler [5], VisTrails [9], and Chimera [8])
have become increasingly popular as a way of specifying and
executing data-intensive analyses. To ensure reproducibility of
results and track the large amount of final and intermediate
data products that are produced in a workflow execution,
many of these systems are beginning to provide support for
managing and querying provenance information.

However, the amount of provenance information recorded
even for a single execution of a workflow can be extremely
large; [6] estimates a ten-fold blowup of the size of the original
input data. While databases are adept at storing and efficiently
answering queries over large amounts of information, users
are not adept at assimilating large amounts of information.
It is therefore important to develop techniques to minimize
the cognitive overload resulting from provenance queries,
providing provenance information that is relevant to users.

As an example, consider the workflow specification (a.k.a
workflow definition or schema) in Fig. 1 (a)1, which describes
a common analysis in molecular biology: Phylogenomic in-
ference of protein biological function. This workflow first
takes in a set of entries selected by the user from a database
(such as GenBank), and formats these entries to extract a
set of sequences, and, possibly, a set of annotations (M1).
An alignment is then created (M3), and the result formatted
(M4). The user may also be interested in rectifying the
alignment (M5). M3 to M5 are repeated until the biologist
is satisfied with the result obtained. The user may also inspect
the annotations provided by GenBank (M2) and generate a set
of curated annotations; new user input is needed for this. The

1The reader should ignore the dotted boxes for now.

1

Run

alignment
Format

alignment

Build
Phylo tree

Modify
alignment

I O

Format
annotations

Functional
data

Split
entries

M1

Annotation
Checking

M2

M6

M7

M8

M3

M5

M4

M9

M10

M11

(a)

I S2:M3 S3:M4 S7:M7S4:M5

S9:M8

S10:M6

S1:M1

S8:M2

S5:M3 S6:M4

ent1,…, 

ent100

annotGB1, …, 

annotGB100

seq1,…, 

seq100

annotChecked1, …, annotChecked100 

align1 alignF1 fileGaps align2 alignF2

exp1, …, exp6

annotFile1

funct1, …, funct30 functFile1

tree1

O

(S14:M9)

(S13:M10)

(S12:M11)(S11:M11)

(b)

Fig. 1. Phylogenetic workflow specification (a) and run (b)

annotations are then formatted (M8) to be taken as input to the
phylogenetic tree reconstruction task (M7). Other annotations
are also considered: M6 takes in annotations from the user’s
lab and formats them to be taken as input to M7. From the
annotations produced by M8 (and possibly M6) together with
the alignment produced by M4, M7 provides a phylogenetic
tree labeled with functional annotations. Note that a number of
these tasks or modules (e.g. M1, M4, M8) involve formatting
and are not central to the scientific goal of the experiment,
and that edges represent the precedence and potential dataflow
between modules during an execution.

The result of executing a scientific workflow is called a
run. As a workflow executes, data flows between module in-
vocations (or steps). For example, a run of the phylogenomics
workflow is shown in Fig. 1(b). Nodes represent steps that
are labeled by a unique step identifier and a corresponding
module name (e.g., S1:M1). Edges denote the flow of data
between steps, and are labeled accordingly (e.g., data objects
ent1,...,ent10 flow from input I to the first step S1). Note
that loops in the workflow specification are always unrolled
in the run graph, e.g., two steps S3 and S6 of M4 are shown
in the run of Fig. 1(b).



M1

M10

M9

M2

I O

(a)

M1 M9

M2

I OM11

M5

(b)

Fig. 2. Joe’s (a) and Mary’s (b) user views.

Data provenance in workflows is typically captured as a
set of dependencies between data objects [7]. Essentially,
the graph of Fig. 1(b) becomes one in which the nodes are
data; each edge is labeled with the module execution which
produced the data at its start and taking as one of its inputs
the data at its end. Note that module names are repeated for
every input-output pair. Thus, a query of the provenance of
the final data product tree1 would return a graph similar to
that in Fig. 1(b), which (even for this simple example) is quite
large.

In this paper, we discuss a technique called user views which
uses composite modules, i.e. modules which may themselves
contain subworkflows, to hide portions of a workflow run and
thus simplify the workflow specification as well as provenance
information. Section II shows how users can indicate which
modules are relevant within a specification, and have a user
view automatically created around those relevant modules.
Section III discusses how to refine pre-defined views to ones
which correctly portray the provenance relationships between
the input and output of composite modules. Section IV shows
how a database of specifications and their views can be
searched using keyword queries, returning workflows at an
appropriate level of complexity with respect to a hierarchy of
views.

II. USER VIEWS

As illustrated in Fig. 1 (b), a workflow run may comprise
many steps and intermediate data objects, and therefore the
amount of information provided in response to a provenance
query can be overwhelming. A user may therefore wish to
indicate which modules in the workflow specification are
relevant, and have provenance information presented with
respect to that user view. To do this, composite modules are
used as an abstraction mechanism [3].

As an example, for the workflow in Fig. 1 (a), user Joe might
indicate that M2: Annotation Checking, M3: Run Alignment,
and M7: Build Phylo Tree are relevant to him. In this case,
composite modules M9 and M10 would automatically be

constructed (indicated by dotted boxes labeled M9 and M10
in Fig. Fig. 1(a)), and Joe’s user view would be {M1, M2,
M9, M10} as shown in Fig. 2(a). When answering provenance
queries with respect to a user view, only data passed between
modules in the user view would be visible. Data and module
executions internal to a composite module in the view would
be hidden; this corresponds to hiding the module executions
and data shown within the dotted boxes M9 and M10 in
Fig. 1(b). Thus, the provenance for tree1 presented accord-
ing to Joe’s user view would no longer include annotFile1,
functFile1 (both pieces of data are hidden inside M9),
or align1, alignF1, fileGaps, align2 (hidden inside
M10).

Views are individualized according the user’s interests. For
example, another user, Mary, may be interested in modules
M2, M3 and M7 (like Joe) but additionally interested in
M5: Modify alignment. Mary’s user view would therefore be
constructed as {M1, M2, M5, M9, M11} (shown in Fig. 2(b)),
and her view for the provenance of tree1 would expose
alignF1 and fileGaps (unlike Joe’s view) while hiding
annotFile1, functFile1, align1, and align2.

More formally, a user view is a partition of the workflow
modules. It induces a “higher level” workflow in which nodes
represent composite modules in the partition (e.g., M9 and
M10) and edges are induced by dataflow between modules
in different composite modules (e.g., an edge between M10
and M9 is induced by the edge from M4 to M7 in the original
workflow). Provenance information is then seen by a user with
respect to the flow of data between modules in his view.

In the ZOOM system [3], [2], user views are constructed
automatically given input on what modules the user finds
relevant such that (1) a composite module contains at most
one relevant (atomic) module, thus assuming the “meaning”
of that module; and (2) no data dependencies (either direct or
indirect) are introduced or removed between relevant modules.
In this way, the meaning of the original workflow specification
is preserved, and only relevant provenance information is
provided to the user.

An interesting theoretical question is whether there are effi-
cient algorithms for constructing a user view which obeys con-
ditions (1) and (2) above and which are as small as possible,
i.e. in which the number of composite modules is minimized.
We call such a view optimum. It turns out that whether or
not the optimum user view can be constructed depends on
the graphical structure of the workflow specification [4]: For
specifications that are general graphs, regardless of the number
of distinct modules in the input workflow and the structure of
interaction between them, the number of composite modules
can be exponentially large in the number of relevant modules
in an optimum user view for the specification. However,
for series-parallel workflow graphs [14] there is a simple,
linear time algorithm for constructing an optimum user view
for a given specification [4]. A study of scientific workflow
specifications collected from our collaborators as well as those
found at myexperiment.org has shown that over 80% of
scientific workflow specifications are series-parallel graphs,



A t ti
M2M20

M21

Format
annotations

Annotation
Checking

M8
O2

Modify
alignment

Split
GenBank M7M3

M5

M4
I2
I1

Run 
alignment

Format
alignment

Build
Phylo tree

I O
GenBank
entries

M1

I1

I6
O4

O6

Functional
data

M6
O6

I2 O2
(a)

6

M20 M22I OI1

I6 O4

O6

(b)

Fig. 3. Unsound User View (a) and Projected View (b)

and those that are not can be easily transformed by adding
control points.

III. CORRECTING COMPOSITE MODULES FOR
PROVENANCE

The previous section focused on how to create views give
user input on what modules were relevant. However, composite
modules are frequently used for purposes of modularization,
abstraction and reuse when specifying workflows, and there-
fore workflow views may already exist.

However, unless a view is carefully designed, it may not
preserve the dataflow between modules in a workflow, and thus
can be misleading and lead to incorrect provenance analysis.
For example, consider the view defined in Fig. 3(a), and
suppose a user would like to determine the provenance of
output O2 of module M20 in the projected view in Fig. 3(b).
Based on the abstracted provenance graph, she would believe
that inputs I2, I1 and I6 are all involved. However, there is no
path between I6 and O2 in the original workflow; only I1 and
I2 are in the provenance of O2.

Ideally, a view should preserve all the data dependencies
between composite tasks in the workflow, without adding
or removing dependencies. We call such a view sound with
respect to provenance. In our example, the view in Figure
3(b) indicates a data dependency path between I6 and O2,
which does not exist in the original workflow in Figure 3(a),
and thus unsound. Although it would seem natural to design
views which are sound, our survey of workflow designs in a
well-curated workflow repository [1] revealed several unsound
views. The goal of the WOLVES system [13] is therefore to
diagnose and correct unsound views.

We prove that a view is sound if every composite task in the
view is sound. Two alternatives can be pursued for correcting
an unsound task: Splitting it into multiple smaller tasks, or
merging it with other tasks. Note that splitting composite

tasks refines the initial view to a lower level and provides
more provenance information. In contrast, merging tasks loses
information, as tasks that are important to the user may be
invisible after the merge. Therefore, in WOLVES we focus on
techniques that resolve an unsound view by splitting unsound
composite tasks rather than merging them. For example, we
could split M20 into three composite tasks: {M1}, {M2},
{M6}, {M3, M4, M5}.

Our goal is to correct an unsound view by splitting its
unsound composite tasks to a minimal number of tasks, each
of which is sound. However, this problem is NP-hard by
reduction from the independent set problem. To efficiently
tackle this problem, we propose two optimality criteria: weak
local optimality and strong local optimality. A weak local
optimal solution is one in which no two tasks in the resulting
view can be merged into a sound task, and strong local optimal
solution is one in which no set of two or more tasks in the
view can be merged. Weak local optimality can be achieved
with an O(n2) algorithm, and strong local optimality with
an O(n3) algorithm, where n is the number of tasks in the
workflow. The proposed algorithms are much more efficient
than the algorithm which produces an optimal solution. The
strongly local optimal algorithm often has comparable pro-
cessing efficiency to the weakly local optimal algorithm, and
produces views that are comparable to the optimal one.

IV. SEARCHING WORKFLOWS THROUGH VIEWS

An increasing number of workflow specifications and their
views are being stored, either as part of a local workflow
system or collected to form a community repository (e.g.
myexperiment.org [10]). It is therefore important for workflow
designers to be able to search these repositories and then re-
use, include or revise the retrieved workflows to simplify the
design of a new workflow.

Techniques for finding workflows of interest are currently
limited to keyword searches based on the name of the work-
flow or tags explicitly associated with the workflow, and
the result is a set of workflows shown at an arbitrary level
of detail. However, by using a notion of hierarchical user
views, this rudimentary way of searching for workflows of
interest can be significantly improved. In a hierarchical user
view, composite modules may themselves contain composite
modules, and names can be associated with each atomic or
composite module.

For example, suppose that a user would like to make a
sauteed dish which uses chicken breast and coconut, and
needs a recipe. She would then issue a keyword query Q,
“chicken breast, coconut milk, saute” on a repository of recipes
(workflows) to search for relevant recipes.

Now suppose that Fig. IV is one of the relevant recipes
in the repository, where all query keywords have matches.
Obviously, returning the entire workflow hierarchy as a query
result, i.e. the one in which all the composite modules are
exposed, is difficult to understand since too much irrelevant
information is exposed to the user. We therefore need to find
ways of exposing relevant information in our query results.



 

Fig. 4. Recipe Workflow Hierarchy

 

Fig. 5. Query Result for Q:{chicken breast, coconut milk, saute}

The immediate question is how to define search results
when users issue keyword queries on a repository of work-
flow hierarchies. Recall that much research has been done
on keyword search on graph-structured data (e.g., relational
databases) and tree-structured data (e.g., XML), where a result
is defined as a smallest data tree that contains the query
keywords. Unfortunately, this definition of a query result is not
appropriate for workflow search as the result is not guaranteed
to capture the dependencies and dataflow among tasks that
contain keyword matches.

For our example, a ”good” query result is shown in
Fig. IV, which is a query-driven view that visualizes key-
word matches shown in dashed rectangles together with
their dataflow. For example, after saute (the chicken)
until tender, we stir (it) in flour and then
add coconut milk. Note that the dataflow paths among
these tasks are not explicitly shown in the workflow hierar-
chy in Fig. IV, but are derived. Also, expansion edges that
represent irrelevant views are avoided.

Supporting keyword search on workflow hierarchies poses
new challenges beyond keyword search on relational and XML
data. First we need to define meaningful query results. We pro-
pose that a query result should be a minimal query-driven view
of the workflow hierarchy that contains all keyword matches,
which is a graph containing all matches and dataflow edges

among them. Second, we must design efficient techniques to
generate such query results.

To address these challenges, we have developed WISE [12],
a Workflow Information Search Engine (available at
http://wise.asu.edu/). WISE allows users to search a repository
of workflow hierarchies using simple keywords, and returns
concise and informative query results. The query results can be
efficiently and dynamically synthesized by exploiting indexes
and labeling schemes. To the best of our knowledge, this is
the first work that supports keyword search on repositories of
workflow hierarchies and returns query results capturing the
dataflows among tasks matching keywords.

V. CONCLUSION

User views, in which composite modules are used to hide
portions of a workflow specification or execution, are a useful
abstraction for simplifying information. We have shown how
they can be used to create individualized views of prove-
nance information by having users indicate which modules
are relevant, and how existing user views can be corrected
to accurately capture provenance information. We have also
discussed how they can be used to simplify the result of a
keyword search over a repository of workflow specifications.

We are currently pursuing several other interesting appli-
cations of user views, including provenance query languages,
and secure views of workflows and their executions.

REFERENCES

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock.
Kepler: An extensible system for design and execution of scientific
workflows. In SSDBM, pages 423–424, 2004.

[2] O. Biton, S. C. Boulakia, and S. B. Davidson. Zoom*userviews:
Querying relevant provenance in workflow systems. In VLDB, pages
1366–1369, 2007.

[3] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara. Querying
and managing provenance through user views in scientific workflows.
In ICDE, pages 1072–1081. IEEE, 2008.

[4] O. Biton, S. B. Davidson, S. Khanna, and S. Roy. Optimizing user
views for workflows. In ICDT ’09: Proceedings of the 12th International
Conference on Database Theory, pages 310–323, 2009.

[5] S. Bowers and B. Ludäscher. Actor-oriented design of scientific
workflows. In Int. Conf. on Concept. Modeling, pages 369–384, 2005.

[6] A. Chapman, H. V. Jagadish, and P. Ramanan. Efficient provenance
storage. In SIGMOD Conference, pages 993–1006, 2008.

[7] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M. McPhillips,
S. Bowers, M. K. Anand, and J. Freire. Provenance in scientific
workflow systems. IEEE Data Eng. Bull., 30(4):44–50, 2007.

[8] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. Chimera: Avirtual
data system for representing, querying, and automating data derivation.
In SSDBM, pages 37–46, 2002.

[9] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and
H. T. Vo. Managing rapidly-evolving scientific workflows. In IPAW,
volume 4145 of LNCS, pages 10–18. Springer, 2006.

[10] myExperiment. http://www.myexperiment.org/workflows.
[11] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. Greenwood,

K. Carver, M. G. Pocock, A. Wipat, and P. Li. Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformat-
ics, 20(1):3045–3054, 2003.

[12] Q. Shao, P. Sun, and Y. Chen. Wise: a workflow information search
engine. In ICDE, 2009.

[13] P. Sun, Z. Liu, S. B. Davidson, S. N., and Y. Chen. WOLVES:
Achieving Correct Provenance Analysis by Detecting and Resolving
Unsound Workflow Views. In PVLDB, 2009.

[14] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series
parallel digraphs. SIAM J. Comput., 11(2):298–313, 1982.


