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Abstract. In the line of our investigation on inductive methods for
Semantic Web reasoning, we propose an alternative way for approxi-
mate ABox reasoning based on the analogical principle of the nearest-
neighbors. Once neighbors of a test individual are selected, a combination
rule descending from the Dempster-Shafer theory can join together the
evidence provided by the neighbor individuals. We show how to exploit
the procedure for determining unknown class- and role-memberships or
fillers for datatype properties which may be the basis for many further
ABox inductive reasoning algorithms.

1 Introduction

In the context of reasoning in the Semantic Web (SW), a growing interest is
being committed to alternative procedures extending the standard methods so
that they can deal with the various facets of uncertainty related with Web rea-
soning [1]. Extensions of the classic probability measures [2] offer alternative
ways to deal with inherent uncertainty of the knowledge bases (KBs) in the SW.
Particularly, belief and plausibility measures adopted in the Dempster-Shafer
Theory of Evidence [3] have been exploited as means for dealing with incom-
pleteness [4] and also inconsistency [5], which may arise from the aggregation of
data and metadata on a large and distributed scale. In this work we undertake
again the inductive point of view. Indeed, in many SW domains a very large
number of assertions can potentially be true but often only a small number of
them is known to be true or can be inferred to be true. So far the application
of combination rules related to the Dempster-Shafer theory has concerned the
induction of metrics which are essential for all similarity-based reasoning meth-
ods [4]. One of the applications of such measures was related to the prediction of
assertions through nearest neighbor procedures. Recently a general-purpose ev-
idential nearest neighbor procedure based on the Dempster-Shafer combination
rule has been proposed [6]. In this work this method is extended to the specific
case of semantic KBs through a more epistemically appropriate combination pro-
cedure [7]. In the perspective of inductive methods, the need for a definition of a
semantic similarity measure for individuals arises, that is a problem that so far
received less attention in the literature compared to the measures for concepts.
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Recently proposed dissimilarity measures for individuals in specific languages
founded in Description Logics [8] turned out to be practically effective for the
targeted inductive tasks [9], however they are still based on structural criteria
so that they can hardly scale to more complex languages. We devised families of
dissimilarity measures for semantically annotated resources, which can overcome
the aforementioned limitations [10, 11]. Our measures are mainly based on the
Minkowski’s norms for Euclidean spaces induced by means of a method devel-
oped in the context of relational machine learning [12]. Namely, the measures
are based on the degree of discernibility of the input individuals with respect to
a given context [13] (or committee of features), which are represented by concept
descriptions expressed in the language of choice.

The main contributions of this work regard the extension of a framework for
the classification of individuals through a prediction procedure based on evidence
theory and similarity. In particular we propose using Yager’s rule of combina-
tion and exploiting the mentioned families of metrics defined for individuals in
ontologies. This allows for measuring the confirmation of the truth of candidate
assertions. The prediction of the values (related to class-membership or datatype
and object properties) may have plenty of applications in uncertainty reasoning
with ontologies.

The remainder of the paper is organized as follows. In the next section (§2),
distance measures that shall be utilized for selecting neighbor individuals are
introduced. Then (§3), the basics of the Dempster-Shafer theory and a nearest-
neighbor procedure based on an alternative rule of combination are recalled.
Hence (§4) we present the applications of the method to the problems of de-
termining the class- or role-membership of individuals w.r.t. given query con-
cepts / roles as well as the prediction of fillers for datatype properties. Relevant
related work are discussed in (§5) and we conclude (§6) proposing extensions
and applications of these methods in further works.

2 Dissimilarity Measures for Individuals

Since the reasoning method to be presented in the following is intended to be
general purpose, no specific language will be assumed in the following for re-
sources, concepts (classes) and their properties. It suffices to consider a generic
representation that can be mapped to some Description Logic language with the
standard model-theoretic semantics (see [8] for a thorough reference).

A knowledge base K = 〈T ,A〉 comprises a TBox T and an ABox A. T
is a set of axioms concerning the (partial) definition of concepts (and roles)
through class (role) expressions. A contains assertions (ground facts) concerning
the world state. The set of the individuals occurring in A will be denoted with
Ind(A). Each individual can be assumed to be identified by its own URI (it is
useful in this context to make the unique names assumption).

Similarity-based tasks, such as individual classification, retrieval, and clus-
tering require language-independent measures for individuals whose definition
can capture semantic aspects of their occurrence in the knowledge base [10, 11].
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For our purposes, we need functions to assess the similarity of individuals.
However individuals do not have an explicit syntactic (or algebraic) structure
that can be compared (unless one resorts to language-specific notions [9], such
as the most specific concept [8]). Focusing on the semantic level, the leading
idea may be that, similar individuals should behave similarly w.r.t. the same
concepts. A way for assessing the similarity of individuals in a knowledge base
can be based on the comparison of their semantics along a number of dimen-
sions represented by a set of concept descriptions (henceforth referred to as the
committee or context [13]). Specifically, the measure may compare individuals on
the grounds of their behavior w.r.t. a given context, say C = {C1, C2, . . . , Cm},
which stands as a group of discriminating relevant concepts (features) expressed
in the considered language. We begin with defining the behavior of an individ-
ual w.r.t. a certain concept in terms of projecting it in this dimension: Given a
concept Ci ∈ C, the related projection function πi : Ind(A) 7→ {0, 1

2 , 1} is defined:

∀a ∈ Ind(A) πi(a) =

 1 K |= Ci(a)
0 K |= ¬Ci(a)
1
2 otherwise

The case of πi(a) = 1
2 corresponds to the case when a reasoner cannot give

the truth value for a certain membership query. This is due to the Open World
Assumption normally made in Semantic Web reasoning. Hence, as in the classic
probabilistic models, uncertainty may be coped with by considering a uniform
distribution over the possible cases. Further ways to approximate these values
in case of uncertainty are investigated in [4].

The discernibility functions related to the context w.r.t. which two input in-
dividuals are compared are defined as follows. Given a feature concept Ci ∈ C,
the related discernibility function δi : Ind(A)× Ind(A) 7→ [0, 1] is defined as:

∀(a, b) ∈ Ind(A)× Ind(A) δi(a, b) = |πi(a)− πi(b)|
The discernibility function δi assigns 0 if the two individuals a and b have the

same behavior w.r.t. Ci, that is if they are both instance of Ci or both instance
of ¬Ci or nothing is known about this. This is because, if a and b have the same
bahavior w.r.t. Ci then there are no other information for discriminating them.

Finally, a family of dissimilarity measures for individuals that is inspired to
the Minkowski’s metrics can be defined [10, 11]: Let K = 〈T ,A〉 be a knowledge
base. Given a context C and a related vector of weights w, a family of dissimi-
larity measures {dC

p}p∈IN, dC
p : Ind(A)× Ind(A) 7→ [0, 1] is defined as follows:

∀(a, b) ∈ Ind(A)× Ind(A) dC
p(a, b) =

[ ∑
Ci∈C

wiδi(a, b)p
] 1

p

The effect of the weights1 is to normalize w.r.t. the other features involved.
Obviously these measures are not absolute, then they should be also considered
1 A possible way for determining the wi is to assign a high value if the corresponding

feature concept reflects high information content, low value otherwise (see [10] for
more details).
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w.r.t. the context of choice, hence comparisons across different contexts may not
be meaningful. Larger contexts are likely to decrease the measures because of the
normalizing factor yet these values is affected also by the degree of redundancy of
the features employed. In other works the choice of the weights is done according
to variance or entropy associated to the various concepts in the context [10, 11].

Compared to other proposed measures [14, 9, 15], the presented functions
do not depend on the constructors of a specific language, rather they require
only (retrieval or) instance-checking for computing the projections through class-
membership queries to the knowledge base. The complexity of measuring the
dissimilarity of two individuals depends on the complexity of such inferences
(see [8], Ch. 3). Note also that the projections that determine the measure can be
computed (or derived from statistics maintained on the knowledge base) before
the actual distance application, thus determining a speed-up in the computation
of the measure. This is very important for algorithms that massively use this
distance, such as instance-based methods.

One should assume that C represents a set of (possibly redundant) features
that are able to discriminate individuals that are actually different. The choice
of the concepts to be included (a feature selection problem [12]) may be cru-
cial. Therefore, specific optimization algorithms founded in randomized search
have been devised which are able to find optimal choices of discriminating con-
texts [10, 11]. However, the results obtained so far with knowledge bases drawn
from ontology libraries showed that (a selection) of the primitive and defined
concepts are often sufficient to induce sufficiently discriminating measures.

3 Evidence-Theoretic Nearest-Neighbor Prediction

In this section the basics of the theory of evidence and combination rules [3]
are recalled then a nearest neighbor classification procedure based on the rule of
combination [6] is extended in order to perform prediction of unobserved values
(related to datatype properties or also class-membership).

3.1 Basics of the Evidence Theory

In the Dempster-Shafer theory, a frame of discernment Ω is defined as the set
of all hypotheses in a certain domain. Particularly, in a classification problem it
is the set of all possible classes. A basic belief assignment (BBA) is a function
m that defines a mapping m : 2Ω 7→ [0, 1] verifying:

∑
A∈Ωm(A) = 1. Given

a certain piece of evidence, the value of the BBA for a given set A expresses a
measure of belief that is committed exactly to A. The quantity m(A) pertains
only to A and does not imply any additional claims about any of its subsets. If
m(A) > 0, then A is called a focal element for m.

The BBA m cannot be considered a proper probability measure: it is de-
fined over 2Ω instead of Ω and it does not require the properties of monotone
measures [2]. The BBA m and its associated focal elements define a body of
evidence, from which a belief function Bel and a plausibility function Pl can
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be derived as mappings from 2Ω to [0, 1]. For a given A ⊆ Ω, the belief in A,
denoted Bel(A), represents a measure of the total belief committed to A given
the available evidence. Bel is defined as follows:

∀A ∈ 2Ω Bel(A) =
∑
∅6=B⊆A

m(B) (1)

Analogously, the plausibility of A, denoted Pl(A), represents the amount of belief
that could be placed in A, if further information became available. Pl is defined
as follows:

∀A ∈ 2Ω Pl(A) =
∑

B∩A6=∅

m(B) (2)

It is easy to see that: Pl(A) = Bel(Ω) − Bel(Ā). Moreover m(∅) = 1 − Bel(Ω)
and for each A 6= ∅: m(A) =

∑
B⊆A(−1)|A\B|Bel(B). Using these equations,

knowing just one function among m, Bel, and Pl allows to derive the others.
The Dempster-Shafer rule of combination [3] is an operation for pooling ev-

idence from a variety of sources. This rule aggregates independent bodies of
evidence defined within the same frame of discernment into one body of evi-
dence. Let m1 and m2 be two BBAs. The new BBA obtained by combining m1

and m2 using the rule of combination, m12 is the orthogonal sum of m1 and m2.
Generally, the normalized version of the rule is used:

∀A ∈ 2Ω \ {∅} m12(A) = (m1 ⊕m2)(A) =
∑
B∩C=Am1(B)m2(C)

1−
∑
B∩C=∅m1(B)m2(C)

(and m12(∅) = 0) where the numerator (1 − c) normalizes the values of the
combined BBA w.r.t. the amount of conflict c between m1 and m2.

Different evidence fusion rules have been proposed [2]. A more epistemolog-
ically sound combination rule [7] for our purposes places the probability mass
related to the conflict between the BBAs to the case of maximal ignorance.

∀A ∈ 2Ω m12(A) =


∑
B∩C=Am1(B)m2(C) A 6= Ω ∧A 6= ∅
m1(Ω)m2(Ω) + c A = Ω

0 A = ∅

This means that the conflict between the two sources of evidence is not hidden,
but it is explicitly recognized as a contributor to ignorance.

Due to the associativity and commutativity of the operations involved, it is
easy to prove that the resulting combination operator is associative and commu-
tative, and admits the vacuous BBA (Ω unique focal set) as neutral element.

3.2 The Nearest Neighbors Procedure

Let us consider the finite set of instances X and a finite set of integers V ⊆ ZZ to
be used as labels (which may correspond to disjoint classes or distinct attribute
values). The available information is assumed to consist in a training set TrSet =



32 N. Fanizzi, C. d’Amato, and F. Esposito

{(x1, v1), . . . , (xM , vM )} ⊆ Ind×V of single-labeled instances (examples). In our
case, X = Ind(A), the set of individual names occurring in the ontology.

Let xq be a new individual to be classified on the basis of its nearest neighbors
in TrSet. Let Nk(xq) = {(xo(j), vo(j)) | j = 1, . . . , k} be the set of the k nearest
neighbors of xq in TrSet sorted by a function o(·) depending on an appropriate
metric d which can be applied to ontology individuals (e.g. one of the measures
in the family defined in the previous section §2).

Each pair (xi, vi) ∈ Nk(xq) constitutes a distinct item of evidence regarding
the value to be predicted for xq. If xq is close to xi according to d, then one
will be inclined to believe that both instances are associated to the same value,
while when d(xq, xi) increases, this belief decreases and that leads to a situation
of almost complete ignorance concerning the value to be predicted for xq.

Consequently, each (xi, vi) ∈ Nk(xq) may induce a BBA mi over V which
can be defined as follows [6]:

∀A ∈ 2V mi(A) =

λσ(d(xq, xi)) A = {vi}
1− λσ(d(xq, xi)) A = V
0 otherwise

(3)

where λ ∈]0, 1[ is a parameter and σ(·) is a decreasing function such that σ(0) = 1
and limd→∞ σ(d) = 0 (e.g. σ(d) = exp(−γdn) with γ > 0 and n ∈ IN). The values
of the parameters can be determined heuristically.

Considering each training individual in Nk(xq) as an separate source of ev-
idence, k BBAs mj are obtained. These can be pooled by means of the rule of
combination leading to the aggregated BBA m that synthesizes the final belief:

m̄ =
k⊕
j=1

mj = m1 ⊕ · · · ⊕mk (4)

In order to predict a value, functions Bel and Pl can be derived from m̄ using
the equations seen above, and the query individual xq is assigned the value in V
that maximizes the belief or plausibility:

vq = argmax
(xi,vi)∈Nk(xq)

Bel({vi}) or vq = argmax
(xi,vi)∈Nk(xq)

Pl({vi})

The former choice (select the hypothesis with the greatest degree of belief the
most credible) corresponds to a skeptical viewpoint while the latter (select the
hypothesis with the lowest degree of doubt the most plausible) is more credulous.
The degree belief (or plausibility) of the predicted value provides also a way to
compare the answers of an algorithm built on top of such analogical procedure.
This is useful for tasks such as ranking, matchmaking, etc..

Finally, it is possible to combine the two measures Bel and Pl analogously
to necessity (Nec) and possibility (Pos) in Possibility Theory (which can be
considered a special case2 of Dempster-Shafer theory). One can define a single

2 Precisely, the body of evidence must contain consonant focal sets, i.e. when the set
of focal elements is a nested family [2].
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ENNk(xq, TrSet, V )

1. Compute the neighbor set Nk(xq) ⊆ TrSet.
2. for each i← 1 to k do

Compute mi (Eq. 3)
3. for each v ∈ V do

Compute m̄ (Eq. 4) and derive Bel and Pl (Eqs. 1–2)
Compute the confirmation C (Eq. 5) from Bel and Pl

4. Select v ∈ V that maximizes C (Eq. 6).

Fig. 1. The evidence nearest neighbor procedure.

measure of confirmation C, ranging in [−1,+1], by means of a simple one-to-one
transformation [2]:

∀A ⊆ Ω C(A) = Bel(A) + Pl(A)− 1 (5)

Hence, denoted with C the combination of Bel and Pl, the resulting rule for
predicting the uncertain value for the test individual can be written as follows:

vq = argmax
(xi,vi)∈Nk(xq)

C({vi}) (6)

Summing up, the procedure is as reported in Fig. 1:
It is worthwhile to note that the complexity of the method is polynomial

in the number of instances in the TrSet. If this set is compact and contains
very prototypical individuals with plenty of related assertions, then the result-
ing predictions are likely to be accurate. Another source of complexity in the
computations may be the number of values in V which may yield a large number
of subsets 2|V | for which BBAs are to be computed. However this depends also
on the kind of problem that is to be solved (e.g. in class membership detection
|V | = 2). Moreover what really matters in the number of focal sets for each BBA
which may be much less than 2|V |.

4 Assertion Prediction

The utility of the presented procedure when applied to ontology reasoning can be
manifold. In the following we propose its employment in the inductive prediction
of unknown values related to class-membership and datatype / object property
fillers. This feature may be easily embedded in an ontology management system
in order to help the knowledge engineers elicit assertions which may be not be
derived from the knowledge base yet they can be rather made in analogy with
the others [9].

In the following, the symbol |≈ in expressions like K |≈ α will denote the
derivation of the assertion α from the knowledge base K obtained through an al-
ternative procedure (like the evidence nearest neighbor presented in the previous
section).
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4.1 Class-Membership

Let us suppose a (query) concept Q is given. In this case one may consider only
examples made up of individuals with a definite class-membership leading to a
binary problem with a set of values VQ = {+1,−1} denoting, resp., membership
and non-membership w.r.t. the query concept. Alternatively, one may admit
ternary problems with some labels set to 0 to explicitly denote an indefinite (un-
certain) class-membership [9, 10]. We shall also consider the related training set
TrSetQ ⊆ Ind(A)× VQ. The values of the labels vi for the training examples can
be obtained through deductive reasoning (instance-checking) or specific facilities
made available by the knowledge management systems [16].

Now to predict the class-membership value vq for some individual xq w.r.t. Q,
it suffices to call the procedure ENNk(xq,TrSetQ, VQ) and decide on the grounds
of the returned value. Thus in a binary setting (VQ = {+1,−1}), one will either
conclude that K |≈ Q(xq) or K |≈ ¬Q(xq) depending on the value that maximizes
C in Eq. 6 (resp., vq = +1 or vq = −1). Moreover the value of the confirmation
function which determined the returned value vq can be exploited for ranking
the hits by comparing the strength of the inductive conclusions.

Adopting a ternary setting, it may turn out that the most likely value is
vq = 0 resulting in an uncertain case. One may force the choice among the
values of C for vq = −1 and vq = +1, e.g. when the confirmation degree exceeds
a some threshold.

The inductive procedure described above can be trivially exploited for per-
forming the retrieval of a certain concept inductively. Given a certain concept Q,
it would suffice to find all individuals a ∈ Ind(A) that are such that K |≈ Q(a).
The hits could be returned ranked by the respective confirmation value C(+1).

4.2 Datatype Fillers

In this case, let us suppose a certain (functional) datatype property P is given
and the problem is to predict its value for a certain test individual a (which has
to be supposed to be in its domain). The set of values VP may correspond to the
(discrete and finite) range of the property or to its restriction to the observed
values for the training instances: VP = {v ∈ range(P ) | ∃P (a, v) ∈ A}. Different
settings may be devised allowing for some special value(s) denoting the case of
a yet unobserved value(s) for that property.

The related training set will be some TrSetP ⊆ domain(P ) × VP , where
domain(P ) ⊆ Ind(A) is the set of individual names that have a known P -value in
the knowledge base. Differently from the previous problem, datatype properties
generally do not have a specific intensional definition in the knowledge base
(except for the specification of domain and range), hence a mere look-up in the
ABox should suffice to determine the TrSet.

Now to predict the value in VP of the datatype property P for some indi-
vidual a, the method requires calling the procedure with ENNk(a,TrSetP , VP ).
Thus in this setting, if vq is the value that maximizes Eq. 6 then we can write
K |≈ P (a, vq). Also in this case the value of the confirmation function which
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determined choice of the value vq can be exploited for comparing the strength
of an inductive conclusion to others.

In case of special settings with dummy values indicating unobserved values,
when these are found to be the most credible among the others, a knowledge
engineer should be contacted for the necessary changes to the ontology.

The inductive procedure described above can be trivially exploited for per-
forming alternate forms of retrieval, e.g. finding all individuals with a certain
value for the given property. Given a certain value v, it would suffice to find all
individuals a ∈ Ind(A) that are such that K |≈ P (a, v). Again, the hits could be
returned ranked according to the respective confirmation value C(+1).

The limitation of treating only functional datatype properties may be over-
come by considering a different way to assign the probability mass to BBAs than
Eq. 3, including subsets of all possible values. Examples are to be constructed
accordingly (labels will be chosen in 2VP ). Alternatively, more complex frames
of discernment, e.g. Ω′ = 2Ω , so consider sets of values as possible fillers of
the property. In all such settings the computation of the BBAs and descending
measures would become of course much more complex and expensive, yet clever
solutions (or approximations) proposed in the literature [6] may contribute to
mitigate this problem.

4.3 Relationships among Individuals

In principle, a very similar setting may be used in order to establish the possi-
bility that a certain test individual is related through some object property with
some other individual [17, 18].

Since the set Ind(A) is finite (the target is not discovering relations with
unseen individuals), one may want to find all individuals that are related to a
test one through some object property, say R. The problem can be decomposed
into smaller ones aiming at verifying whether K |≈ R(a, b) holds:

for each b ∈ Ind(A) do
for each a ∈ Ind(A) do

TrSet← {(x, v) | x ∈ Ind(A) \ {a}, if K |= R(x, b) then v ← +1 else v ← −1}
vRb ← ENNk(a,TrSet, {+1,−1})
if vRb = +1 then
return K |≈ R(a, b)

else
return K |≈ ¬R(a, b)

Note that, in the construction of the training sets, the inference K |= R(x, b)
may turn out to be merely an ABox lookup operation for the given assertions
(when roles are not intensionally defined in a proper RBox). Conversely, if an
RBox is available (sometimes as a subset of the TBox) the values of the label for
the training examples can be obtained through deductive reasoning (instance-
checking) or the mentioned facilities made available by advanced reasoners or
knowledge management systems [16].
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This simple setting makes a sort of closed-world assumption in the decision of
the induced assertions descending from the adoption of the binary value set and
the composition of the TrSet. A more cautious setting would involve a ternary
value set VR = {−1, 0,+1} which allows for an explicit treatment of those indi-
viduals a for which R(a, b) is not derivable (or just absent from the ABox). The
final decision on the induced conclusion has to consider also this new possibility
(e.g. using a threshold of confirmation for accepting likely assertions).

5 Related Work

The proposed method is related to those approaches devised to offer alternative
ways of reasoning with ABoxes for eliciting hidden knowledge (regularities) in
order to complete and populate the ontology with likely assertions even in the
occurrence of incorrect parts, supposing this kind of noise is not systematic.

The tasks of ontology completion and population have often been tackled
through formal methods (such as formal concept analysis [19]). Discovering new
assertions (and related probabilities in a classical setting) is another related
task for eliciting hidden knowledge in the ontologies. In [18] a machine learning
method is proposed to estimate the truth of statements by exploiting regularities
in the data. In [17] another statistical learning method for OWL-DL ontologies is
proposed, combining a latent relational graphical model with Description Logic
inference in a modular fashion. The probability of unknown role-assertions can be
inductively inferred and known concept-assertions can be analyzed by clustering
individuals.

Similarity-based reasoning with ontologies is the primary aim of this work
which follows a number of related methods founded on dissimilarity measures for
individuals in knowledge bases expressed in Description Logics [9, 10]. Mostly,
they adopt some alternate form of the classic Nearest-Neighbor lazy learning
scheme [12] in order to draw inductive conclusions that often cannot be deduc-
tively entailed by the knowledge bases.

Similar approaches based on lazy learning have been proposed that adopt
generalized probability theories such as the Dempster-Shafer. In [6], which was a
source of inspiration for this paper, the standard rule of combination is exploited
in an evidence-theoretic classification procedure where labels were not assumed
to be mutually exclusive. Rules of combination had been used in [4] in order
to learn precise metrics to be exploited in a lazy learning setting like those
mentioned above.

One of the most appreciated advantages of performing inductive ABox rea-
soning through these methods is that they can naturally handle inconsistent
(and inherently incomplete) knowledge bases, especially when inconsistency is
not systematic. In [5] a method for dealing with inconsistent ABoxes populated
through information extraction is proposed: it constructs ad hoc belief networks
for the conflicting parts in an ontology and adopts the Dempster-Shafer theory
for assessing the confidence of the resulting assertions.
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6 Concluding Remarks and Outlook

In the line of our investigation of inductive methods for Semantic Web reasoning,
we have proposed an alternative way for approximate ABox reasoning based on
the nearest-neighbors analogical principle. Once neighbors of a test individual
are selected through some distance measures, a combination rule descending
from the Dempster-Shafer theory can fuse the evidence provided by the various
neighbor individuals. We have shown how to exploit the procedure for assertion
prediction problems such as determining unknown class- or role-memberships
as well as attribute-values which may be the basis for many ABox inductive
reasoning algorithms. The method is being implemented so to allow an extensive
experimentation on real ontologies.

Special settings to accommodate cases of uncertain or unobserved values
are to be investigated. One promising extension of the method concerns the
possibility of considering infinite sets of values V following the studies [20, 2].
This would allow dealing with domains where the total amount of values is
unknown (also due to the inherent nature of the Semantic Web). Moreover the
predicted values often need not to be exclusive. Hence the prediction procedure
would require an extension towards the consideration of sets of values instead of
singletons.

As necessity and possibility measures are related to the belief measures (see
note 2 at page 32) a natural extension may be towards the possibilistic theory and
its calculus which is, in general, different from the Dempster-Shafer theory and
calculus. Further possible extensions concern all other monotone measures such
as the Sugeno λ-measures [2]. The extension towards the Possibility Theory is
interesting also because of its parallelism with modal logics [20] and possibilistic
extensions of Description Logics [21].
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