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Abstract—In this paper, we describe how a semantic web-
based provenance Interlingua called the Proof Markup Language
(PML) has been used to encode workflow provenance in a variety
of diverse application areas. We highlight some usability and
interoperability challenges that arose in the application areas
and show how PML was used in the solutions.

I. INTRODUCTION

In scientific research, workflow systems are used to assem-
ble steps (each corresponding to certain tasks) for processing
scientific data. Provenance is a well-known and important
component in these systems [1]. In particular, access to a
workflow system’s data flow has proven crucial for users to
understand, validate, and reproduce its workflows [2], [3].

As workflow systems become more complex and distributed
in nature, a number of provenance management challenges are
known to emerge [1]. Within the scope of this paper, we focus
on two particular challenges: usability and interoperability.
To address the usability challenge, provenance information
must be both sufficiently intuitive and expressive for end users
to understand. Likewise, for the interoperability challenge,
provenance representations must be capable of linking to,
integrating, and reusing each other’s content for unexpected
purposes.

In this paper, we investigate how both challenges can be
addressed through a domain independent provenance inter-
lingua called the Proof Markup Language (PML) [4]. PML
facilitates generation and sharing of provenance metadata for
data derivation within and across intelligent systems, and
acts as an enabler of trust by supporting explanations of
information sources, assumptions, and learned information. As
a critical part of the Inference Web (IW) [5] project, PML
has been used in many domains [6], including: information
extraction [7], logical reasoning [8], workflow processing [9],
semantic eScience [10], and machine learning [11], [12]. Three
workflow-based case studies we explore are as follows:

• Case Study 1, Semantic Provenance Capture in Data
Ingest Systems (SPCDIS): This project integrates prove-
nance representations into scientific workflows in the
fields of solar, solar-terrestrial, and space physics. These
workflows include numerous scientific data products an-
notated by complex domain-specific ontologies. Here,
provenance is needed to facilitate querying based on
domain-knowledge (for instance, to list which scientific

instruments were used to derive a certain type of data
product).

• Case Study 2, Generalized Integrated Learning Archi-
tecture (GILA): GILA is a multi-agent machine learning
platform, which generates a workflow log about how a
problem was resolved collaboratively by an ensemble of
learning agents. Provenance in this system is implicitly
encoded through domain-specific structuring, and needs
to be normalized to allow basic querying.

• Case Study 3, The Third Provenance Challenge (PC3):
Unlike the former two case studies, this focuses on a
workshop aimed at developing interoperable provenance.
Here, multiple participants investigated a workflow from
an astrometry/photometry-based system. Using individual
approaches, everyone had to monitor this workflows
execution and export the resulting provenance data for
import, integration and querying by the other teams.

The remaining sections are organized as follows. Section 2
briefly reviews PML and shows its applicability in workflow
provenance representations. Sections 3 through 5 detail the
three case studies on SPCDIS, GILA and PC3 respectively.
For each of these, we highlight: (i) examples of usability and
interoperability challenges, (ii) how PML was used to address
these challenges, and (iii) lessons learned from these efforts.
Section 6 discusses related work with PML, and section 7
provides concluding remarks.

II. PML AND WORKFLOW PROVENANCE

PML is a Semantic Web based provenance representation,
defined through three core OWL ontology modules: the Prove-
nance module(namespace: pmlp), which supports annotation
of general provenance related entities, (such as agents, data
products, and information sources); the Justification module
(namespace: pmlj), which supports annotating derivation re-
lations (pmlj:InferenceStep) among data products, represented
by justification-based concepts (pmlj:NodeSet); and the Trust
module(namespace: pmlt), which supports annotating com-
plex trust relations on provenance and justification concepts.
The modular design of PML facilitates future reuse and
extension of these core ontologies.

In tracking workflow provenance, PML can be used to
capture data flow by recording: (i) the sequence of operations
taken to derive data products, and (ii) descriptions about these
operations. Figure 1 depicts a simple workflow covering basic



workflow concepts (above) and shows how these concepts
are represented by PML (below). The workflow includes a
sequence of processes P0 . . . Pn. Each process Pi(denoted by
a rectangle and mapped to pmlj:InferenceStep), is defined as
an execution of an operation Oi (denoted by a diamond and
mapped to pmlj:InferenceRule) by an agent Ai (denoted by
a person figure and mapped to pmlp:Person), and takes as
input a data product Di (denoted by an oval, and mapped to
pmlp:Information) and derives another data product Di+1 as
the output.
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Fig. 1. Representing Execution of Workflow

There are some immediate benefits in representing workflow
provenance using PML. Using Semantic Web representation
strategies, PML-encoded data can be linked to domain on-
tologies supporting improved usability, and may be extended
by (or mapped to) other provenance models for better in-
teroperability. For this, OWL is used to facilitate linking of
domain concepts to PML through constructs such as subclass
relations. Likewise, PML is used for direct representation of
provenance concepts (like those defined in its provenance
module). This combined PML/domain data can in turn be
processed by Semantic Web based tools. Examples include:
OWL reasoners, SPARQL engines, and Inference Web based
tools (such as Probe-It! [13] for PML visualization, and the
OWL Instance Validator [14] for checking validity of PML
data).

III. CASE STUDY: SPCDIS

Semantic Provenance Capture in Data Ingest Systems
(SPCDIS) [15] is a research project aimed at integrating prove-
nance at data generation/ingest time into a data portal managed
by the Mauna Loa Solar Observatory (MLSO). In SPCDIS,
provenance annotations are being used to incorporate trust and
transparency into generated data products. Figure 2 illustrates
the Coronal Helium I Imaging Photometer (CHIP) pipeline
- an example collaborative scientific workflow for generating
scientific images in a distributed environment. The magnified
portion of the workflow shows a fragment of the data flow:
the Instrument Capture process uses certain configuration data
under the Instrument Configuration category as input and
generates some output image-based data products under the
Image File with Header category.
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Fig. 2. A Example Fragment of a distributed Workflow from SPCDIS

A. Use of PML

Provenance encoding in SPCDIS faces both usability and
interoperability challenges, given the high volumes of data
processed by heterogeneous components in diverse locations.
We see PML as capable of both of these challenges in the
context of this system.

In our introduction, we emphasize that provenance usability
depends on its intuitiveness. Here, we consider the idea of
intuitiveness from both the perspective of a domain expert
and computer scientist – two types of people likely to be
collaborating to generate a computer based provenance rep-
resentation. For instance, consider the query ”Which pho-
tometers (or more generally, optical instruments) were used
to generate the DataImage at a specific URL?” This is rich in
domain knowledge, but may not make sense to a non-expert.
Likewise, consider a modified version of the query: ”Which
pmlj:InferenceStep instances X0 . . . Xn were used to generate
the pmlp:Information instance Y?” This would expose more of
the representational details than a domain expert needs to see,
but captures an abstraction usable by a computer scientist or
computer program. By combining domain-dependent concepts
with PML, we facilitate its use by individuals with varying
degrees of expertise in a target domain.

Likewise, the interoperability challenges faced by SPCDIS
stem from its recording of provenance from a series of
distinct workflow components with varying terminologies. The
issues underlying integrating this heterogeneous provenance
are resolved through terminology linking through PML-based
concepts.

To carry out the strategy above, we extended the justification
and provenance modules of PML through domain-specific con-
cepts from the Virtual Solar Terrestrial Observatory (VSTO)
ontology (prefix: vsto) 1. Figure 3 shows an example of
PML provenance data generated for SPCDIS. It conveys the
following information: a CSRImage with the name ”MLSO
CHIP CSR Image” was generated by the execution of a
software agent called ”CSRImageCapture” via the ”CHIP-He-
I Continuum Capture” operation (which is a specialized VSTO
instrument operation mode) using a sensor (i.e. Photometer)
called CHIP. Four different ontologies (namespaces: pmlp,
pmlj, vsto, and spcdis) are integrated together in Figure 3:
PML contributes domain independent concepts, VSTO con-
tributes a domain ontology and the SPCDIS ontology carries

1VSTO ontology: http://vsto.org/forward.htm?forward=ontology



Fig. 3. Generated PML Provenance Metadata. The rounded rectangles denote concepts, and the rectangles represent instances. The edge labels denote
properties, with ”a” meaning instantiation of concepts (rdf:type), and ”are” representing sub-class relations (rdfs:subClassOf).

out the integration of concepts that connect PML and VSTO.
For example, the class spcdis:DataImage is a subclass of both
the pmlp:Information concept in PML and the vsto:DataImage
concept.

Here, PML’s integration with domain-specific ontologies is
necessary to answer the question from the beginning of this
section (specifically, to determine which pmlp:Information in-
stances are also of type vsto:DataImage). Below is a SPARQL
query for accomplishing this, which leverages our provenance
representation strategy:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX pmlj: <http://inference-web.org/2.0/pml-justification.owl#>
PREFIX pmlp: <http://inference-web.org/2.0/pml-provenance.owl#>
PREFIX vsto: <http://dataportal.ucar.edu/schemas/vsto.owl#>
PREFIX spcdis: <http://example.com/spcdis.owl#>
PREFIX image: <http://iw.vsto.org/data/mlso/chip/raw/>
SELECT ?photometer
WHERE { ?image pmlp:hasURL "image:2008_09_03_00_04_07.csr"ˆˆxsd:anyURI .

?nodeset pmlj:hasConclusion ?image ;
pmlj:isConsequentOf ?step .

?step pmlj:hasSourceUsage ?usage .
?usage pmlp:hasSource ?source .
?source a ?spcdis:Photometer . }

B. Lessons learned

In this case study, we showed how PML could be used,
in conjunction with domain-specific ontologies, to address
provenance usability and interoperability challenges. This
effort hinged on manual ontology mapping, which did re-
quire domain expertise. However, most of the mappings were
done simply by linking domain-specific concepts with generic
provenance terminology from PML (e.g. pmlp:Information,
pmlp:Source, pmlp:InferenceEngine and pmlp:InferenceRule).
This helped establish value restrictions on provenance con-
cepts, so we could support appropriate qualified searches (such
as the one above that needs only particular kinds of images).

IV. CASE STUDY: GILA

The Generalized Integrated Learning Architecture (GILA)
[9] is a multi-agent platform for learning how to solve
domain-specific problems. Initially, GILA’s agents learn from

domain expert generated workflow traces, each consisting of
an encoded sample problem with an accompanying solution
sequence. Following this, these agents collaborate to solve
similar problems. During both steps, all agent knowledge
and work (solutions) are recorded to a communal blackboard
as a way to facilitate inter-agent communication. The GILA
system was tested using the Airspace Control Order (ACO)
Scheduling Scenario, which consisted of the following parts:
(i) a problem state is submitted to a central scheduler (usually
a domain expert) - defined as a list of requests for temporal-
spatial airspace allocation, each encoded as an Airspace Con-
trol Means (ACM), (ii) the scheduler selects and updates
the ACMs one at a time to resolve their temporal-spatial
conflicts (generating a new problem state each time to reflect
the remainder of the problem). This deconfliction process
requires domain expertise in, for instance, prioritizing which
ACMs should be changed initially. In this scenario, GILA was
compared against novice human participants in playing the
role of the scheduler.

A. Use of PML

GILA’s logs, derived from agent submitted information on
the communal blackboard, were used to evaluate its perfor-
mance. These were structured as RDF graphs, with their se-
mantics preserved by a handful of domain ontologies encoded
in OWL. These domain ontologies implicitly covered both the
provenance annotations for domain entities and derivation re-
lations among data products. However, the derivation relations
were represented using complex domain structuring, such that
it was hard to see a clear picture of GILA’s data flow. To
address this, we had to overcome a usability challenge on
provenance normalization - that is, to normalize derivation
relations to facilitate intuitive querying. One such query, which
could not easily be answered by the original log, was to list all
the problem states P1 . . . Pn generated before a given ACM



deconfliction S was generated.
This challenge was approached in a two-step process [16].

Starting with a set of domain ontologies and a GILA log
instance, an analysis phase would first be conducted. This
would return the following: (i) from the domain ontolo-
gies, a list of OWL classes and properties corresponding
to PML classes (e.g., pmlp:Agent, pmlp:InferenceRule), and
relationships (e.g., pmlj:isConsequentOf), and (ii) from the
log instance, a set of RDF based structural relations, not
captured by the domain ontologies, which correspond to PML
relationships. Following the analysis phase, a mapping phase
would be conducted, in which PML-based information would
be inserted into the log instance.

Figure 4 illustrates how provenance normalization could be
applied for the example above. First, in the analysis phase,
two domain ontologies - gilcore and gilaco - are inspected to
identify the hidden provenance information from the original
GILA log. The following domain knowledge is uncovered: (i)
ACM deconflictions are represented as instances of the class
gilcore:Solution, (ii) each solution Si has a corresponding
problem state Pi, defined as an instance of gilcore:Problem,
(iii) the property gilcore:hasProblem is used to link Si to Pi (in
the figure, property names are omitted due to limited space),
(iii) the property gilaco:hasSolutionListResolveConflict
links Pi to a recursively declared list of instances of
gilcore:SolutionListResolveConflict where each list item
listi,i−1 represents an earlier solution Si−1. This list helps
define the context of a current problem, but doesnt explicitly
define the solution Si−1 used to transform Pi − 1 to Pi

knowledge required for uncovering the solution generation
data flow.

In the mapping phase, PML data is built in the follow-
ing steps: (i) an OWL ontology is defined for linking the
domain ontologies to PML, which asserts gilcore:Solution
and gilcore:Problem as subclasses of the OWL class
pmlp:Information, (ii) through OWL inference, instances
of these two classes will be inferred to be of type
pmlp:Information, (iii) through JENA 2 (a Java-based RDF
data processing API) and SPARQL, PML data is generated
from a GILA log instance which normalizes links between
problems and solutions (e.g. from Pi to Si−1).

B. Lessons learned
In this case study, we demonstrated how to use provenance

normalization to address usability challenges by generating
PML data based on both GILA’s domain ontologies and
logs. Although non-trivial domain expertise was needed to (i)
identify the provenance components in the domain ontologies
and log data, and (ii) establish mappings from the domain
ontologies to PML, such work usually ended up being a one-
time job. Subsequent generation of PML data in the mapping
phase could then be automated using off-the-shelf tools and
easily be performed.

One of our future goals will involve determining ways
in which the analysis phase could be (at least partially)

2http://jena.sourceforge.net/
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Fig. 4. PML encoding based on GILA log

automated. However, as part of this, a set of constraints on
how log and domain ontology information can be structured
will be required.

In general, many complex systems like GILA can record
provenance in their workflow logs, but usually use domain-
specific terminology and structure. A fair amount of work must
be done to individually tailor explanation interfaces for these
systems. By normalizing workflow provenance into PML, we
can more easily apply general-purpose explainers [13], [5] to
various workflows from different domains.

V. CASE STUDY: PC3

In the Third Provenance Challenge (PC3) 3, 15 research
groups were asked to use their own approaches to: (i) generate
provenance metadata for exposing the execution of a given
workflow, (ii) use this metadata to answer a set of provenance-
based queries, (iii) export this metadata, and (iv) import
metadata from other teams and answer the queries from (ii)
using it. A common interchange format, the Open Provenance
Model (OPM) [17], was chosen for teams to import and
export their provenance metadata. The workflow investigated
in this effort was derived from the Pan-STARRS project 4,
which processes data on 99% of visible stars in the northern
hemisphere, and manages a pipeline for loading domain data
in CSV files into a relational database and validating it. Here,
control flow was viewed as the sequence of processes executed
within the workflow, subject to conditional branching (e.g.,
if a process fails to complete correctly, halt the workflow
otherwise, continue normally). Likewise, dataflow was defined
as a sequence of steps by which data would be generated and
used by processes.

A. Use of PML

During PC3, two important requirements emerged for us
(and many other groups) in encoding provenance capable of
answering the queries.

3http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge
4http://pan-starrs.ifa.hawaii.edu/



First, domain-specific provenance (as with GILA and
SPCDIS) was needed to answer many of the queries. One
such query, known in PC3 as Core Query 1, reads: ”For a
given detection, which CSV file(s) contributed to it?” Here,
two domain-specific concepts are referenced: (i) a detection,
which is a type of data handled in the workflow, and (ii) a
contribution, which references a data loading sequence carried
out by the workflow.

Second, many queries required the control flow of the
workflow to be tracked in parallel with the dataflow. We
viewed this challenge as consisting of two parts: (i) explicitly
distinguishing execution of operations from the operations
themselves, and (ii) representing the dependencies among
executions of operations. An example of a control-flow based
query, Optional Query 2, reads: ”Which pairs of procedures
in the workflow could be swapped and the same result still be
obtained (given the particular data input)?”

The generation of provenance meeting both these require-
ments that both we and other groups could answer queries
over constituted an interoperability challenge in PC3. To ad-
dress this, we used Semantic Web technologies to manage and
query provenance - both recorded from the system workflow
and imported from other teams.

Specifically, we explored storing provenance as RDF data
structured around a prototype ontology containing both OPM
and PML based concepts 5. In turn, we were able to export
provenance in both the OPM and PML formats for use by other
groups (although during PC3, only OPM was used by other
groups). In both our exported OPM and PML, we were able to
handle the provenance specialization requirement mentioned
above. However, some interesting issues emerged with both
OPM and PML in control flow tracking.

For OPM, these seemed to emerge from ambiguities in its
Process concept definition - which could either be viewed as
an operation, or the execution of an operation. Such ambiguity
was avoided in PML through the concepts pmlj:InferenceRule
(the operation) and pmlj:InferenceStep (its execution). While
the names InferenceRule and InferenceStep may be used most
often in logical theorem provers, they are applied in any setting
where some inference (possibly statistical or process) is used
to manipulate information thus they are easily applied in a
process setting.

Likewise, PML lacked a mechanism for directly tracking
dependencies between operations and their executions. How-
ever, OPM did provide a way to track dependencies be-
tween instances of its Process concept - through the provided
wasTriggeredBy relation. Both PML and OPM are evolving
to meet community needs and we might expect co-evolution
and potentially inclusion or importing of some representational
features from one into the other. A comparison of the OPM
and PML models can be found at [18].

B. Lessons Learned
Based on our experiences with PC3, and the other case

studies, we feel that Semantic Web technologies are well suited

5http://www.cs.rpi.edu/˜michaj6/provenance/PC3OPM.owl

for representing workflow provenance (in particular, for facili-
tating integration of provenance from heterogeneous sources).
In addition, while we found some expressivity limitations in
PML, these could easily be fixed by adding/referencing other
ontology modules (e.g. for control flow concepts).

VI. RELATED WORK

Workflow Provenance Models. There is a diverse liter-
ature on workflow provenance models [19]. Although these
models differ in certain aspects, they all model some general
provenance concepts, including processes, data, and process-
data dependencies [1]. Many of them include domain spe-
cific concepts required by applications. For instance, Taverna
[20] has included bioinformatics ontologies and the VisTrails
[21] system adds workflow description as a kind of data in
tracking user behavior in assembling workflows. PML, as a
provenance interlingua, covers these general concepts. It is
notable that PML, as an OWL ontology, can be connected to
domain concepts (without hard-coding) via ontology mapping
(declaring the rdf:type of certain domain data as a subclass of
pmlp:Information).

Beyond the basic provenance concepts, some useful con-
cepts like control flow may also be captured by work-
flow provenance. Furthermore, [22] identified prospective
provenance (abstract workflow descriptions) and retrospective
provenance (workflow execution logs) in a layered model,
and both types are supported by the REDUX [23], Taverna,
Pegasus [24], and Karma [25] provenance models. PML core
vocabularies only cover the basic provenance concepts in
the retrospective provenance because they were designed to
only capture generic data derivation processes. However, PML
can be extended with workflow specific modules, such as
WDO (http://trust.utep.edu/wdo/) and SAWs [26] for capturing
prospective provenance.

The Open Provenance Model (OPM) is another general-
purposed provenance model. While OPM remains technology
agnostic, PML presently provides a family of OWL ontologies
with RDF syntax. This brings about a current implementation
advantage of PML: it can be seamlessly integrated with
domain ontologies and thus support queries involving both
domain constraints and generic provenance relations.

Semantic Web Vocabulary for Provenance. There are
some existing works on provenance representation in Se-
mantic Web communities. The Dublin Core (DC) ontology
(http://dublincore.org/documents/dc-rdf/) offers generic prove-
nance related properties. The Friend of a Friend (FOAF)
ontology (http://xmlns.com/foaf/spec/) offers classes and prop-
erties for annotating entities involved in provenance, such as
people (foaf:person). It is also notable that there are some
emerging provenance ontologies [27]. These ontologies have
a good overlap with PML, especially its provenance module.
However, PML differs from these works based on its justi-
fication module which offers support for tracking complex
relationships between provenance-based entities.



VII. CONCLUSION

In this paper, we have shown the usage of PML in repre-
senting workflow provenance through three case studies. In
addressing these case studies, both usability and interoper-
ability challenges emerged in various forms, which required
differing strategies to handle. With this, we give some final
words on both the challenges of provenance usability and
interoperability.

For the usability challenge, many workflow systems (such
as SPCDIS and PC3) will rely upon domain-specific concepts
that cannot be expressed using a domain independent represen-
tation alone. Likewise, others (GILA) will encode provenance
data using a domain-specific log that is not intuitive for a
general audience. In our case studies, PML proved effective by
(i) helping users answer queries involving both domain specific
and independent provenance knowledge, and (ii) helping with
normalization of domain-specific provenance relationships.

Likewise, to address the interoperability challenge, PML
can be (and has been) easily connected to domain ontologies
and other provenance models, including OPM, via ontology
mappings (as was done with SPCDIS and GILA) and ontology
extensions (like with PC3). Here, It should be emphasized
that the interoperability challenge requires the establishment
of best practices for information exchange (as well as an
effectively designed provenance representation like PML).

To establish best practices for provenance interoperability,
we stress the adoption of Semantic Web languages (such as
OWL) as a common data exchange medium. Through this,
explicit mappings can be established between concepts (for
instance, by adding ”owl:sameAs” assertions). In addition, this
would allow for a wider degree of terminology to be used for
concept descriptions (such as the PML terms ”pmlp:hasName”
and ”pmlp:hasFormat”).
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