
An Algorithm for Learning with Probabilistic

Description Logics

José Eduardo Ochoa Luna and Fabio Gagliardi Cozman

Escola Politécnica, Universidade de São Paulo,
Av. Prof. Mello Morais 2231, São Paulo - SP, Brazil

eduardo.ol@gmail.com, fgcozman@usp.br

Abstract. Probabilistic Description Logics are the basis of ontologies
in the Semantic Web. Knowledge representation and reasoning for these
logics have been extensively explored in the last years; less attention has
been paid to techniques that learn ontologies from data. In this paper
we report on algorithms that learn probabilistic concepts and roles. We
present an initial effort towards semi-automated learning using proba-
bilistic methods. We combine ILP (Inductive Logic Programming) meth-
ods and a probabilistic classifier algorithm (search for candidate hypothe-
ses is conducted by a Noisy-OR classifier). Preliminary results on a real
world dataset are presented.

1 Introduction

Ontologies are key components of the Semantic Web, and among the formalisms
proposed within Knowledge Engineering, the most popular ones at the moment
are based on Description Logics (DLs) [1]. There are however relatively few
ontologies available, and on very few subjects. Moreover, building an ontology
from scratch can be a very burdensome and difficult task; very often two domain
experts design rather different ontologies for the same domain [2]. Considerable
effort is now invested into developing automated means for the acquisition of
ontologies. Most of the currently pursued approaches do not use the expressive
power of languages such as OWL, and are only capable of learning ontologies of
restricted form, such as taxonomic hierarchies [3].

It is therefore natural to try to combine logic-based and probabilistic ap-
proaches to machine learning for automated ontology acquisition. Inspired by
the success of Inductive Logic Programming (ILP) [4] and statistical machine
learning, in this paper we describe methods that learn ontologies in the recently
proposed Probabilistic Description Logic crALC [5]. In using statistical methods
we wish to cope with the uncertainty that is inherent to real-world knowledge
bases, where we commonly deal with biased, noisy or incomplete data. Moreover,
many interesting research problems, such as ontology alignment and collective
classification, require probabilistic inference over evidence.

Probabilistic Description Logics are closely related to Probabilistic Logics
that have been extensively researched in the last decades [6, 7]. Some logics [8]



64 J. E. Ochoa Luna and F. G. Cozman

admit inference based on linear programming, while other resort to indepen-
dence assumptions and graph-theoretical models akin to Bayesian and Markov
networks. Despite the potential applicability of Probabilistic Description Logics,
learning ontologies expressed in these logics is a topic that has not received due
attention. In principle, it might be argued that the same methods for learning
probabilistic logics might be applied, with proper account of differences in syntax
and semantics. In this paper we follow this path and report on some similarities
and differences that may be of interest.

The semantics of the Probabilistic Description Logic crALC [5] is based on
measures over interpretations and on assumptions of independence. Scalability
issues for inference in crALC have been addressed so that we can run inference
on medium size domains [9]. There are two learning tasks that deserve atten-
tion. First, learning probability values, perhaps through a maximum likelihood
estimation method. We use this technique and, due to uncertainty in Semantic
Web datasets, we employ the EM algorithm. The second task is learning logical
constructs, where we are interested in finding a set of concepts and roles that
best fit examples and where probabilistic assessments can be assigned. In ILP al-
gorithms such as FOIL [10], one commonly relies on a cover function to evaluate
candidate hypotheses. We approach learning concepts as a classification task,
and based on an efficient probabilistic Noisy-OR classifier [11, 12], we guide the
search among candidate structures.

Section 2 reviews key concepts useful to the remainder of the paper. In Sec-
tion 3, algorithms for learning crALC ontologies are introduced. Once these
algorithms have formally stated, we wish to explore semi-automated reasoning
from a real world dataset — the Lattes curriculum platform. A first attempt at
constructing a probabilistic ontology using this dataset is reported in Section 4.

2 Background

Assume we are provided with a repository of HTML pages where researchers and
students have stored data about publications, courses, languages, and further
relational data. In order to structure such knowledge we might choose to use
ontologies. We may extract concepts such as Researcher and Person, and we
may establish relationships such as ⊑ among them. These concepts are often
expressed using Description Logics (Section 2.1). Suppose we are not able to
precisely state membership relations among concepts, but instead we can give
probabilistic assessments such as P (Student|Researcher) = 0.4. Such assessments
are encoded in Probabilistic Description Logics such as crALC (Section 2.2).
Suppose further that we look for automated means to learn ontologies given
assertions on concepts such as Student(jane); this task is commonly tackled by
Description Logic Learning algorithms (Section 2.3).

2.1 Description Logics

Description Logics (DLs) form a family of representation languages that are typ-
ically decidable fragments of First Order Logic (FOL) with particular seman-



An Algorithm for Learning with Probabilistic Description Logics 65

tics [13, 14]. DLs represent knowledge in terms of objects, concepts, and roles.
Each concept in the set of concepts NC = {C, D, . . .} is interpreted as a subset
of a domain (a set of objects). Each role in the set of roles NR = {r, s, . . .} is
interpreted as a binary relation on the domain. Individuals represent the objects
through names from the set of names NI = {a, b, . . .}. Information is stored in
a knowledge base divided in (at least) two parts: the TBox (terminology) and
the ABox (assertions). The TBox describes the terminology by listing concepts
and roles and their relationships. The ABox contains assertions about objects.

Complex concepts are built using atomic concepts, roles and constructors.
Depending on the constructors involved one can obtain different expressive power
and decidability properties. The semantics of a description is given by a domain
∆ and an interpretation, that is a functor ·I . We refer to [13] for further back-
ground on Description Logics.

One of the central ideas in DL is subsumption [14]: Given two concepts de-
scriptions C and D in T , C subsumes D denoted by C ⊒ D, iff for every inter-
pretation I of T it holds that CI ⊇ DI . Also, C ≡ D amounts to C ⊒ D and
D ⊒ C.

Subsumption is a useful inference mechanism that allow us to perform stan-
dard reasoning tasks such as instance checking and concept retrieval. Instance
checking is valuable for our ILP methods because it amounts to produce class-
membership assertions: K |= C(a), where K is the knowledge base, a is an individ-
ual name and C is a concept definition given in terms of the concepts accounted
for in K.

2.2 The Logic crALC

The logics mentioned in Section 2.1 do not handle uncertainty through prob-
abilities. It might be interesting to assign probabilities to assertions, concepts,
roles; the Probabilistic Description Logic crALC does just that.

crALC is a probabilistic extension of the DL ALC. The following construc-
tors are available in ALC: conjunction (C⊓D), disjunction C⊔D, negation (¬C),
existential restriction (∃r.C), and value restriction (∀r.C). Concepts inclusions
and definitions are allowed and denoted by C ⊑ D and C ≡ D, where C is a
concept name. The semantics is given by a domain D and an interpretation I.
A set of concept inclusions and definitions is a terminology. A terminology is
acyclic if it is a set of concept inclusions/definitions such that no concept in the
terminology uses itself.

A key concept in crALC is probabilistic inclusion, denoted by P (C|D) = α,
where D is a concept and C is a concept name. If the interpretation of D is the
whole domain, then we simply write P (C) = α. We are interested in comput-
ing a query P (Ao(a0)|A) for an ABox A = {Aj(aj)}M

j=1 (this is an inference).
Assume also that C in role restrictions ∃r.C and ∀r.C is a concept name. As prob-
abilistic inclusions must only have concept names in their conditioned concept,
assessments such as P (∀r.C|D) = α or P (∃r.C|D) = α are not allowed.

We assume that every terminology is acyclic; this assumption allows one to
draw any terminology T as a directed acyclic graph G(T ): each concept name



66 J. E. Ochoa Luna and F. G. Cozman

is a node, and if a concept C directly uses concept D, then D is a parent of C

in G(T ). Each existential and value restriction is added to the graph G(T ). As
each one of these restrictions directly uses r and C, the graph must contain a
node for each role r, and an edge from r to each restriction directly using it. Each
restriction node is a deterministic node in that its value is completely determined
by its parents.

The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences can be computed by a first order
loopy propagation algorithm that has been shown to produce good approxima-
tions for medium size domains [9].

2.3 Inductive Logic Programming and Description Logic Learning

ILP is a research field at the intersection of machine learning [15] and logic
programming [16]. It aims at a formal framework as well as practical algorithms
for inductively learning relational descriptions from examples and background
knowledge. Learning is commonly regarded as a search problem [17]; indeed, in
ILP there is a space of candidate solutions, the set of “well formed” hypotheses
H, and an acceptance criterion characterizing solutions. In concept-learning and
ILP the search space is typically structured by means of the dual notions of
generalization and specialization.

A significant algorithm for ILP is FOIL [10]. This algorithm moves from an
explicit representation of the target relation (as a set of tuples of a particular
collection of constants) to a more general, functional definition that might be
applied to different constants. For a particular target relation, FOIL finds clauses
in FOL one at a time, removing tuples explained by the current clause before
looking for the next through a cover method. FOIL uses an information-based
heuristic to guide its search for simple, general clauses. Because of its simplicity
and computational efficiency, we have chosen to develop a covered approach
when learning Probabilistic Description Logics.

There have been notable efforts to learn ontologies in Description Logics;
some of these previous results have directly inspired our work. As noted by
Fanizzi et al [14], early work on learning in DLs essentially focused on demon-
strating the PAC-learnability for various languages derived from CLASSIC.
Many approaches to the problem of learning concept definitions in DL formalisms
can be classified in two categories [2]: in one category the problem is approached
by translating it to another formalism in which concept learning has already
been investigated, while in the other category the problem is approached in the
original formalism.

One example of the first approach can be found in the work of Kietz [18],
where the hybrid language CARIN-ALN is used [19]. This language combines a
complete structural subsumption service in a DL with Horn logic, where terms
are individuals in the domain. Likewise, in the AL-log framework [20], DATA-
LOG clauses are combined with ALC constructs. In the same direction, DL+log
[21] allows for the tight integration of DLs and DATALOG. Arguably, the decid-
able knowledge representation framework SHIQ+log [1], is the most powerful



An Algorithm for Learning with Probabilistic Description Logics 67

among the ones currently available for the integration of DLs and clausal logic.
First, it relies on the very expressive DL SHIQ. Second, it allows for inducing a
definition for DL concepts thus having ontology elements not only as input but
also as output of the learning process.

The problem of translation turns out to be similar to an ILP problem. There
are two issues to address: incompatibilities between DLs and Horn Logic, and
the fact that the OWA1 is used in DLs.

The other approach, solving the learning problem in the original formalism,
can be found in the work of Cohen and Hirsh [22], which uses a pure DL-based
approach for concept learning, in this case on the CLASSIC DL language. In
these algorithms, ILP has been a significant influence, as refinement operators
have been extensively explored. Badea and Nienhuys-Cheng [23] suggest a re-
finement operator for the ALER description logic. They also investigate some
theoretical properties of refinement operators that favour the use of a downward
refinement operator to enable a top-down search.

Learning algorithms for DLs (in particular for the language ALC) were cre-
ated by Iannone et al [2] that also make use of refinement operators. Instead
of using the classical approach of combining refinement operators with a search
heuristic, they developed an example driven learning method. The language,
called YINYANG, requires lifting the instances to the concept level through a
suitable approximate operator (most specific concepts MSCs) and then start
learning from such extremely specific concept descriptions. A problem of these
algorithms is that they tend to produce unnecessarily long concepts. One reason
is that MSCs for ALC and more expressive languages do not exist and hence
can only be approximated.

These disadvantages have been partly mitigated in the work of Lehmann
[24], where approximations are not needed because it is essentially based on a
genetic programming procedure lying on refinement operators whose fitness is
computed on the grounds of the covered instances. In the DL-LEARNER system
[3] further refinement operators and heuristics have been developed for the ALC
logic.

The DL-FOIL system [14] is a new DL version of the FOIL [10] algorithm,
that is adapted to learning the DL representations supporting the OWL-DL
language. The main components of this new system are represented by a set of
refinement operators borrowed from other similar systems [2, 3] and by a differ-
ent gain function (proposed in FOIL-I [25]) which must take into account the
OWA inherent to DLs. In DL-FOIL, like in the original FOIL algorithm, the
generalization routine computes (partial) generalizations as long as they do not
cover any negative example. If this occurs, the specialization routine is invoked
for solving these sub-problems. This routine applies the idea of specializing us-
ing the (incomplete) refinement operator. The specialization continues until no
negative example is covered (or a limited number of them).

1 Open World Assumption mantains that an object that cannot be proved to belong
to a certain concept is not necessarily a counterexample for that concept [14].



68 J. E. Ochoa Luna and F. G. Cozman

3 Probabilistic Description Logic Learning

In this section, we focus on learning DL axioms and probabilities tailored to
crALC. To learn the terminology component we are inspired by Probabilistic
ILP methods and thus we follow generic syntax and semantics given in [16]. The
generic supervised concept learning task is devoted to finding axioms that best
represent assertions positive (covered) and negatives, in a probabilistic setting
this cover relation is given by:

Definition 1. (Probabilistic Covers Relation) A probabilistic covers rela-
tion takes as arguments an example e, a hypothesis H and possibly the back-
ground theory B, and returns the probability value P (e|H, B) between 0 and 1 of
the example e given H and B, i.e., covers(e, H, B) = P (e|H, B).

Given Definition 1 we can define the Probabilistic DL learning problem as
follows [16]:

Definition 2. (The Probabilistic DL Learning Problem) Given a set E =
Ep∪Ei of observed and unobserved examples Ep and Ei (with Ep ∩Ei = ∅) over
the language LE, a probabilistic covers relation covers(e, H, B) = P (e|H, B), a
logical language LH for hypotheses, and a background theory B, find a hypothesis
H∗ such that H∗ = argmaxHscore(E, H, B) and the following constraints hold:
∀ep ∈ Ep : covers(ep, H

∗, B) > 0 and ∀ei ∈ Ei : covers(ei, H
∗, B) = 0. The

score is some objective function, usually involving the probabilistic covers relation
of the observed examples such as the observed likelihood

∏

ep∈Ep
covers(ep, H

∗, B)
or some penalized variant thereof.

Negative examples conflict with the usual view on learning examples in sta-
tistical learning. Therefore, when we speak of positive and negative examples we
are referring to observed and observed ones.

As we focus in crALC, B = K = (T ,A), and given a target concept C,
E = Ind+

C
(A) ∪ Ind−

C
(A) ⊒ Ind(A), are positive and negative examples or

individuals. For instance, candidate hypotheses can be given by C ⊒ H1, . . . , Hk,
where H1 = B ⊓ ∃D.⊤, H2 = A ⊔ E, . . ..

We assume each candidate hypothesis together with the example e for the tar-
get concept as being a probabilistic variable or feature in a probabilistic model2;
according to available examples, each candidate hypothesis turns out to be true,
false or unknown whether result for instance checking C(a) on K, Ind(A) is re-
spectively true, false or unknown. The learning task is restricted to finding a
probabilistic classifier for the target concept.

A suitable framework for this probabilistic setting is the Noisy-OR classifier,
a probabilistic model within the Bayesian networks classifiers commonly referred
to as models of independence of clausal independence (ICI) [12]. In a Noisy-OR
classifier we aim at learning a class C given a large number of attributes.

As a rule, in an ICI classifier for each attribute variable Aj , j = 1, . . . , k

(A denotes the multidimensional variable (A1, . . . , Ak) and a = (a1, . . . , ak)

2 A similar assumption is adopted in the nFOIL algorithm [26].



An Algorithm for Learning with Probabilistic Description Logics 69

its states) we have one child A′
j that has assigned a conditional probability

distribution P (A′
j |Aj). Variables A′

j , j = 1, . . . , k are parents of probability of
the class variable C. PM (C|A′) represents a deterministic function f that assigns
to each combination of values (a′

1, . . . , a
′
k) a class c. A generic ICI classifier is

illustrated in Figure 1 .

��
��

��
��

��
��

��
��
��
��

��
��

��
��

6

�
�

�
��> 6

6 6

Z
Z

Z
ZZ}

A1
AkA2 . . .

. . .A′

1
A′

2
A′

k

C

Fig. 1. ICI models [12].

The probability distribution of this model is given by [12]:

PM (c,a′,a) = PM (c|a′)

k
∏

j=1

PM (a′
j |aj) · PM (aj),

where the conditional probability PM (c|a′) is one if c = f(a′) and zero otherwise.
The Noisy-OR model is an ICI model where f is the OR function:

PM (C = 0|A′ = 0) = 1 and PM (C = 0|A′ 6= 0) = 0.

The joint probability distribution of the Noisy-OR model is

PM (·) = PM (C|A′
1, . . . , A

′
k) ·

(

k
∏

j=1

PM (A′
j |Aj) · PM (Aj)

)

.

It follows that

PM (C = 0|A = a) =
∏

j

PM (A′
j = 0|Aj = aj), (1)

PM (C = 1|A = a) = 1 −
∏

j

PM (A′
j = 0|Aj = aj). (2)

Using a threshold 0 ≤ t ≤ 1 all data vectors a = (a1 . . . , ak) such that
PM (C = 0|A = a) < t are classified to class C = 1.



70 J. E. Ochoa Luna and F. G. Cozman

The Noisy-OR classifier has the following semantics. If an attribute Aj is in a
state aj then the instance (a1, . . . , aj , . . . , ak) is classified as C = 1 unless there
is an inhibitory effect, with probability PM (A′

j = 0|Aj = aj). All inhibitory
effects are assumed to be independent. Therefore the probability that an in-
stance does not belong to class C (C = 0), is a product of all inhibitory effects
∏

j PM (A′
j = 0|Aj = aj). For learning this classifier the EM-algorithm has been

proposed [12]. The algorithm is directly applicable to any ICI model; in fact, an
efficient implementation resort to a transformation of an ICI model using a hid-
den variable (further details in [12]). We now shortly review the EM-algorithm
tailored to Noisy-OR combination functions.

Every iteration of the EM-algorithm consists of two steps: the expectation
step (E-step) and maximization step (M-step). In a transformed decompos-
able model the E-step corresponds to computing the expected marginal count
n(A′

l, Al) given data D = {e1, . . . , en} (ei = {ci,ai} = {ci, ai
1, . . . , a

i
k}) and

model M:

n(A′
l, Al) =

n
∑

i=1

PM (A′
l, Al|e

i) for all l = 1, . . . , k

where for each (a′
l, al)

PM (A′
l = a′

l, Al = al|e
i) =

{

PM (A′
l = a′

l|e
i) if al = ai

l ,
0 otherwise.

Assume a Noisy-Or classifier PM and an evidence C = c,A = a. The updated
probabilities (the E-step) of A′

l for l = 1, . . . , k can be computed as follows [12]:

PM (A′
l = a′

l|C = c,a)

=



























1 if c = 0 and a′
l = 0,

0 if c = 0 and a′
l = 1,

1

z
·

(

PM (A′
l = 0|Al = al) −

∏

j PM (A′
j = 0|Aj = aj)

)

if c = 1 and a′
l = 0,

1

z
· PM (A′

l = 1|Al = al) if c = 1 and a′
l = 1,

where z is a normalization constant. The maximization step corresponds to set-
ting

P ∗
M (A′

l|Al) =
n(A′

l, Al)

n(Al)
, for all l = 1 . . . , k.

Given the Noisy-OR classifier, the complete learning algorithm is described
in Figure 2, where λ denotes the maximum likelihood parameters. We have used
the refinement operators introduced in [3] and the Pellet reasoner3 for instance
checking. It may happen that during learning a given example for a candidate
hypothesis Hi cannot be proved to belong to the target concept. This is not
necessarily a counterexample for that concept. In this case, we can make use of

3 http://clarkparsia.com/pellet/.



An Algorithm for Learning with Probabilistic Description Logics 71

Input: a target concept C, background knowledge K = (T ,A), a training set E =
Ind+

C
(A) ∪ Ind−

C
(A) ⊆ Ind(A) containing assertions on concept C.

Output: induced concept definition C.

Repeat
Initialize C

′ = ⊥
Compute hypotheses C

′ ⊒ H1, . . . , Hn based on refinement operators for ALC
logic

Let h1, . . . , hn be features of the probabilistic Noisy-OR classifier, apply the EM
algorithm

For all hi

Compute score
∏

ep∈Ep

covers(ep, hi, B)

Let h′ the hypothesis with the best score
According to h′ add H ′ to C

Until score({h1, . . . , hi}, λi, E) > score({h1, . . . , hi+1}, λi+1, E)

Fig. 2. Complete learning algorithm.

the EM algorithm of the Noisy-OR classifier to estimate the class ascribed to
the instance.

In order to learn probabilities associated to terminologies obtained for the
former algorithm we commonly resort to the EM algorithm. In this sense, we
are influenced in several respects from approaches given in [16].

4 Preliminary Results

To demonstrate feasibility of our proposal, we have run preliminary tests on
relational data extracted from the Lattes curriculum platform, the Brazilian
government scientific repository4. The Lattes platform is a public source of re-
lational data about scientific research, containing data on several thousand re-
searchers and students. Because the available format is encoded in HTML, we
have implemented a semi-automated procedure to extract content. A restricted
database has been constructed based on randomly selected documents. We have
performed learning of axioms based on elicited asserted concepts and roles, fur-
ther probabilistic inclusions have been added according to the crALC syntax.
Figure 3 illustrates the network generated for a domain of size 2.

For instance, to properly identify a professor, the following concept descrip-
tion has been learned:

Professor ≡ Person

⊓(∃hasPublication.Publication⊔ ∃advises.Person ⊔ ∃worksAt.Organization)

When Person(0) 5 is given by evidence, the probability value P (Professor(0)) =
0.68 (we have considered a large number of professors in our experiments), as

4 http://lattes.cnpq.br.
5 Indexes 0, 1 . . . n represent individuals from a given domain.



72 J. E. Ochoa Luna and F. G. Cozman

Fig. 3. Relational Bayesian network for the Lattes curriculum dataset.

further evidence is given the probability value changes to:

P (Professor(0)|∃hasPublication(1)) = 0.72,

and
P (Professor(0)|∃hasPublication(1) ⊔ ∃advises(1)) = 0.75.

The former concept definition can conflict with standard ILP approaches,
where a more suitable definition might be mostly based on conjuntions. In con-
trast, in this particular setting, the probabilistic logic approach has a nice and
flexible behavior. However, it is worth noting that terminological constructs ba-
sically rely on the refinement operator used during learning.

Another query, linked to relational classification, allows us to prevent dupli-
cate publications. One can be interested in retrieving the number of publications
for a given research group. Whereas this task might seem trivial, difficulties arise
mainly due to multi-authored documents. In principle, each co-author would
have a different entry for the same publication in the Lattes platform, and it
must be emphasized that each entry is be prone to contain errors. In this sense,
a probabilistic concept for duplicate publications was learned:

DuplicatePublication ≡ Publication

⊓(∃hasSimilarTitle.Publication⊔ ∃hasSameYear.Publication

⊔hasSameType.Publication))

It clearly states that a duplicate publication is related to publications that
share similar title6, same year and type (journal article, chapter book and so on).
At first, the prior probability is low: P (DuplicatePublication(0)) = 0.05. Evidence
on title similarity increases considerably the probability value:

P (DuplicatePublication(0)|∃hasSimilarTitle(0, 1)) = 0.77.

6 Similarity was carried out by applying a “LIKE” database operator on titles.



An Algorithm for Learning with Probabilistic Description Logics 73

Further evidence on type almost guarantees a duplicate concept:

P (DuplicatePublication(0)|∃hasSimilarName(1) ⊓ ∃hasSameType(1)) = 0.99.

It must be noted that title similarity does not guarantee a duplicate document.
Two documents can share the same title (same author), but nothing prevents
them from being published on different means (for instance, a congress paper
and an extended journal article). Probabilistic reasoning is valuable to deal with
such issues.

5 Conclusion

In this paper we have presented algorithms that perform learning of both prob-
abilities and logical constructs from relational data for the recently proposed
Probabilistic DL crALC. Learning of parameters is tackled by the EM algo-
rithm whereas structure learning is conducted by a combined approach relying
on statistical and ILP methods. We approach learning of concepts as a classifi-
cation task; a Noisy-OR classifier has been accordingly adapted to do so.

Preliminary results have focused on learning a probabilistic terminology from
a real-world domain — the Brazilian scientific repository. Probabilistic logic
queries have been posed on the induced model; experiments suggest that our
methods are suitable for learning ontologies in the Semantic Web.

Our planned future work is to investigate the scalability of our learning meth-
ods.

Acknowledgements

The first author is supported by CAPES. The second author is partially sup-
ported by CNPq. The work reported here has received substantial support
through FAPESP grant 2008/03995-5.

References

1. Lisi, F.A., Esposito, F.: Foundations of onto-relational learning. In: ILP ’08:
Proceedings of the 18th International Conference on Inductive Logic Programming,
Berlin, Heidelberg, Springer-Verlag (2008) 158–175

2. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for
concept learning in the semantic web. Applied Intelligence 26(2) (2007) 139–159

3. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the
ALC description logic. In Blockeel, H., Shavlik, J.W., Tadepalli, P., eds.: ILP ’08:
Proceedings of the 17th International Conference on Inductive Logic Programming.
Volume 4894 of Lecture Notes in Computer Science., Springer (2008) 147–160

4. Muggleton, S.: Inductive Logic Programming. McGraw-Hill, New York (1992)
5. Cozman, F.G., Polastro, R.B.: Loopy propagation in a probabilistic description

logic. In: SUM ’08: Proceedings of the 2nd International Conference on Scalable
Uncertainty Management, Berlin, Heidelberg, Springer-Verlag (2008) 120–133



74 J. E. Ochoa Luna and F. G. Cozman

6. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press (2007)

7. de Campos, C.P., Cozman, F.G., Ochoa-Luna, J.E.: Assembling a consistent set
of sentences in relational probabilistic logic with stochastic independence. Journal
of Applied Logic 7 (2009) 137–154

8. Hailperin, T.: Sentential Probability Logic. Lehigh University Press, Bethlehem,
United States (1996)

9. Cozman, F.G., Polastro, R.: Complexity analysis and variational inference for
interpretation-based probabilistic description logics. In: Conference on Uncertainty
in Artificial Intelligence. (2009)

10. Quinlan, J.R., Mostow, J.: Learning logical definitions from relations. In: Machine
Learning. (1990) 239–266

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1998)

12. Vomlel, J.: Noisy-OR classifier: Research articles. Int. J. Intell. Syst. 21(3) (2006)
381–398

13. Baader, F., Nutt, W.: Basic description logics. In: Description Logic Handbook.
Cambridge University Press (2002) 47–100

14. Fanizzi, N., D’Amato, C., Esposito, F.: DL-FOIL concept learning in description
logics. In: ILP ’08: Proceedings of the 18th International Conference on Inductive
Logic Programming, Berlin, Heidelberg, Springer-Verlag (2008) 107–121

15. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
16. Raedt, L.D., Kersting, K.: Probabilistic inductive logic programming. In: Proba-

bilistic ILP - LNAI 4911. Springer-Verlag Berlin (2008) 1–27
17. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods.

Journal of Logic Programming 19-20 (1994) 629–679
18. Kietz, J.U.: Learnability of description logic programs. In: Inductive Logic Pro-

gramming, Springer (2002) 117–132
19. Rouveirol, C., Ventos, V.: Towards learning in CARIN-ALN . In: ILP ’00: Pro-

ceedings of the 10th International Conference on Inductive Logic Programming,
London, UK, Springer-Verlag (2000) 191–208

20. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: integrating Datalog
and description logics. Journal of Intelligent and Cooperative Information Systems
10 (1998) 227–252

21. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: KR. (2006) 68–78

22. Cohen, W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and
experimental results. In: (KR94): Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourth International Conference, Morgan Kaufmann
(1994) 121–133

23. Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for description logics.
In: ILP ’00: Proceedings of the 10th International Conference on Inductive Logic
Programming, London, UK, Springer-Verlag (2000) 40–59

24. Lehmann, J.: Hybrid learning of ontology classes. In: Proceedings of the 5th
International Conference on Machine Learning and Data Mining. Volume 4571 of
Lecture Notes in Computer Science., Springer (2007) 883–898

25. Inuzuka, N., Kamo, M., Ishii, N., Seki, H., Itoh, H.: Top-down induction of logic
programs from incomplete samples. In: ILP ’96 : 6th International Workshop.
Volume 1314 of LNAI., SV (1997) 265–284

26. Landwehr, N., Kersting, K., DeRaedt, L.: Integrating Näıve Bayes and FOIL. J.
Mach. Learn. Res. 8 (2007) 481–507


