
Semantically Annotated Provenance in the Life
Science Grid

Bin Cao, Beth Plale, and Girish
Subramanian

School of Informatics and Computing
Indiana University, Bloomington, IN, USA
{plale, bincao, subramag}@cs.indiana.edu

Paolo Missier and Carole Goble
School of Computer Science

University of Manchester
Manchester, UK

{cgoble, pmissier}@cs.man.ac.uk

Yogesh Simmhan
Microsoft Research
One Microsoft Way

Redmond, WA, USA
yoges@microsoft.com

Abstract— Selected semantic annotation on raw provenance
data can help bridge the gap between low level provenance
events (e.g., service invocations, data creation, message
passing) and the high-level view that the user has of his/her
investigation (e.g., data retrieval and analysis). In this initial
investigation we added semantically annotated provenance to
the Life Science Grid, a cyber-infrastructure framework
supporting interactive data exploration and automated data
analysis tools, through (i) automated data provenance
collection and (ii) automated semantic enrichment of the
collected provenance metadata. We use a paradigmatic life
sciences use case of interactive data exploration to show that
semantically annotated provenance can help users recognize
the occurrence of specific patterns of investigation from an
otherwise low-level sequence of elementary interaction events.

Keywords- life sciences, provenance, semantic annotation

I. INTRODUCTION

Cyber-infrastructure frameworks for experimental
science are becoming an increasingly popular way of
interacting with a variety of analysis tools and other
computational and data resources on the Internet. Automated
provenance [6] metadata, collected during the course of a
scientist’s interaction with the framework during a data
exploration session, can add value to the exploration process
in a number of ways: it can be used to reproduce analyses
and processes, identify the causality of a series of events,
broaden sharing and reuse of data products, support the long-
term preservation of scientific data, attribute ownership, and
determine the quality of a particular data set. Raw
provenance data, however, consists mainly of observations of
a user’s interaction with some visual interface, as well as of
system-level observations of system events (service
invocations, data creation, message passing). Unlocking the
potential of such provenance metadata requires bridging the
gap between these low level events, and the view that the
user has of his/her investigation, which is likely to be
described in terms of high-level information processing,
typically consisting of data retrieval and analysis steps that
lead to some scientific finding. The work described in this
paper stems from the hypothesis that augmenting raw
provenance metadata with selected semantic annotations
helps bridge this gap, and furthermore, that for the most part
such annotations can be obtained automatically, i.e., with
minimal user effort.

We explore this hypothesis in the specific context of the
Eli Lilly open source Life Science Grid (LSG) [3], a cyber-
infrastructure framework built from Microsoft .NET 2.0
Component Application Block (CAB) and Web Services that
couples automated data visualization and display (through
the CAB) with invocation of data sources and analysis tools
(through Web Services). The LSG is in production use inside
Eli Lilly with a more fully functioning open source version
anticipated.

We approach the study by defining a paradigmatic use
case for interactive exploration of life sciences data, and used
it to drive the design of an architectural model that integrates
LSG with (i) automated data provenance collection, using the
Karma provenance framework [7] developed at Indiana
University, and (ii) automated semantic enrichment of the
collected provenance metadata, using the Semantic-Open
Grid Service Architecture (S-OGSA) semantic annotation
framework [1] developed at University of Manchester. The
use case is based on the data playground idea, first proposed
by Gibson et al. [2], which builds on the hypothesis that
recognizable patterns of a complex data exploration process
may emerge from the continuous observation of direct user
interaction with data exploration and analysis tools.

The remainder of the paper describes an initial
investigation into the potential for the use of provenance in
this scenario, specifically to help users recognize the
occurrence of specific patterns of investigation from an
otherwise low-level sequence of elementary interaction
events. Thus, in addition to describing the use case (Section
II) and presenting the technical architecture that made this
investigation possible (in Section III), we reflect upon the
type of provenance metadata that can be usefully and
inexpensively collected, semantically annotated, and
exploited to add value to scientific findings.

II. USE CASE

The use case driving our work, shown in Figure 1,
describes a realistic scenario of exploratory analysis on genes
and gene products. The example is representative of a typical
investigation method in bioinformatics, where a small set of
genes that are known to be involved in a particular disease,
in this case human diabetes, is used as a seed to grow a larger
collection of related genes, which will provide the scope for
further and possibly more expensive lab analyses. The
collection grows incrementally, in a series of iterations where

This work is sponsored by funding from the Eli Lilly Corporation and
by the National Science Foundation award OCI-0721674 .

a gene pool, indicated as the working set in Figure 1, is
updated by either adding or removing some of its elements.
The iteration involves a combination of access and user
interaction with public databases accessible through web
services on the web (we use the NCBI Entrez service for
searching gene details and the AmiGO browser for Gene
Ontology associations), and the use of Basic Local
Alignment Search Tool (BLAST) in order to reveal
homologous genes in model organisms, typically the mouse.
Genes obtained from BLAST are again inspected by the user,
and can be selected for addition to a “working set”
maintained on behalf of a user, or discarded based on the
user’s judgment. The process can repeat possibly multiple
times, by again BLAST-ing some of the mouse genes,
leading to a larger pool of human genes that are more or less
directly related to each other through homology properties.

Figure 1. Illustration of use case

Throughout this process, users interact with a variety of
interfaces, which LSG integrates into one single visual
environment, as described in the next section. Although the
iterations indicate a logical sequence of events, users are not
constrained by any prescribed course of action; indeed, most
of the steps can be performed in any sequence, making for a
variety of different analysis paths. At the end of the process,
it is important for users to understand how a certain final
working set of genes was accumulated: certain genes were
discovered but discarded, others were deemed worthy of
further investigation, others were first added and then
replaced by other, more promising elements. A combination
of raw provenance metadata, user-provided and
automatically added semantic annotations is used to support
the explanation process. Raw provenance includes a trace of
all the invocations to services through the LSG interface, as
well as all UI interactions. User-provided annotations include
optional descriptions that explain each update decision that
affected the working set (addition, removal), and semantic
annotations are obtained from various sources, for example a
registry of semantically annotated Web Services, as
described in the next Section.

III. SYSTEM ARCHITECTURE

We view the use case as an instance of a general user
interaction model, where events and data products are
recorded and associated to a user session, and various
annotations are associated to both the events, for example a
service invocation, and the data products, e.g., the result
message from the service (we define a session as being
delimited by user login and logout actions). Figure 2 gives an
overview of the architecture used to support this interaction
model. Individual users can configure their own personal
LSG desktop environment by selectively enabling some of
the available plugins, which control the interaction with
specific services. In addition, LSG plugins interact amongst
each other using a publish/subscribe model through an LSG
event bus, providing users with an integrated, multi-panel
interface. Thus, suppose for example that an NCBI Entrez1
plugin accepts user gene lookup requests, and sends the
corresponding gene descriptions onto the bus, while an
AmiGO2 plugin that is able to resolve Gene Ontology (GO)
terms subscribes to those descriptions. When the user
submits a request, the response triggers the AmiGO plugin,
which responds by updating its own interface with the GO
descriptions of the gene, while details of the latter are being
displayed on the NCBI Entrez plugin interface.

LSG Space
user

NCBI
Entrez

AmiGO

Gene
Browser

L
il

ly
 C

A
B

 B
u

s

L
il

ly
 t

o
 K

a
rm

a
E

ve
n

ts
 R

e
fl

e
c

to
r

Karma Framework

Provenance
DB

Events Capture

O
P

M
*

R
D

F
 I

n
te

rf
a

c
e

S-OGSA
Service

Semantic
Binding

Annotated Provenance Graph

Karma Events Bus (WS+LSG)

Resources
(public + private)

Proxy

SAWSDL
Registry

Service Annotations

Services and data
ontology (myGrid)

Karma
structure
ontology

K
a

rm
a

S
e

rv
ic

e
s

*Open Provenance Model v1.01

BLAST

Working
Set

Manager
Provenance
Visualizer

Figure 2. Integrated provenance management architecture

We have exploited this event model to generate
elementary provenance events through the Karma
component, which is configured to snoop on the LSG event
bus, in addition to having its own instrumentation in the Web
Service proxies that mediate LSG plugin interactions with
the services. Karma structures these provenance events
according to the Open Provenance Model (OPM) [5], a

1 NCBI Entrez is a search engine for biomedical databases

and available at
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gen.

2 AmiGO is a web service to access Gene Ontology
associations for genes and available at
http://www.geneontology.org/.

community standard for describing causal graphs through a
set of pre-defined types of nodes and their relationship.

Throughout a user session, fragments of OPM graphs
representing single interactions are forwarded to the S-
OGSA component, which performs two functions: firstly, it
analyses the OPM graph and adds semantic annotations to
some of its nodes, whenever possible and by using a variety
of annotations sources. For instance, if a node represents a
Web service invocation, and a semantically annotated
description of the service is available, then S-OGSA
augments the OPM graph by associating the annotations to
that node (a more detailed description of the annotation
architecture is described in Section C). Secondly, S-OGSA
stores the pair <user session, OPM graph> in its own
database, which the Provenance Visualizer can query to
present semantic provenance to the user. By having the
Provenance Visualizer implemented as a new LSG plugin
itself, the combination of these components provides users
with a seamlessly integrated feedback loop, by incrementally
displaying the effect of their actions as a rendering of
provenance metadata.

Next, we elaborate on the three main components of the
integrated architecture.

A. LSG

Two main features make LSG an appealing platform for
our experimentation: its openness, which made it possible to
create provenance events simply by adding a subscriber to
the LSG event bus, as described earlier; and its extensibility,
which we have used to implement new plug-ins especially
for our use case. Specifically, we have used two of the
available plugins for the open source version of LSG, namely
for searching the NCBI Entrez database and for resolving
GO terms; and have implemented three new plugins:

 A BLAST plugin that interacts with one of the
several publicly available BLAST services3;

 A Working Set Manager, to manage the dynamic
collection of data products, in this case genes, that
represent the main outcome of the users’
investigation;

 A Provenance Visualizer, which can display parts of
the provenance graph to the users (see Figure 3).

The “LSG Space” in Figure 1 shows the relationship
amongst these plugins. While we exploit the event model to
automate much of the data flow across the plugins, we also
identify points in the process where we felt that explicit,
knowledge-intensive user input was desirable. Thus, for
example, while it is possible to extract a DNA sequence in
FASTA format from an NCBI gene description record, to be
used as input to BLAST, expert users prefer to have control
over the portion of the sequence, for example to include or
exclude the gene promoter regions on either side of the
sequence. This mix of automated data flow and explicit user
input offers the additional opportunity for users to add their

3 http://www.ebi.ac.uk/Tools/blast/.

own notes as explanations of their actions, for example to
comment on the choice of a wider region around a gene. This
is particularly clear in the design of the Working Set
Manager, which automatically accepts new elements, i.e.,
genes from BLAST, through the event bus, but also offer
users the opportunity to examine (accept, reject, annotate)
each of them individually.

Figure 3. OPM graph fragment

B. Karma and OPM

The main functions of the Karma component in this
setting are to capture raw provenance events, and to format
them according to the Open Provenance Model specification.
As Karma is a general provenance collection and
management tool, it implements a generic provenance model
and set of instrumentation tools that are independent of the
application system. Instrumentation of the LSG required the
use of several forms of instrumentation. For the web hosted
data services and sources, we implemented proxy web
services that utilize instrumentation handlers in Axis2 to
collect provenance. Provenance of the CAB activity is
captured by a listener on the CAB events bus. The listener
forwards provenance relevant events to Karma. The high
level view of capture is shown in Figure 4.

Enterprise Service Bus

Karma

Life Science Grid

Provenance
Notifications

Remote
Web

Service

Proxy

Working Set
Manager

BLAST

Gene
Ontology

NCBI Entrez

Gene
Browser

Provenance
Instrumentation

Provenance
Instrumentation

Provenance
Instrumentation

Provenance
Instrumentation

Provenance
Instrumentation

causeID.SetServiceID("http://www.my
grid.org.uk/ontology#Blast_Plugin");
effectID.SetServiceID("http://www.my
grid.org.uk/ontology#Blast_Ebi_Web_
Service");
OTimeType time = new OTimeType();
time.SetClockID("default");
time.SetNoEarlierThan(System.DateT
ime.Now);
time.SetNoLaterThan(System.DateTi
me.Now);
LSGUtilities util =
LSGUtilities.Instance();
string userID =
util.GetUser().LogonID;
WasTriggeredBy notification = new
WasTriggeredBy(effectID, causeID,
userID, time);
WSEClientApi wseClient = new
WSEClientApi();
wseClient.publish("http://tyr11.cs.india
na.edu:12346", "LSG-EVENT",
notification.ToXml());

Figure 4. Provenance instrumentation in LSG plugins

We distinguish between black box plugins, for which it
may be possible to observe data exchange events that occur
through the LSG bus, and white box plugins, where in
addition, user interaction events that occur through a service
interface can also be detected. In practice, black boxes are
those where native web pages are displayed, so that access to
the user click-throughs on the page is limited and can only be
achieved by intercepting the HTTP requests using a proxy,
for instance, but some of the context in which the request is
made is missing. In white box components, on the other
hand, the UI is part of the plugin design, and as a
consequence we can capture user actions with full detail.

According to the black-box, white-box distinction, the
Working Set manager is a white box, because all user events
can be observed along with optional user annotations, while
the native LSG plugins, the NCBI Entrez and AmiGO
plugins, are black boxes. As for the BLAST plugin, making
it a white box required the extra effort of encoding a bespoke
web-based interface to interact with the service, in order to
capture all of the important user interactions. Thus, Karma
captures the user selection, de-selection, and annotations of
genes in Working Set Manager, and the set of genes that
transit on the LSG bus, including BLAST reports.

Karma maps provenance events to fragments of OPM
graphs. In its simplest form, an OPM graph consists of two
types of nodes, which represent Artifacts and Processes.
These are shown as ovals and rectangles, respectively, in
Figure 3. Nodes are connected using directed labeled arcs,
which express properties that hold between two nodes. The
set of all legal properties is fully described in [5], however
the following three types of properties were found to be
sufficient to express our provenance events:

 process P used artifact A, for example,
NCBI_Entrez_Plugin used Entrez_Gene_ID,

 artifact A wasGeneratedBy process P, for example,
Entrez_Gene_ID wasGeneratedBy
Gene_Browser_Plugin, and

 process P1 wasTriggeredBy process P2, for example,
NCBI_Entrez_Plugin wasTriggeredBy
Gene_Browser_Plugin.

The first two properties express ordinary
producer/consumer relationships, while the latter is useful in
expressing the indirect interaction between two plugins that
publish and subscribe to a data element, respectively. We
also use the same property to express the fact that a plugin
controls an underlying service, i.e., in the typical situation
where a service invocation is triggered by a plugin.

Provenance events are published as notifications to the
Web services-based message broker, WS-Messenger [8],
where Karma is a subscriber. When a provenance
notification arrives, the corresponding provenance handler
picks it up, retrieves the raw provenance data, and stores
these data into its own provenance database, a MySQL
relational database. These raw provenance data can be used
to answer general provenance questions as well as determine
the artifact dependency and the process dependency during a

user session. Meanwhile, these data is sent to S-OGSA for
semantic annotation. Since OPM is an abstract process
model with multiple concrete serialization formats for
portability across applications, as indicated in Figure 2, we
have used the RDF 4 serialization to transfer OPM graph
fragments from Karma to the S-OGSA component.

C. Modular Semantic Annotations using S-OGSA

S-OGSA [1, 4] manages the persistent and stateful
associations between Grid resources, i.e., data or services,
and their annotations (or any form of related metadata),
expressed primarily as RDF graphs. Such associations,
known as semantic bindings, can be queried with SPARQL.
S-OGSA mapping to this project has user sessions playing
the role of resources, with OPM provenance graphs produced
by Karma as their associated metadata. S-OGSA additionally
augments the input graphs with semantic annotations. Here
we focus on the latter part of the S-OGSA architecture5.

The annotation architecture is based on the principle that
annotations to nodes in the RDF OPM graph will depend on
(i) the specific types of Artifact and Process nodes, and (ii)
the availability of metadata sources that can be used to derive
interesting metadata for those node types. To account for this
flexibility, we designed a modular architecture based on the
interceptor pattern, consisting of an extensible chain of
annotators, each specialized to annotate specific types of
nodes. Each annotator receives an input RDF graph,
produces an augmented version of the same graph with
annotations added to it, and forwards it to the next annotator
down the chain. As no parts of the input graph are ever
removed, annotators can be added incrementally to S-OGSA,
in a monotonic fashion. The pattern is illustrated in Figure 5.
As a proof of concept, we have implemented a chain
consisting of two annotators, one for Process node of type
Web Services, and one for Artifact nodes of type Blast
report. We now describe how each of these two annotators
uses a different metadata source to produce its annotations.

Figure 5. S-OGSA interceptors for incremental semantic annotations of

OPM graphs

4 http://www.w3.org/RDF/
5 Technically, S-OGSA relies on the Anzo RDF API for

storing its annotation graphs, and its functionality is
exposed as a RESTful Web Service.

Figure 6. Service annotation

The Service Annotator relies on Process nodes that
represent Web Services, to be labeled with a service name,
for instance NCBI_Entrez, that can be matched against a
local and bespoke registry of Web service descriptions. In
this registry, service descriptions are semantically annotated
using SAWSDL 6 (in a future version, the Biocatalogue
service registry7 will be used for this purpose). If a match is
found, the corresponding SAWSDL annotations (i.e., the
sawsdl:modelReference attribute values), are added to the
RDF graph (see Figure 6). Since these annotations are
references to concepts in some ontology (expressed as URIs),
the standard rdf:type property is used to associate the
annotation to the Process node. An example of SAWSDL-
annotated service description for NCBI Entrez is shown
below.

<wsdl:interface name="eFetchGeneService"
sawsdl:modelReference="http://www.mygrid.org.uk/ontology#E
ntrez_GenBank_protein">
 <wsdl:operation name="run_eFetch"
 pattern="http://www.w3.org/ns/wsdl/in-out"
 sawsdl:modelReference="http://www.owl-
ontologies.com/unnamed.owl#run_eFetch_dbGene">
 <wsdl:input element="nsef:eFetchRequest" />
 <wsdl:output element="nsef:eFetchResult" />
 </wsdl:operation>
</wsdl:interface>

Note that this entry annotates a generic NCBI eFetch
service with concepts from the myGrid ontology8, which
qualify it as a gene lookup service.

The Blast Report Annotator is an example of data
annotator that performs complex lookups in multiple public
databases in order to semantically annotate a data entry of a
specific type in the OPM graph. Its general structure is
shown in Figure 7. The fragment above the line is part of
LSG processing. The BLAST report is accessible to the

6 http://www.w3.org/2002/ws/sawsdl/
7 http://www.biocatalogue.org/
8http://www.mygrid.org.uk/tools/service-
management/mygrid-ontology/

annotator through a unique ID that is part of a RDF resource
(a URI), and that is dereferenced against a persistent local
data store.

Figure 7. BLAST report annotation

An EBI BLAST report consists of a ranked list of
matched DNA sequences, which may be parts of genes or
proteins. Thus, some of these entries may optionally contain
a variety of references to external databases; in our
implementation we have focused on (i) Uniprot accession
numbers, which appear whenever the matched DNA
sequence is related to a protein, and (ii) GO annotations, i.e.,
references to entries in the Gene Ontology.

As the report is in a standard XML format, the annotator
begins by extracting the EMBL accession numbers, which
are then used to query the EMBL database, through the
WSDbFetch Web Service9 . This yields one XML document
for each hit in the BLAST report, indicated as “EMBL DNA
sequence records” in the figure. Then, for each of these
records the annotator extracts both the set of GOA
annotations (in the example: {A6NMX8, Q09428}), and the
set of Uniprot accession numbers, if any (in the example:
{Q09428}). The former is used to query the Gene Ontology
to retrieve the associated descriptions, while we use the latter
to query Bio2Rdf (using the dynamic URL
http://bio2rdf.org/uniprot:Q09428). This is particularly
interesting, as the Bio2Rdf project (http://bio2rdf.org/)
exposes the content of entire Bioinfomatics databases,
including Uniprot, as RDF graphs. Thus, associating the
RDF entry for a specific protein, when available, is a very
natural operation in the context of Blast report annotation.

Figure 8 shows a fragment of annotated RDF graph for a
BLAST report. The content of each report resource is a bag
of entries, i.e., a bag of b-node resources, each corresponding
to one sequence hit in the report. All b-nodes have type
EMBLRecord (a class in the myGrid ontology) and have an

9 http://www.ebi.ac.uk/Tools/webservices/services/dbfetch

associated (a) EMBL accession number, (b) GOA
accessions, if any, and (c) entire named graphs that resolve to
the Uniprot records associated to the sequence, if available.
Note that this type of graph could not be obtained
automatically from an RDF-based provenance capture engine
such as that of the Taverna workflow system10.

Figure 8. Annotated RDF graph for a BLAST report

IV. LESSONS LEARNT AND FUTURE WORK

This paper details the architectural complexity of
collecting provenance data from LSG, augmenting it,
semantically annotating it, and returning it to the user. The
paradigmatic use case shows that semantically annotated
provenance can help users recognize the occurrence of
specific patterns of investigation from an otherwise low-level
sequence of elementary provenance events.

There are several noteworthy outcomes that emerged in
implementing the use case we describe in this paper. The
Life Science Grid, as mentioned earlier, is built using the
.NET Component Application Block “portal” with call-outs
to web services. The CAB is multicast in that plugins drop
events on a bus that are picked up and acted upon by all other
plugins creating a stateless, shared-all medium. But once the
architecture is extended to include web services that gather
information from public databases and services on the web,
even for our straightforward use case, the need for state
sharing arises. State can be viewed as an artifact (in OPM
terms), and one that is important to the provenance record
particularly where long term preservation of data is the goal.
We will more fully examine this impact in future work.

Substantial investigation remains in the visual
presentation of provenance information. Lilly sees the
historical, lineage nature of provenance as having significant
potential to contribute to the drug discovery process. We are
exploring visualization of higher levels of abstraction of
provenance to more closely match user’s investigative
process. It raises interesting questions on the implication to
instrumentation as well. When can the underlying low level

10 The Taverna provenance component is now being re-

defined using a non-RDF data model.

event collection be replaced with higher levels of abstraction
and what form do these higher levels of instrumentation
take? Moreover, a user study can assess the value that
provenance collection brings to the daily research
investigative process of the users. We are working with Eli
Lilly to set this up.

Finally, provenance can be captured and semantically
annotated for other grid systems such as caGrid [9], the
service-based infrastructure that supports the cancer
Biomedical Informatics (caBIG 11). Unlike user-driven
(streaming) workflows in LSG, caGrid users need to pre-
define a workflow using a workflow orchestration tool
before execution [10]. Since Karma can capture provenance
from different service-based sources, through proper
instrumentation in the workflow orchestration tool, raw
provenance data can be captured and then semantically
annotated by S-OGSA.

ACKNOWLEDGEMENTS

Our thanks to Katy Wolstencroft and Dr. Andy Gibson at
University of Manchester for their help in the formulation of
the usage scenario. Susie Stephens and Richard Bishop of Eli
Lilly have been instrumental drivers in the project.

REFERENCES
[1] O. Corcho, P. Alper, I. Kotsiopoulos, P. Missier, S. Bechhofer, C.

Goble, “An Overview of S-OGSA: A Reference Semantic Grid
Architecture,” Journal Web Semantic, vol. 4, no. 2, pp. 102–115,
2006.

[2] A. Gibson, M. Gamble, K. Wolstencroft, T. Oinn, C. Goble, K.
Belajjame, P. Missier, “The Data Playground: An Intuitive Workflow
Specification Environment,” Future Generation Computer Systems,
vol. 25 no.4, pp. 453-459, April 2009.

[3] Life Sciences Grid, http://sourceforge.net/projects/lsg/

[4] P. Missier and P. Alper and O. Corcho and I. Dunlop and C. Goble,
“Requirements and Services for Metadata Management, ” Journal
IEEE internet Computing, Special issue on Semantic-Based
Knowledge Management, Sept. / Oct., 2007.

[5] L. Moreau, B. Plale, S. Miles, C. Goble, P. Missier, R. Barga, Y.
Simmhan, J. Futrelle, R. E. McGrath, J. Myers, P. Paulson, S.
Bowers, B. Ludaescher, N. Kwasnikowska, Jan Van den Bussche, T.
Ellkvist, J. Freire, P. Groth, “The Open Provenance Model (v1.01), ”
July 17, 2008. http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf

[6] Y. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science,” ACM SIGMOD Record, vol. 34, no. 3, pp.
31-36, 2005.

[7] Y. Simmhan, B. Plale, and D. Gannon, “Karma2: Provenance
Management for Data-Driven Workflows,” International Journal of
Web Services Research, vol. 5, no. 2, pp. 1-22, 2008.

[8] Y. Huang, A. Slominski, C. Herath, D. Gannon, “WS-Messenger: A
Web Services-Based Messaging System for Service-Oriented Grid
Computing,” Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID), pp. 166 – 173, 2006.

[9] J. Saltz, S. Oster, S. Hastings, S. Langella, W. Sanchez, M. Kher, P.
Covitz, T. Kurc, K. Shanbhag, “caGrid: design and implementation of
the core architecture of the cancer biomedical informatics grid”,
Bioinformatics, vol. 22, no. 15, pp. 1910-1916, June 2006.

[10] W. Tan, P. Missier, R. Madduri, I. Foster, “Building Scientific
Workflow with Taverna and BPEL: A Comparative Study in caGrid,”
Service-Oriented Computing --- ICSOC 2008 Workshops, pp. 118-
129, 2009.

11 https://cabig.nci.nih.gov/

