
P R O C E E D I N G S

The 7th International Workshop on

Intelligent Techniques for Web Personalization
& Recommender Systems

ITWP 2009

Editors:

Sarabjot Singh Anand, Bamshad Mobasher, Alfred Kobsa, Dietmar Jannach

July 11, 2009
Pasadena, California, USA

In conjunction with

The 21st International Joint Conference on
Artificial Intelligence - IJCAI 2009

iii

Workshop Co-Chairs

Sarabjot Singh Anand, University of Warwick, UK
Bamshad Mobasher, DePaul University, Chicago, USA
Alfred Kobsa, University of California, Irvine, USA
Dietmar Jannach, Technische Universität Dortmund, Germany

Program Committee
Esma Aimeur, Université de Montréal, Canada
Gediminas Adomavicius, CSOM, University of Minnesota
Liliana Ardissono, University of Torino, Italy
Bettina Berendt, K.U.Leuven, Belgium
Shlomo Berkovsky, University of Melbourne, Australia
José Luís Borges, University of Porto, Portugal
Derek Bridge, University College Cork, Ireland
Robin Burke, DePaul University
Alexander Felfernig, Graz University of Technology, Austria
Gerhard Friedrich, University Klagenfurt, Austria
Rayid Ghani, Accenture, USA
Marko Grobelnik, Jožef Stefan Institute, Slovenia
Andreas Hotho, University of Würzburg, Germany
Alípio Jorge, University of Porto, Portugal
Mark Levene, University College, London, UK
Stuart E. Middleton, University of Southampton, UK
Alexandros Nanopulos, Aristotle University of Thessaloniki, Greece
Olfa Nasraoui, University of Louisville
Claire Nedellec, Université Paris Sud, Paris, France
Seung-Taek Park, Yahoo Inc.
George Paliouras, Demokritos National Centre for Scientific Research, Greece
David Pennock, NEC Research Institute, USA
Naren Ramakrishnan, Virginia Tech
Francesco Ricci, Free University of Bozen-Bolzano, Italy
Lars Schmidt-Thieme, University of Hildesheim, Germany
Spiros Sirmakessis, University of Patras, Greece
Barry Smyth, University College Dublin, Ireland
Markus G. Stolze, IBM Watson Research Center, NY
Suk-Chung Yoon, Widener University, Pennsylvania
Markus Zanker, University Klagenfurt, Austria
Daniel Zeng, University of Arizona

Foreword

Web Personalization can be defined as any set of actions that can tailor the Web experience to a particular
user or set of users. The experience can be something as casual as browsing a Web site or as
(economically) significant as trading stocks or purchasing a car. The actions can range from simply
making the presentation more pleasing to anticipating the needs of a user and providing customized and
relevant information. To achieve effective personalization, organizations must rely on all available data,
including the usage and clickstream data (reflecting user behavior), the site content, the site structure,
domain knowledge, as well as user demographics and profiles. Efficient and intelligent techniques are
needed to mine this data for actionable knowledge, and to effectively use the discovered knowledge to
enhance the users' Web experience. These techniques must address important challenges emanating from
the size of the data, the fact that they are heterogeneous and very personal in nature, as well as the
dynamic nature of user interactions with the Web. These challenges include the scalability of the
personalization solutions, data integration, and successful integration of techniques from machine
learning, information retrieval and filtering, databases, agent architectures, knowledge representation,
data mining, text mining, statistics, information security and privacy, user modeling and human-
computer interaction.

Recommender systems represent one special and prominent class of such personalized Web
applications, which particularly focus on the user-dependent filtering and selection of relevant
information and – in an e-Commerce context - aim to support online users in the decision-making and
buying process. Recommender Systems have been a subject of extensive research in AI over the last
decade, but with today's increasing number of e-commerce environments on the Web, the demand for
new approaches to intelligent product recommendation is higher than ever. There are more online users,
more online channels, more vendors, more products and, most importantly, increasingly complex
products and services. These recent developments in the area of recommender systems generated new
demands, in particular with respect to interactivity, adaptivity, and user preference elicitation. These
challenges, however, are also in the focus of general Web Personalization research.

In the face of this increasing overlap of the two research areas, the aim of this workshop is to
bring together researchers and practitioners of both fields, to foster an exchange of information and ideas,
and to facilitate a discussion of current and emerging topics related to "Web Intelligence", particularly
regarding its application in recommender systems. This workshop represented the seventh in a
successful series of ITWP workshops that have been held at IJCAI and AAAI.

This year’s workshop attracted a number of high-quality contributions from 15 different
countries. Of these, 7 papers (less than 40%) were accepted for full presentation at the workshop, with an
additional 3 accepted for short presentations. The accepted papers deal with a wide variety of issues
and techniques for creating more intelligent personalization systems, but generally fell into a four broad
categories: Modeling and Personalization Strategies; Recommendation Algorithms; Hybrid
Recommenders and Enabling Technologies for Recommendation. The workshop also features an invited
talk by Barry Smyth, University College Dublin on “Personalization and Collaboration in Social
Search”

ITWP 2009 Organizing Committee

July 2009, Pasadena, USA

v

Table of Contents

Long Papers

Online Selection of Mediated and Domain-Specific Predictions for Improved Recommender Systems
Stephanie Rosenthal, Manuela Veloso, Anind Dey ……………………………………………………….. 1

Using Gaussian Spatial Processes to Model and Predict Interests in Museum Exhibits
Fabian Bohnert, Ingrid Zukerman, and Daniel F. Schmidt ………………………………………………13

Optimal Set Recommendations based on Regret
Paolo Viappiani, Craig Boutilier …………………………………………………………….………. 20

Uncovering Functional Dependencies in MDD-Compiled Product Catalogues
Tarik Hadzic and Barry O'Sullivan ……………………………………………………………………... 32

Effectiveness of different recommender algorithms in the Mobile Internet: A case study
Kolja Hegelich and Dietmar Jannach ………………………………………………………………….. 41

Adapting K-Nearest Neighbor for Tag Recommendation in Folksonomies
Jonathan Gemmell, Thomas Schimoler, Maryam Ramezani, Bamshad Mobasher ………………………. 51

Analysis of Web Usage Patterns in Consideration of Various Contextual Factors
Jinhyuk Choi, Jeongseok Seo and Geehyuk Lee ………………………………………………..………… 63

Short Papers

Exploiting Semantic Web Technologies for Recommender Systems: A multi View Recommendation Engine
Houda Oufaida ………………………………………………………………………….………………. 75

Intelligent Web Navigation Using Virtual Assistants
Eduardo Eisman …………………………………………………………………………………………. 81

Collaborative Filtering With Adaptive Information Sources
Neal Lathia, Xavier Amatriain and Josep M. Pujol ………………………………………………………. 87

ITWP 2009 Workshop Program (July 11, 2009)

08:30-08:45 Opening

Technical session 1 - Modeling and Personalization Strategies

08:45-09:10 Online Selection of Mediated and Domain-Specific Predictions for Improved Recommender Systems
Stephanie Rosenthal, Manuela Veloso, Anind Dey

09:10-09:35 Using Gaussian Spatial Processes to Model and Predict Interests in Museum Exhibits
Fabian Bohnert, Ingrid Zukerman, and Daniel F. Schmidt

09:35-10:00 Optimal Set Recommendations based on Regret
Paolo Viappiani, Craig Boutilier

Coffee break (10:00 - 10:30)

Technical session 2 – Enabling Technologies

10:30-10:55 Analysis of Web Usage Patterns in Consideration of Various Contextual Factors
Jinhyuk Choi, Jeongseok Seo and Geehyuk Lee

10:55-11:20 Uncovering Functional Dependencies in MDD-Compiled Product Catalogues
Tarik Hadzic and Barry O'Sullivan

11:20-11:35 Intelligent Web Navigation Using Virtual Assistants
Eduardo Eisman

Lunch (11:35 - 13:15)

Invited Talk Barry Smyth, University College Dublin

13:15-14:10 Personalization and Collaboration in Social Search

Technical session 3 – Recommendation Algorithms

14.10-14:35 Effectiveness of different recommender algorithms in the Mobile Internet: A case study
Kolja Hegelich and Dietmar Jannach

14:35-15:00 Adapting K-Nearest Neighbor for Tag Recommendation in Folksonomies
Jonathan Gemmell, Thomas Schimoler, Maryam Ramezani, Bamshad Mobasher

Coffee break (15:00 - 15:30)

Technical session 4 – Hybrid Recommenders

15:30-15:45 Collaborative Filtering With Adaptive Information Sources
Neal Lathia, Xavier Amatriain and Josep M. Pujol

15:45–16:00 Exploiting Semantic Web Technologies for Recommender Systems: A Multi View Recommendation
Engine
Houda Oufaida

16.00-17:00 Wrap-up and discussion

Online Selection of Mediated and Domain-Specific Predictions for Improved
Recommender Systems

Stephanie Rosenthal, Manuela Veloso, Anind Dey
School of Computer Science
Carnegie Mellon University

{srosenth,veloso,anind}@cs.cmu.edu

Abstract

Recommender systems use a set of reviewers and ad-
vice givers with the goal of providing accurate user-
dependent product predictions. In general, these sys-
tems assign weights to different reviewers as a function
of their similarity to each user. As products are known
to be from different domains, a recommender system
also considers product domain information in its predic-
tions. As there are few reviews compared to the number
of products, it is often hard to set the similarity-based
weights as there is not a large enough subset of review-
ers who reviewed the same products. It has then been
recently suggested that not considering domains will in-
crease the amount of reviewer data and the overall pre-
diction accuracy in a mediated way. However, clearly,
if different reviewers are similar to a user in each prod-
uct domain, then domain-specific predictions could be
superior to mediated ones.
In this paper, we consider two advice giver algorithms
to provide domain-specific and mediated predictions.
We analyze both advice giver algorithms using large
real data sets to characterize when each is more accurate
for users. We realize that for a considerable number of
users, the domain-specific predictions are possible and
more accurate. We then contribute an improved gen-
eral recommender system algorithm that autonomously
selects the most accurate mediated or domain-specific
advice giver for each user. We validate our analysis and
algorithm using real data sets and show the improved
predictions for different users.

Introduction
We model a product recommender system as a set of reviews
defined by reviewers, product domains (e.g., DVDs, books,
clothes), and advice givers. Users request that the recom-
mender system provide predictions of whether they will like
a set of products of their choosing. Users then have the op-
tion of providing their own reviews of those products. As
the advice giver that makes product predictions receives the
user’s actual reviews, it assigns domain-specific weights to
the reviewers as a function of the similarity between their re-
views and the user’s. The reviewers whose reviews are most
similar to the user’s receive higher weight. The advice giver

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

uses the weights of the reviewers and their reviews to guide
its predictions with the goal of providing the most accurate
predictions.

Because reviewers review a relatively small number of
products, it is difficult to find enough reviewers with similar
reviews to make accurate predictions for every product each
user requests. The problem is exacerbated as products are
divided into domains so there are fewer product reviews to
train the domain-specific weights with. Resolving the data
sparsity problem has been the focus of much recommender
system work. Although it is widely accepted that domain-
specific reviewers result in accurate predictions, it has re-
cently been suggested that a mediated advice giver that com-
bines multiple domains of products and holds only a single
set of weights for each, user would help alleviate the data
sparsity problem (Berkovsky, Kuflik, and Ricci 2007a).

While learning only one set of weights will increase the
amount of data to train with, there is an underlying assump-
tion that the reviewers with similar reviews to a user in one
product domain (e.g., DVDs) will also have similar reviews
to that user in other domains (e.g., books and clothes). While
a domain-specific advice giver captures these differences,
the mediated advice giver does not. Intuitively, it seems un-
likely that for all users there is a set of reviewers with similar
reviews in all domains of products. The focus of this work is
to understand in real recommender data sets how data spar-
sity and the user’s reviews affect the weights of the reviewers
and the accuracy of the advice givers’ predictions.

We first present an overview of how advice givers weigh
reviewers and make predictions for users and give examples
of weights that affect the two advice givers’ accuracy. We
show using data from two large recommender systems that
potentially half of the users benefitted from the mediated
advice giver while the other half required domain-specific
weights. Additionally we find in a third and more sparse
recommender data set that both advice givers have equal ac-
curacies when reviewers do not provide reviews for more
than one category. We, then, show how accuracy changes for
each advice giver as reviewers review products in more cate-
gories. Assuming that reviewers do provide reviews in more
categories (as found in the first two data sets) and because
different users require the two advice givers equally, we
contribute two online user-dependent selection algorithms
for the recommender system to choose which advice giver

 - 1 -

makes the highest accuracy predictions for each user. Fi-
nally, we validate both our initial findings and the selection
algorithms with a fourth recommender system data set and
conclude that each user benefits from the user-dependent se-
lection rather than a recommender system that uses one type
of advice giver.

Advice Givers
A recommender system is comprised of a set of products
with corresponding domain information, reviews R and an
advice giver. The set of reviews R is an M×N matrix of M
reviewers and N products. The review Rij is a discrete value
v ∈ V that reviewer ri provides for product pj . Possible
values V may be binary {0, 1} or ranging over a subset of the
integers (e.g., {1, 2, 3, 4, 5}). Each product pj is assigned a
domain d ∈ D.

Domain-Specific Advice Giver
An advice giver’s task is to provide personalized predictions
v ∈ V of products p that a user u requests. In order to
provide personalized predictions for each user, the Domain-
Specific Advice Giver (DSAG) assigns a weight wu,d

i to each
reviewer for each user and domain d (See Algorithm 1). The
weight of a reviewer is related to how often the reviewer
gave review values similar to the user’s reviews and are mod-
eled after experts algorithms ((Auer et al. 1995; Littlestone
and Warmuth 1994)) which have been used widely in pre-
dicting reviews (e.g., (Nakamura and Abe 1998)). These
weights are initially uniform across the reviewers for each
user (Line 1)

∀u, d, i wu,d
i = 1/M (1)

The reviewers are the ”experts,” and the advice giver makes
a prediction by polling the reviewers as a function of the
weights assigned to them. The advice giver uses weighted
majority to make a prediction for a product in domain dk

that a user requests, by summing the weights of reviewers
that provide each value v, and predicts the value with the
most weight:

argmaxv

∑
i

I (Rij == v) ∗ wu,k
i (2)

where I is the identity function that returns I (true) = 1
and I (false) = 0 (Lines 2-4) ((Littlestone and Warmuth
1994)). The advice giver updates the weights as a function
of the distance between the reviewer’s reviews and the user
u’s later actual review aj for the product pj (Lines 5,6):

wu,k
i =

exp(ln(wu,k
i)− `1(Rij , aj))∑

h exp(ln(wu,k
h)− `1(Rhj , aj))

(3)

Because the advice giver makes predictions about the user’s
review but does not know the actual review ahead of time,
the weights for the domain dk are recalculated online as the
user provides reviews for products in that domain. We im-
plement the sleeping experts algorithm to reweigh only the
reviewers that provided a review for the product (Freund
et al. 1997; Blum and Mansour 2005). If a reviewer does

Algorithm 1 Domain-Specific Advice Giver (DSAG)
1: For a new user u, initialize wu,c

i according to (1)
2: for all products pj do
3: k← domain(pj)
4: Predict according to (2)
5: if user u gives review aj then
6: Update wu,k

i according to (3)
7: end if
8: end for

not provide a review for the product pj , its weight does not
change. The goal of the advice giver is to weigh the review-
ers for each user such that the resulting predictions are as
accurate as possible compared to the hindsight knowledge
of the users’ reviews.

Mediated Advice Giver
The DSAG can provide precise predictions for users in

each domain, but it requires enough reviews in R to cover
all products with enough reviewers and requires the user
provide enough reviews in each domain to reweigh the re-
viewers enough times for the weights to converge. In typi-
cal recommender systems, however, the review matrix R is
very sparse in both the number of reviews provided for a
particular product and the number of reviews provided by a
particular reviewer. Because of this sparsity, the number of
reviewers that get reweighed for any given product that the
user requests is far fewer than the total number of reviewers.
As a result, the DSAG requires the user to review a lot of
products before it can provide accurate enough predictions.
This problem is exacerbated because the products are often
split into domains and the algorithms require the user to re-
view the same number of products in each domain to predict
accurately in each. The focus of much recommender sys-
tem research has centered around resolving this data sparsity
problem (Adomavicius and Tuzhilin 2005).

While most work has focused on hybrid recommender
systems to increase accuracy by combining different weigh-
ing techniques (e.g., (Burke 2002; Umyarov and Tuzhilin
2007)), one recent idea is to combine domains to increase
the number of products that affect the reviewers’ weights.
One idea is to keep domain-specific weights, but to allow
the DSAG to reference all of a reviewer’s weights to de-
termine if that reviewer is similar to the user in any do-
main (Berkovsky, Kuflik, and Ricci 2007b). If there is not
enough information about a particular domain to make sug-

Algorithm 2 Mediated Advice Giver (MAG)
1: For a new user u, initialize ∀i wu

i ← 1
|M |

2: for all products pj do
3: Predict v = argmaxv

∑
i I (Rij == v) ∗ wu

i
4: if user reports review aj then
5: wu

i ←
exp(ln(wu

i)−`1(Rij ,aj))P
h exp(ln(wu

h)−`1(Rhj ,aj))

6: end if
7: end for

 - 2 -

(a)
p1 p2 p3 p4

R d1 d2 d1 d2

r1 5 2 5 3
r2 3 5 2 5
r3 3 2 2 3
u 5 5 5 5

(b)
wu,c t0 t1 t2 t3 t4
wu,1

1 .33 .78 .78 .99 .99
wu,1

2 .33 .11 .11 .005 .005
wu,1

3 .33 .11 .11 .005 .005
wu,2

1 .33 .33 .045 .045 .005
wu,2

2 .33 .33 .91 .91 .99
wu,2

3 .33 .33 .045 .045 .005

(c)
wu t0 t1 t2 t3 t4
wu

1 .33 .78 .25 .87 .498
wu

2 .33 .11 .71 .12 .498
wu

3 .33 .11 .04 .01 .004

Table 1: Example. (a) The review matrix R contains 4 products and 3 reviewers. (b) The DSAG recalculates domain-specific
weights as the user provides their actual reviews to find that r1 and r2 are most similar for domains d1 and d2, respectively. (c)
The MAG recalculates the single set of weights as the user provides reviews and finds r1 and r2 to be equally similar.

gestions about a product, the system could take advantage
of the user’s similar reviewers in other domains to make
predictions. Mediation, on the other hand, combines the
weights from multiple domains together (Berkovsky, Kuflik,
and Ricci 2007a).

A Mediated Advice Giver (MAG) makes domain-
independent predictions with the expectation that the advice
giver will identify the most similar reviewers sooner, and
provide more accurate predictions with sparse matrices, be-
cause all products affect the same weights. The Mediated
Advice Giver (Algorithm 2) is the same as the DSAG, except
that a single set of weights is maintained which is updated
for every product in every domain. The MAG is accurate
when there is a consistent set of similar reviewers to a user
for every domain (reviewers have proportional weights in
all domains). However, when different reviewers have high
weights in different domains, the MAG weighs all equally,
which can result in poor predictions. Intuitively, if a user
had reviews similar to one set of reviewers about DVDs and
very different reviews about books, the DSAG, which holds
different weights for DVDs and books, would provide more
accurate predictions.
Example Suppose a new user joins a recommender sys-
tem that uses a Domain-Specific Advice Giver with three
reviewers (M = 3) r1, r2, r3, that review four products
(N = 4) p1, p2, p3, p4 with reviews presented in Table
1(a). The values are shown for later use in the example.
D = {d1, d2} are assigned to the products and the possi-
ble values that the reviewer can give and advice giver can
predict are V = {1, 2, 3, 4, 5}. The DSAG initializes the
weights wu,d

i to 1/M = 1/3 for both domains (Table 1(b)
column t0). The user requests a prediction for product p1

in domain d1. The advice giver calculates which value to
predict using the initial weights and chooses to predict 3 be-
cause it has the maximum weight associated with it. The
user notifies the advice giver that their actual review r1 of
p1 is 5 (last row of Table 1(a)) and the advice giver uses that
information to reweigh the reviewers for domain d1 (Table
1(b) column t1). Then the user requests a prediction for p2,
and the advice giver uses the new initialized weights for do-
main d2 to predict 2. The user responds with value 5 and the
advice giver recalculates the weights from domain d2 (col-
umn t2). This continues for all 4 products.

The weights (shown in Table 1(b)) do not change on the

time steps when the advice giver predicts a value for a prod-
uct that is from a different domain. At the end, we can see
that the user has the same reviews as r1 for domain d1 and
the same reviews for r2 as d2 and the DSAG correctly identi-
fies them as most similar by assigning them highest weight.

Now suppose that R is the same, but the recommender
system uses a MAG to predict for the user. Because review-
ers 1 and 2 are each correct 50% of the time, their weights
change over the four products (See Table 1(c)). The MAG
assigns higher weight to the wrong reviewer and predicts 2
or 3 when it should predict 5 for all products.

Approach
The focus of this work is to determine whether data sparsity
consistently affects the accuracy of the DSAG for all users
and choose the most accurate advice giver for each user. We
will first show, using synthetic data, different weight distri-
butions for users in the MAG and DSAG and analyze their
prediction accuracies. We then show, using three real recom-
mender system data sets, that both the MAG and DSAG give
more accurate predictions for some users. Additionally, for
very sparse data sets, we find that both advice givers can give
identical results. We analyze this phenomenon and provide
accuracy results on synthetic data sets with these properties.
Because neither advice giver can be excluded as less accu-
rate, we provide two algorithms to dynamically select which
advice giver to use for each user and validate our results and
algorithms on a fourth recommender data set.

Advice Giver Evaluation - Synthetic Data
In this section, we evaluate the worst-case and more real-
istic review matrices and user preferences to better under-
stand the performance of the MAG and DSAG under dif-
ferent amounts of data sparsity and different reviewers. We
show that the MAG converges faster on the weight distri-
bution, assuming those best reviewers are the same across
categories. Then, we will show a more extreme case of the
example above where a user agrees strongly with one re-
viewer in each category and disagrees strongly with the rest,
causing the DSAG to perform better than the MAG. When
we relax the constraint of a different “best” reviewer in each
category, the MAG and DSAG perform equally well. Fi-
nally, we relax the assumption that all reviewers review all
products and explore very sparse review matrices. We show

 - 3 -

that in cases where reviewers only review products in a par-
ticular category, the two advice givers perform equally well.
We will use these results later to analyze our results from
three real recommender system data sets.

Sparse Data
For the following examples, we will assume that users have
polar preferences - either strongly disliking (1) or strongly
liking (5) each product. For simplicity, the user will always
strongly like the product and give it a 5. Also for simplicity,
we will only have m reviewers, m categories, and n >> m
products that are evenly distributed across the categories.

The MAG can converge on a single weight distribution
using all of the products while the DSAG instead uses m
weight distributions - one for each category. Assuming that
each of the m categorical weight distributions are similar,
the DSAG will converge on each distribution separately al-
though it turns out they should all be the same. If each
weight distribution takes the same amount of time to con-
verge, the DSAG will take longer to come to the same
conclusion as the MAG. If the products are not distributed
evenly across categories, it could take the DSAG much
longer to converge on the rare categories. As an example,
we define the review matrix in the following way:

Rij =


5 (p ∧ i = 1)
1 ((1− p) ∧ i = 1)
1 i 6= 1

For all categories, reviewer 1 is correct p percent of the
time and gives the same review as the rest of the review-
ers (1-p) percent of the time. The DSAG will have to find
this pattern for each weight distribution while the MAG only
finds it once. Because this is a simple distribution and all re-
viewers give reviews for all products, it takes relatively few
products to find the pattern. The MAG finds the right weight
distribution after 1/p products while the DSAG takes m/p
products to converge all distributions.

In general, it takes 1/p product reviews to find the weight
of each reviewer for each weight distribution. If not all re-
viewers provide reviews for each product, it could take much
longer to converge. The MAG also assumes that the weight
distributions for each category are similar. If they are not,
combining them together into the single distribution may
cause prediction errors.

Categorical Weight Distributions
The DSAG can perform well compared to the MAG when
the reviewers have very different weights in each category as
shown in the example above. As a more extreme example,
we define the review matrix in the following way:

Rij =
{

5 product j in category i
1 product j not in category i

It is quite obvious to see that if the user always says 5, that
reviewer i always has the highest weight in category i and
the rest of the reviewers have almost 0 weight. The weight
distribution for each category is very different. The DSAG

converges on the correct weights very quickly because of
the high degree of similarity between reviewers and the user.
The MAG, alternatively, sees an equal number of products in
each category and converges on a uniform weight distribu-
tion across reviewers. Because more reviewers recommend
the value 1 for each product, the MAG predicts incorrectly
every time. We tested this hypothesis with data generated
with the above rule on recommendation systems with the
weighted majority algorithm. The error rates of the systems
were calculated. The similarity distributions were also ex-
amined at the end of the trials to compare to the expected
distribution.

Advice Giver Accuracy
DSAG 100%
MAG 0%

Table 2: The domain-specific advice giver is 100% accurate
while the mediated advice giver is 0% accurate.

Table 2 shows the prediction accuracy by advice giver. As
expected, there is a significant drop in accuracy when com-
bining the domain-specific advice givers. The MAG con-
verges on a uniform weight distribution and gives the wrong
advice to the user for every product. The DSAG does not.
Next, we relax the requirement that each category have one
extremely accurate reviewer to understand how the two ad-
vice givers predict as the “best” reviewer becomes less ob-
vious.

Changing Weight Distributions
The greater the difference in weight distributions across dif-
ferent categories, the worse the MAG predicts. We have
shown that the MAG can perform significantly worse than
the DSAG in this situation. We will now show how the
DSAG and MAG predict equally as the reviewers’ weights
in each category converge to the same distribution. In other
words, in the previous example, it is 100% likely that re-
viewer i will predict correctly in for products in category i
and there is a 0% chance that any other user will be correct
for that product. Now, we create a review matrix based on a
probability p that reviewer i is the “best” reviewer for cate-
gory i in the following way:

Rij =


5 (p ∧ product j in category i)
1 ((1− p) ∧ product j in category i)
5 ((1− p) ∧ product j not in category i)
1 (p ∧ product j not in category i)

With probability p, the reviewer i gives review 5 and the
rest of the reviewers give review 1. Otherwise, some other
reviewer gives review 5 and the rest give review 1. As it be-
comes more likely that the reviewer that gives 5 is random,
the weight distribution for each category becomes more uni-
form. The MAG’s weight distribution is uniform in all cases
as before. It is important to note that if the “best” reviewer
is chosen any other way than uniform random, both algo-
rithms would perform better than random because there is a
reviewer with higher weight.

 - 4 -

Figure 1: The MAG’s % Error over 1000 products consis-
tently is high because of the uniform random weight distri-
bution. X-axis: number of categories and reviewers. Each
line: different probability p

Figure 2: The DSAG’s % Error over 1000 products gets
worse as the weight distribution becomes uniform random.
X-axis: number of categories and reviewers. Each line: dif-
ferent probability p (p=0 on bottom, p=1 on top)

Figures 1 and 2 show the error rates of the MAG and
DSAG respectively as we vary 0 ≤ p ≤ 1 in increments
of .1 and the number of categories from 3 to 10. As the
number of categories increases, there are more weight dis-
tributions that must each converge, increasing the error rate
overall until they do. When p = 0, the review matrix is
the same as the DSAG example above and the DSAG again
has perfect accuracy after converging while the MAG is al-
most always wrong. As p approaches 1, the domain-specific
weights become more uniformly random. However, as we
varied p, the mediated weight distribution over the review-
ers was consistently uniformly random and the error rate was
consistently high. Because it is not holding category infor-
mation, the MAG doesn’t find a difference between truly
random (p = 1) and domain-correlated (p = 0) reviews
and predicts the same way each time. The DSAG also has
a high error rate as the weight distributions become more
uniform. When the MAG and DSAG weight distributions
become more similar (to uniform or otherwise), the DSAG
and MAG predict the same. The DSAG performs better than
the MAG until the distributions are more than 50% similar.

Very Sparse Review Matrices
The previous tests assumed that reviewers gave reviews for
all products and all categories. However, this is a strong as-
sumption. Now we relax this assumption and look at much
sparser review matrices. For simplicity, we assume that
only a single reviewer provides reviews in each category,
although this can easily be scaled up to include disjoint sets
of reviewers. Here, we will also assume that the single re-
viewer has similar reviews as the user and both give reviews
of 5, although we could easily assume that a few of many
reviewers are similar. We define the entries of the review
matrix in the following way:

Rij =
{

5 product j in category i
− product j not in category i

The DSAG in this case only has a single reviewer to as-
sign a weight for each category and gives it full weight. The
MAG, however, must combine these reviewers together into
a single weight distribution. Because the products are uni-
formly distributed in the categories, the reviewers are also
uniformly weighted. However, unlike the previous examples
where the MAG had a high error rate, the MAG performs
equally as well as the DSAG here. Because the MAG only
has one review in the product column to compare against, it
always picks that review to follow and is 100% accurate -
the same as the DSAG.

We have shown in synthetic, simplified review matrices
that the MAG can converge on the weight distribution faster
than the DSAG with less data and that the DSAG is more
accurate when the categorical weight distributions are differ-
ent. However, we have also shown that the two advice givers
perform equally when the weight distributions are the same
across categories or when the review matrix is sparse and
there are disjoint sets of reviewers for each category. Next,
we analyze the properties of actual recommender systems to
understand how the two advice givers perform in these real
conditions with real data sparsity and real reviewers. It is
unclear whether the advice givers even perform the same for
two different users of the same recommender system. We
use these results to determine how the tradeoff between data
and weight distributions affects the accuracy of predictions
for different users.

Advice Giver Evaluation - Real Data
To understand how often data sparsity affects the accuracy of
the DSAG for users, we built two recommender systems us-
ing real data sets from popular recommender websites. We
compare the accuracy of the MAG to the DSAG across all
users and for each user, and evaluate how the weights of the
reviewers affect the success of the MAG. First, we describe
the recommender systems’ review matrices R.

Experimental Method
The reviewers and advice giver provide possible values V =
{1, 2, 3, 4, 5} to the user. For each recommender system, the
MAG and DSAG provide predictions for the same randomly
chosen users. We use the users’ reviews of products as the
truth for accuracy calculations and remove those reviews

 - 5 -

from R. In order to provide both advice givers with the
highest chance of convergence, both were given the users’
reviews for every product immediately after the prediction.
We now present the individual characteristics of three rec-
ommender system data sets and the users in those systems.

The 2007 Netflix data set contains over 100 million movie
ratings for over 480 thousand Netflix customers from over
17000 movie titles (Netflix 2007). The DSAG used movie
genres as domains. Because Netflix did not include genre
information in the data set, we cross-referenced movie titles
with movie genres and obtained the set the DSAG used: Sci-
ence Fiction, Fantasy, Special Interest, Kids/Family, Com-
edy, Western, Action/Adventure, Musical/Performing Arts,
Drama, Documentary, and Foreign. Only the movies with
a single genre were used, which resulted in a smaller data
set of N = 400 movies, over 100,000 reviewers, and over 4
million reviews. Approximately 1% of the review matrix R
was filled.

The Yahoo! Research Webscope Music review data set
contains over 717 million reviews by M = 1.8 million Ya-
hoo! Music reviewers for N = 136,000 songs collected
from 2002 to 2006 (Webscope 2008b). Each reviewer was
guaranteed to have reviewed at least 30 songs and each song
was reviewed by at least 20 reviewers, sparse in comparison
to the total number of songs and reviewers. The DSAG uses
20 main genres of music provided in the data set. For each
new user, there were an average of 100,000 reviewers giving
reviews for their songs.

The final General Products data set was collected from
a popular online shopping website (Leskovec, Adamic,
and Huberman 2006). Over two years of data collection,
3,943,084 reviewers made 15,646,121 reviews for 548,523
products. 5813 products were discontinued and were thus
removed from the set. The DSAG used the ten product cate-
gories defined in the dataset (i.e., Book, DVD, Electronics).
For each recommendation, the dataset provides the ID of the
reviewer, the numerical recommendation as defined above,
the date that the recommendation was given, and the product
that was reviewed. On average, users made recommenda-
tions for about 100 products, with one user recommending
over 12000 and each product had between 3 and 2500 rec-
ommendations. Approximately .007% of the review matrix
is filled.

Results
To evaluate the accuracy of each advice giver, we compare
the mean squared error (MSE) of the advice givers’ predic-
tions to the users’ reviews to capture the distance between
the values. We test whether there is a difference between the
MSEs of the MAG and DSAG using an ANOVA (Analysis
of Variance). 50 users from Netflix and the General Prod-
ucts and 20 users from Yahoo! Music were randomly cho-
sen from the sets to test. We divide this analysis up by the
sparsity of the dataset - General Products are sparse, while
Netflix and Yahoo! are not as sparse.

Results for Very Sparse Dataset For the General Product
data set, our experimental results show there was no sig-
nificant difference (MAG ∆MSE = .47, DSAG ∆MSE =

.53) (F = .59, df = 1, p > .05) between the DSAG and
MAG. In other words, there is no increase in accuracy as we
combine the domain-specific advice givers for each product
genre together into a single mediated advice giver. While it
is expected that users of multiple systems make reviews for
all of them so combining the systems results in more data,
we found that users tended to focus their reviews on a spe-
cific category of products instead of reviewing products in
all categories.

Although the entire user set was shared for all of the do-
mains in the General Product dataset, the set of users that
gave reviews for products in one category most likely did
not give reviews in any other category. If the most simi-
lar users (with the highest weight) in each domain are dis-
joint, then both DSAG and MAG give the same predictions
because the relative weights of the reviewers in each cat-
egory are the same for both advice givers. We found that
the overall performance does not change because given the
sparse data, each reviewer only has one accurate weight in
one category - the one they provide reviews in. When the
weight distributions of the DSAG are combined into the sin-
gle MAG distribution, the single category weight is carried
into the new distribution (and normalized) without the need
to average multiple weights together because the weight in
the rest of the categories have not changed from the initial-
ized value. The MAG weight distribution is the same as, and
not better than, each DSAG.
Results for Other Datasets For the Yahoo! and Netflix
data sets, our experimental results show that there is no
statistically significant difference between the MSEs of the
MAG (MSE=2, std. dev. = .5) and DSAG (MSE=1.8, std.
dev = .3) for all users combined (F = 2.75, df = 1, p >
0.05). We do find significant differences in the models for
individual users. For half of the users in both data sets, the
DSAG had a statistically significant lower MSE (∆MSE =
.5, std. dev = .4) than the MAG (F = 7.14, df = 1, p <
0.01), but for the other half of the users, the MAG was more
accurate (∆MSE = .25, std. dev. = .2) although this was not
statistically significant.

We found (as expected) that the MAG has a higher ac-
curacy than the DSAG when there were not enough prod-
ucts reviewed by the user for the DSAG’s domain-specific
weights to converge. The DSAG provides more accurate
predictions when different reviewers have the highest weight
in different domains (See Example in Section 2). Addition-
ally, users for which the DSAG made better predictions typ-
ically focused their product requests and reviews in a few
domains and did not require all domains, allowing those
domain weights to converge quickly. Because half of the
users benefitted from each advice giver, neither advice giver
should be used to make predictions for all users. We pro-
pose an online selection algorithm to autonomously deter-
mine which advice giver should make predictions for each
user.

We have seen in both synthetic and real recommender sys-
tem data that when review matrices are very sparse, both ad-
vice givers perform the same because the data is both sparse
and the weight distributions are disjoint. Next, we will an-

 - 6 -

alyze the number of categories a reviewer must provide re-
views in, in order to see a difference in accuracy between
the DSAG and MAG advice givers. Then, assuming review-
ers provide enough reviews so that the data is not as sparse,
we propose two online selection algorithms to autonomously
determine which advice giver should make predictions for
each user.

Very Sparse Data
We have shown that in very sparse matrices, there may
not be any overlap in reviewers across categories. In other
words, reviewers only review products in a single category.
The MAG and DSAG produce different weight distributions
but the same predictions with the same accuracy. Now, we
will show how the MAG is affected as reviewers review
products in more categories and as we can collect more data
to overcome the extreme sparseness of the review data. We
will use the same assumptions as before. The user always
gives review 5, so the reviewer that reviews a product with
value 5 should have the highest weight.

Different Weight Distributions
First, instead of completely disjoint sets of reviewers for
each category, our reviewers review products in a set of
categories. Only a single reviewer is correct in each cate-
gory but several other reviewers also give incorrect reviews.
More concretely, we define the review matrix in the follow-
ing way:

Rij =


5 product j in category i
1 product j in categories (i+1)%m - (i+k)%m
− otherwise

Reviewer i is correct for category i and gives reviews
far from the user’s preference for categories (i+1)%m to
(i+k)%m. The value k is the number of reviewers that pro-
vide reviews for each product. By varying k, we can un-
derstand how the MAG is affected as the amount of overlap
increases in the categories that reviewers review for. We no-
tice that k = 0 means that only a single reviewer reviews
products in a single category. Also, k = m means that all
reviewers provide reviews for all products. We are interested
in how the MAG behaves for values between 0 and m. We
know that although it may take the DSAG longer to con-
verge on the categorical weight distributions, it will always
have 100% accuracy.

Figure 3 shows the error rate (y-axis) for the MAG
and DSAG with m = {1, ..., 10} (x-axis) and with k =
{1, ..., 10}. Each line represents a different k. Note that
there cannot be more than m reviewers overlapping at a time,
so the line for k starts at m. The line for 3 overlapping re-
viewers starts at 100% error rate at m = 3 and drops a little
before converging at a high error rate. Because all reviewers
are “best” for one category, the MAG converges to a uni-
form distribution. A majority of the reviewers give reviews
that conflict with the user, but the MAG follows the major-
ity so it predicts incorrectly nearly all the time depending on

Figure 3: The DSAG has almost 0% error no matter how
many reviewers review each product. The MAG has perfect
accuracy when the reviewers in each category are disjoint
(k = 1). However, it is almost always wrong for k > 1 and
any amount of overlap with reviewers.

the order of products. The DSAG always finds the correct
weight distribution and maintains a 0% error over all k.

There is no statistical significance between the error rates
of the ks. As we increase k, the error is nearly constant.
However this error is expected because the weight distribu-
tions are so different for each category. Next, we evaluate
the MAG performance on categorical weight distributions
that are similar but have sparse reviewer data.

Similar Weight Distributions
We know that the MAG converges faster than the DSAG
when the categorical weight distributions are similar and all
reviewers always give reviews. Now we create a new review
matrix such that there are a few (e.g., 2) “best” reviewers for
a user and the rest give opposing reviews:

Rij =


5 (p ∧ i = 1)
5 ((1− p) ∧ i = 2)
1 (q ∧ i 6= 1)
− otherwise

With some probability p, reviewer 1 gives the best re-
sponse and otherwise reviewer 2 gives the best response.
Then the rest of the reviewers each give a response with
some other probability q and otherwise give no response.
These distributions do not depend on the category, so the
DSAG would have to find this same distribution for each
category. The MAG finds it just once.

If either reviewer 1 or reviewer 2 always provides a re-
view for a product, the MAG can find these best reviewers
after getting reviews from each of them only a few times.
Because these reviewers are always correct with respect to
our user, a MAG that always trusts them will also always be
correct. Although these reviewers never appear at the same
time, the MAG still has one reviewer that has high weight to

 - 7 -

use. The rest of the reviewers have low weight and are not
included in the prediction. If there are products for which
neither of the “best” reviewers provide reviews, there is no
way for the MAG to produce a good answer. The MAG
can be as accurate and converge on the reviewer weights
faster than the DSAG when the similarity distributions are
the same and reviewers do provide reviews for products in
multiple categories.

We have shown that the MAG and DSAG are each more
accurate for some users, depending on the products they
choose from the review matrix. In very sparse review ma-
trices where reviewers provide reviews in only a single cat-
egory, both the MAG and DSAG have the same accuracy.
If we can increase the amount of data to get reviewers to
review products in multiple categories, both the DSAG and
MAG can perform well under some conditions. Because it is
not known which advice giver will be more accurate when a
user joins a recommender system, the recommender system
must calculate predictions of both advice givers as the user
requests reviews and provides reviews to determine which is
more accurate. We present two online selection algorithms
for the recommender system to use in determining which ad-
vice giver (DSAG or MAG) makes the best predictions for
each user.

User-Dependent Online Selection Algorithm
First, we show a user-dependent online selection algorithm
(UdOS) which picks the single best advice giver for each
user. The UdOS Algorithm (Algorithm 3) first initializes a
new DSAG and MAG for the new user and sets their accu-
racies to 0 (Steps 1-2). Because the MAG provides better
predictions when there are fewer data points available, the
MAG’s predictions are provided to each user to start (Step
3). Additionally, the algorithm requires that the domain-
specific weights converge before making a decision. It has
been shown that the weighted majority algorithm requires
approximately dlog(M)e user reviews to converge (Little-
stone and Warmuth 1994). However, the advice givers actu-
ally require at least one review from each advice giver find
the most accurate weights. Thus, the algorithm takes linear
time O(M) in the number of reviewers to converge. The
count num usr reviews of the current number of reviews
is initialized to 0 (Step 4).

Until the recommender system has received enough user
reviews, the UdOS algorithm makes predictions for the user
with the current most accurate advice giver (Steps 5-17).
The user requests a product pj to be predicted by the recom-
mender system (Step 6). The algorithm gets both the MAG
and DSAG predictions (Steps 7-8), but gives the user only
the prediction from the current best advice giver (Step 9).
If the recommender system receives the user’s actual review
aj , the algorithm increases the count of the user reviews,
and recalculates the best advice giver using the new accu-
racy (Steps 10-16). After enough reviews have been col-
lected from the user, UdOS maintains only the best advice
giver, which continues to reweigh reviewers (Steps 18-21).

Using the UdOS algorithm for each user, the recom-
mender system can decide whether the data sparsity or re-
viewers’ weights affect the prediction accuracy more and

Algorithm 3 User-Dependent Selection Algorithm
1: dsag ← new DSAG(u), mag ← new MAG(u)
2: accMAG ← 0, accDSAG ← 0
3: BestAG← mag
4: num usr reviews← 0
5: while num usr reviews < M do
6: pj ← getProductRequest()
7: predMAG ← mag.predict(pj)
8: predDSAG ← dsag.predict(pj)
9: print predBestAG

10: if receive aj then
11: num usr reviews ++
12: accMAG ← calcAcc(mag)
13: accDSAG ← calcAcc(dsag)
14: mag.update(aj), dsag.update(aj)
15: BestAG ← if (accMAG < accDSAG) ?mag :

dsag
16: end if
17: end while
18: loop
19: p← getProductRequest()
20: print BestAG.predict(p)
21: end loop

choose the best advice giver. Although it is less computa-
tionally efficient to calculate the predictions from both the
DSAG and MAG, because the algorithm picks the single
best advice giver, the recommender system provides better
predictions for all users. After making the selection, it saves
memory and computation by maintaining only the best one.

User- and Category-Dependent Online
Selection Algorithm

Our second selection algorithm picks the best advice giver
for each category (UCdOS). If the DSAG converges for one
or a few categories because the user focuses on those cate-
gories, this algorithm can pick the DSAG for those that have
converged and continue to use the MAG for all other cate-
gories. The UCdOS Algorithm (Algorithm 4) first initializes
a new DSAG and MAG for the new user and sets their accu-
racies to 0 (Steps 1-5) as in the UdOS algorithm.

Until recommender system has received enough user re-
views, the UCdOS algorithm makes predictions for the user
with the current most accurate advice giver for each category
(Steps 5-18). The user requests a product pj in category ck

to be predicted by the recommender system (Steps 6-7). The
algorithm gets both the MAG and DSAG predictions (Steps
8-9), but gives the user only the prediction from the cur-
rent best advice giver for category ck (Step 10). If the rec-
ommender system receives the user’s actual review aj , the
algorithm increases the count of the user reviews, and recal-
culates the best advice giver using the new accuracy (Steps
11-17). After enough reviews have been collected from the
user, UCdOS maintains only the best advice giver for each
category, which continues to reweigh reviewers (Steps 19-
23).

Using the UCdOS algorithm for each user, the recom-

 - 8 -

Algorithm 4 User- and Category-Dependent Selection Alg.
1: dsag ← new DSAG(u), mag ← new MAG(u)
2: accMAG ← 0, accDSAG ← 0
3: BestAG← mag
4: num usr reviews← 0
5: while num usr reviews < dlog(M)e do
6: pj ← getProductRequest()
7: ck ← pj .getCategory()
8: predMAG ← mag.predict(pj)
9: predDSAG ← dsag.predict(pj)

10: print predBestAG[ck]

11: if receive aj then
12: num usr reviews ++
13: accM ← calcAcc(mag)
14: accDS ← calcAcc(dsag)
15: mag.update(aj), dsag.update(aj)
16: BestAG[ck]← if (accM < accDS) ?mag : dsag
17: end if
18: end while
19: loop
20: p← getProductRequest()
21: c← p.getCategory()
22: print BestAG[c].predict(p)
23: end loop

mender system can decide for each category whether the
data sparsity or reviewers’ weights affect the prediction ac-
curacy more and choose the best advice giver on a category
specific basis. This allows for more flexibility in the prod-
ucts the user picks. The UdOS algorithm requires that the
user pick products from all categories uniformly in order to
determine whether the DSAG or MAG is better overall for
all categories. In the UCdOS algorithm, even if users do
not pick products uniformly across categories, the most ap-
propriate advice giver is chosen. If a user does not request
products in some categories, there is less data to train from
and the MAG would produce better results. When a weight
distribution for a category has converged, the DSAG is more
appropriate to use and the UCdOS algorithm uses that.

The UCdOS is less computationally efficient than the
UdOS, because it must maintain the DSAG and MAG un-
til all of the DSAG weight distributions converge, but if it
means that it provides better predictions than any other al-
gorithm it may be worth it.

Validation
The UdOS and UCdOS algorithms will choose the advice
giver with the highest accuracy after enough products are
reviewed by the user. Ideally, the accuracy of the predic-
tions from the algorithm will be as good as the best advice
giver even through the selection process in order to main-
tain user satisfaction with the recommender system. In or-
der to validate that the UdOS and UCdOS algorithms both
pick the better advice giver and maintain high accuracy, we
tested them against the MAG and DSAG advice givers on a
fourth recommender system data set. We calculate accuracy
over time to understand how both selection algorithm per-

form and show that they finds the best advice giver for each
user while minimizing errors.

Experimental Method
The Yahoo! Movies data set contains 7,642 users, 11,915
movies and 211,231 reviews (Webscope 2008a). We use the
same movie genres for domains as the Netflix movies data
set. Only the movies with a single genre were used which
resulted in a smaller data set of 9,000 reviewers for 1000
movies. Only 0.23% of the review matrix R was filled. Each
product was reviewed by at least two reviewers.

We use the same recommender system setup as the exper-
imental results above. The advice givers and selection al-
gorithms provide possible values V = {1, 2, 3, 4, 5} for the
same randomly chosen users. The advice givers received the
users’ reviews after every product prediction and use the re-
views, which were removed from R, to reweigh reviewers.
We report the MSE instead of accuracy because it better rep-
resents the error distance between the prediction and users’
reviews. Additionally, because we did not have enough data
to wait for all of the M reviews, we used logM as the pa-
rameter to wait before converging on the best advice giver
so that we could report a best advice giver for each user. In
general, it became obvious which advice giver to choose af-
ter waiting for only logM reviews for this data set although
for some users it was not sufficient.

We found that the calcAcc function should place more
weight on the later predictions and less weight on the earlier
predictions because the advice giver was more likely to be
incorrect with fewer user reviews when determining the best
advice giver. We used a step function as follows although
we found that any linear function or step function with a
different span produced the same results.

calcAcc(ag) = avg(accuracy recent 10 predictions)

If the DSAG makes poor predictions for new domains at
the beginning of the product set, the UdOS and UCdOS will
always determine that it has a lower accuracy. We use both
the cumulative (unweighted) and weighted MSEs in the re-
sults. Twenty users were chosen at random as test users.
Each user requested predictions for between 20 and 130
products. The MAG, DSAG, and UdOS and UCdOS algo-
rithms’ predictions were recorded for each user and used to
calculate each unweighted MSE (see Tables 3 and 4).

UdOS Results
Overall, thirteen users received better predictions from the
DSAG and 6 received better predictions from the MAG. One
user received equivalent predictions from both advice givers.
Our results show that for all 20 users the UdOS algorithm
picked the best advice giver. Furthermore, the UdOS algo-
rithm’s error was no worse than the worst advice giver and at
times can be better than the best advice giver. We will now
describe in more detail how the UdOS algorithm chose the
advice givers for some users.

For User 1, data sparsity affected the predictions from the
DSAG and he received better predictions from the MAG, so
the UdOS algorithm continued using the MAG for the dura-
tion of the product set. User 19 received better predictions

 - 9 -

(a) The cumulative MSE for User 8 over time. (b) The weighted MSE for User 8 over time.

Figure 5: The UdOS used the DSAG for User 8 on products 5-32 when the MAG was providing worse predictions. After
product 32, the MAG provided better predictions and the UdOS switched back to using it.

Figure 4: For User 19, the UdOS algorithm uses the MAG
advice until it has seen enough data to conclude that the
DSAG is better and then switches to use its predictions
(product 18).

from the DSAG than the MAG, because the user’s similar re-
viewers were different for each product domain. The UdOS
algorithm recognized that the DSAG had a lower MSE (See
Figure 4) and switched to using the DSAG’s predictions at
product 18. After the switch, the UdOS cumulative MSE
converged towards that of the DSAG.

The algorithm picked the DSAG for other users like 10,
but the switch occurred late enough that the cumulative MSE
did not start converging towards the DSAG’s MSE. Because
the cumulative MSE was the same for both the DSAG and
MAG for User 16, it didn’t matter which advice giver the
UdOS picked (marked with ** in Table 3). As a result, it
continually used the MAG that it started with.

The UdOS algorithm picked the advice giver with higher
overall MSE for three users (marked with * in Table 3).
User 8, for example, received better predictions from the
UdOS algorithm than either the MAG or DSAG could pro-
vide alone because the UdOS switched back and forth be-

User MAG DSAG UdOS Selection
1 1.09 1.29 1.09 MAG
2 1.29 1.40 1.38 MAG
3 1.35 1.49 1.35 MAG
4 1.32 1.41 1.32 MAG
5 1.27 1.36 1.27 MAG
6 2.48 2.48 2.48 MAG**
7 1.09 1.08 1.08 MAG*
8 1.78 1.59 1.51 MAG*
9 1.04 1.14 1.03 DSAG*
10 0.95 0.92 0.95 DSAG
11 0.51 0.38 0.51 DSAG
12 0.54 0.49 0.51 DSAG
13 1.08 0.58 0.61 DSAG
14 1.06 0.81 1.03 DSAG
15 1.03 0.97 1.03 DSAG
16 0.80 0.73 0.76 DSAG
17 0.67 0.63 0.63 DSAG
18 1.07 0.89 1.07 DSAG
19 0.50 0.38 0.46 DSAG
20 1.44 1.37 1.39 DSAG

Table 3: Six users received better predictions with lower cu-
mulative MSEs (bold) from the MAG while 13 received bet-
ter predictions from the DSAG.

tween the two advice givers before deciding which to use.
The MSE of the DSAG is lower than the MAG’s because the
MAG poorly predicted some products in the middle of the
set (specifically products 20-30) (See Figure 5(a)). However,
once the MAG’s weight distributions identified the most
similar reviewers (product 32), its predictions were better
than the DSAG’s and the UdOS algorithm picked the MAG
(See 5(b)).

UCdOS Results
Overall, nine users received the same predictions as the
UdOS, picking either one advice giver or the other for all
of the product categories the user requested (See Table 4, no
*). Note that this does not mean that the DSAG or MAG

 - 10 -

was chosen for all categories, just that it picked for all cate-
gories that there was data for. If a new product from a new
category was queried, while the UdOS would have to use
the same advice giver as it picked for the other categories,
the UCdOS could use the MAG until enough products in
that category were reviewed. This feature means that the
UCdOS could be more accurate using the MAG while the
DSAG’s weight distribution for the new category converges.
However it could be less accurate if the MAG distribution is
very different than the category weight distribution.

Six of the users received worse predictions from the UC-
dOS compared to the UdOS, but still at least as good as the
worse advice giver (See Table 4, *). In these cases, the
MAG’s single distribution was different from the DSAG’s
category distributions. The UCdOS used the MAG for each
category until the DSAG converged. The MAG produced
worse predictions in the UCdOS than if the DSAG was cho-
sen starting from a uniform distribution in the UdOS. This
is a particularly good instance of our initial example that the
MAG’s poor results when the DSAG’s categorical distribu-
tions are very different. The UdOS chooses the DSAG as
soon as there is any indication that the weight distributions
are different for different categories. Because it takes time
for each of the DSAG’s to converge, it is worse for the UC-
dOS to use the MAG before the convergence even though it
has an indication that the DSAG’s weights are different than
the MAG’s. In this case, waiting ensure the selection algo-
rithm picks the right advice giver for each category actually
makes the prediction accuracy worse.

Five reviewers received better predictions than the UdOS,
including several who received better predictions than either
the DSAG or MAG could provide alone (See Table 4, **).
These users had the best benefit from the data sparsity ver-
sus weight distribution tradeoff. The UCdOS was able to
use the DSAG for the categories that the user queried often
and the MAG for the other categories. The DSAG’s category
weight distributions were similar to the MAG’s distribution
for some categories and different in others. The UCdOS did
not have to pick a single advice giver and could take advan-
tage of the MAG instead of waiting for the category weight
distribution to converge to the same values. This sped up the
selection process, allowing the UCdOS to be more accurate
for longer than either of the two advice givers alone.

Discussion
Both of the user selection algorithms pick the best advice
givers with the knowledge they have. The UdOS algorithm
picks a single advice giver to use for the rest of the predic-
tions. Once it finds that two different categories have differ-
ent weight distributions and the DSAG is performing better,
it switches to using it. The algorithm makes the assump-
tion that if there are two weight distributions that are differ-
ent, that all will be different. More importantly, it makes a
strong tradeoff that the different distributions are more im-
portant than the data sparsity problem. If there are different
distributions, the algorithm must find each of the categorical
weight distributions and cannot take advantage of the MAG
while they converge.

The UCdOS algorithm picks an advice giver for each cat-

User MAG DSAG UCdOS
1 1.09 1.29 1.09
2 1.29 1.40 1.27*
3 1.35 1.49 1.46**
4 1.32 1.41 1.32
5 1.27 1.36 1.27
6 2.48 2.48 2.48
7 1.09 1.08 1.09**
8 1.78 1.59 1.78**
9 1.04 1.14 0.99*

10 0.95 0.92 0.89*
11 0.51 0.38 0.51
12 0.54 0.49 0.51
13 1.08 0.58 1.05**
14 1.06 0.81 1.06**
15 1.03 0.97 1.03
16 0.80 0.73 0.76
17 0.67 0.63 0.63
18 1.07 0.89 0.89*
19 0.50 0.38 0.41*
20 1.44 1.37 1.41**

Table 4: Five users (*) received better predictions from the
UCdOS while six users received better predictions from the
UdOS (**).

egory. It does not make the assumption that all weight distri-
butions are different, but does assume that the distributions
are either like the MAG distribution or not. It can take ad-
vantage of the MAG while each of the DSAG distributions
are converging, which greatly improved the accuracy of the
predictions for five users compared to the UdOS. However,
we found that sometimes the MAG is a detriment and us-
ing it makes the selection algorithm predict worse than the
UdOS when the MAG distribution is different from the cate-
gory weight distribution. Overall, both selection algorithms
do well for all of our test users and there is no clear better
algorithm to choose.

These selection algorithms do pick the best advice giver,
but still require that the weight distributions either be com-
pletely different from each other or the same as the MAG.
It is possible that high weight reviewers in DVDs have the
same high weight in books because the user likes mysteries
in both categories but have very different taste in clothes.
One other selection algorithm that could be tested in future
work would be one that tests whether any of the converged
category weight distributions perform well for a new cate-
gory. This algorithm would take advantage of all the pre-
vious work done to converge the distribution and speed up
the convergence of a new distribution making the algorithm
more accurate earlier in the product queries. It would be
more costly, however, in the space required to hold all of the
possible distributions.

Conclusion
In this work, we first presented an overview of how ad-
vice givers weigh reviewers and make predictions for users.
We presented the Mediated (MAG) and Domain-Specific
(DSAG) advice givers that weigh the tradeoffs between data
sparsity and reviewers’ weights differently and affect predic-

 - 11 -

tion accuracy in recommender systems. Although the DSAG
provides more accurate predictions when there are sufficient
reviews, using a MAG was recently suggested when review
data is too sparse. We used three real recommender data sets
to show that both advice givers provide accurate predictions
to some users. The DSAG provides more accurate predic-
tions to users when different reviewers were weighed highly
in different domains while the MAG is more accurate when
the review matrix and user reviews are sparse.

We presented our User-Dependent Online Selection Algo-
rithm and User- and Category-Dependent Online Selection
algorithm as two online methods for recommender systems
to decide which advice giver is more accurate for each user.
The algorithms wait for the reviewers’ weights to converge
before picking the best advice giver. We validated our find-
ings on a fourth recommender data set and demonstrated
that the UdOS algorithm successfully picks the better ad-
vice giver to provide the most accurate predictions possible
for each user. We conclude that a recommender system that
uses the UdOS or UCdOS algorithms make better predic-
tions for all users than one that uses only one of the two
advice givers.

References
Adomavicius, G., and Tuzhilin, A. 2005. Toward the next
generation of recommender systems: A survey of the state-
of-the-art and possible extensions. IEEE Trans. on Knowl-
edge and Data Engineering 734–749.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R.
1995. Gambling in a rigged casino: The adversarial multi-
armed bandit problem. In FOCS, 322–331.
Berkovsky, S.; Kuflik, T.; and Ricci, F. 2007a. Cross-
domain mediation in collaborative filtering. In User Mod-
eling, 355–359.
Berkovsky, S.; Kuflik, T.; and Ricci, F. 2007b. Distributed
collaborative filtering with domain specialization. In Rec-
ommender Systems, 33–40.
Blum, A., and Mansour, Y. 2005. From external to internal
regret. In COLT, 621– 636.
Burke, R. 2002. Hybrid recommender systems: Survey
and experiements. User Modeling and User-Adapted In-
teraction 12(4):331–370.
Freund, Y.; Schapire, R.; Singer, Y.; and Warmuth, M.
1997. Using and combining predictors that specialize. In
STOC, 334–343.
Leskovec, J.; Adamic, L.; and Huberman, B. 2006. The
dynamics of viral marketing. In ACM Conf. on Electronic
Commerce, 228–237.
Littlestone, N., and Warmuth, M. 1994. The weighted
majority algorithm. Information and Computation 212–
261.
Nakamura, A., and Abe, N. 1998. Collaborative filtering
using weighted majority prediction algorithms. In Interna-
tional Conference on Machine Learning, 395–403.
Netflix. 2007. The netflix dataset and prize.

Umyarov, A., and Tuzhilin, A. 2007. Leveraging aggre-
gate ratings for better recommendations. In Recommender
Systems, 161–164.
Webscope, Y. R. 2008a. Movie user ratings of movies and
descriptive content information v1.0.
Webscope, Y. R. 2008b. Music user ratings of songs with
song attributes v1.0.

 - 12 -

Using Gaussian Spatial Processes to
Model and Predict Interests in Museum Exhibits
Fabian Bohnert, Ingrid Zukerman, and Daniel F. Schmidt

Faculty of Information Technology, Monash University
Clayton, VIC 3800, Australia

{fabianb,ingrid,dschmidt}@infotech.monash.edu.au

Abstract
This paper adapts models from the area of spatial
statistics to the task of predicting a user’s inter-
ests (i. e., implicit item ratings) within a recom-
mender system in the museum domain. We de-
velop a model based on Gaussian spatial processes,
and discuss two ways of computing item-to-item
distances in the museum setting. Our model was
evaluated with a real-world dataset collected by
tracking visitors in a museum. Overall, our model
attains a higher predictive accuracy than nearest-
neighbour collaborative filters. In addition, the
model variant using physical distances outperforms
that using distances computed from item-to-item
similarities.

1 Introduction
Spatial processes (random fields) are a subclass of stochastic
processes which are applied to domains that have a geospa-
tial interpretation, e. g., [Diggle et al., 1998; Banerjee et al.,
2004]. They are typically used in the field of spatial statistics
to model spatial associations between a set of observations
made at certain locations, and to predict values at locations
where no observations have been made. This paper applies
such models to the prediction of a user’s interests or item rat-
ings in recommender systems (RS). We develop our Spatial
Process Model (SPM) by adapting a Gaussian spatial process
model to the RS scenario, and demonstrate our model’s ap-
plicability to the task of predicting implicit ratings in the mu-
seum domain. The use of spatial processes requires a measure
of distance between items in addition to users’ ratings. This
measure, which is non-specific (e. g., it may be a physical or
a conceptual distance), can be readily obtained in most cases.
For example, distances could be computed from feature vec-
tors representing the items (similarly to content-based RS),
from item-to-item similarities (similarly to item-to-item col-
laborative filtering [Sarwar et al., 2001]), or from physical
distance. In this paper, we explore the latter two measures.

Our application scenario is motivated by the need to au-
tomatically recommend exhibits to museum visitors, based
on non-intrusive observations of their actions in the physi-
cal space. Employing RS in this scenario is challenging due
to (1) the physical nature of the domain, (2) having exhibit

viewing times rather than explicit ratings, and (3) predictions
differing from recommendations (we do not want to recom-
mend exhibits that visitors are going to see anyway). We turn
the first challenge into an advantage by exploiting the fact
that physical distances between exhibits are meaningful, en-
abling the use of walking distance between exhibits to calcu-
late (content) distance. This supports the direct, interpretable
application of spatial processes by using a simple paramet-
ric Gaussian spatial process model (with the ensuing low
variance in parameter estimates), compared to more complex
non-parametric approaches, e. g., [Schwaighofer et al., 2005].
The second challenge, which stems from the variable seman-
tics of viewing times (time t for different exhibits could mean
interest or boredom), is naturally addressed by SPM’s struc-
ture. The third challenge can be addressed by (a) using SPM
to build a model of a visitor’s interests in unseen exhibits,
(b) inferring a predictive model of a visitor’s pathway through
the remainder of the museum [Bohnert et al., 2008], and
(c) combining these models to recommend exhibits of interest
that may be overlooked if the predicted pathway is followed.

SPM was evaluated with a real-world dataset of time spans
spent by museum visitors at exhibits (viewed as implicit rat-
ings). We compared our model’s performance to that of (1) a
baseline model which delivers a non-personalised prediction,
and (2) a nearest-neighbour collaborative filter incorporat-
ing performance-enhancing modifications, e. g., [James and
Stein, 1961; Herlocker et al., 1999]. Our results show that
SPM significantly outperforms both models.

The paper is organised as follows. In Section 2, we discuss
related research. Section 3 describes our domain and dataset.
Our spatial processes approach for modelling and predicting
exhibit interests is developed in Section 4. In Section 5, we
present the results of our evaluation, followed by a discussion
in Section 6 and our conclusions in Section 7.

2 Related Research
Recommender systems (RS) are designed to direct users to
personally interesting items in situations where the amount
of available information exceeds the users’ processing capa-
bility [Resnick and Varian, 1997; Burke, 2002]. Typically,
such systems (1) use information about a user (i. e., a user
model) to predict ratings of items that the user has not yet
considered, and (2) recommend suitable items based on these
predictions. Collaborative modelling techniques constitute

 - 13 -

one of the main model classes applied in RS [Albrecht and
Zukerman, 2007]. They base their predictions upon the as-
sumption that users who have agreed in their behaviour in the
past will agree in the future.

The greatest strength of collaborative approaches is that
they are independent of any representation of the items being
recommended, and work well for complex objects, for which
features are not readily apparent. The two main collaborative
approaches are memory-based and model-based. Previous
research has mainly focused on memory-based approaches,
such as nearest-neighbour models (classic collaborative fil-
tering), e. g., [Herlocker et al., 1999]. The main drawback of
memory-based algorithms is that they operate over the entire
user database to make predictions. In contrast, model-based
approaches use techniques such as Bayesian networks, latent-
factor models and artificial neural networks, e. g., [Breese et
al., 1998; Bell et al., 2007], to first learn a statistical model
in an offline fashion, and then use it to make predictions and
generate recommendations. This decomposition can signifi-
cantly speed up the recommendation generation process.

Personalised guide systems in physical domains have of-
ten employed adaptable user models, which require visitors
to explicitly state their interests in some form. For example,
the GUIDE project [Cheverst et al., 2002] developed a hand-
held tourist guide for visitors to the city of Lancaster, UK.
It employed a user model obtained from explicit user input
to generate a dynamic and user-adapted city tour, where the
order of the visited items could be varied. In the museum do-
main, the CHIP project [Aroyo et al., 2007] investigates how
Semantic Web techniques can be used to provide personalised
access to digital museum collections both online and in the
physical museum, based on models that require an explicit
initialisation.

Less attention has been paid to predicting preferences
from non-intrusive observations, and to utilising adaptive user
models that do not require explicit user input. In the museum
domain, adaptive user models are usually updated from a
user’s interactions with the system, the focus being on adapt-
ing content presentation as opposed to predicting and rec-
ommending exhibits to be viewed. For example, HyperAu-
dio [Petrelli and Not, 2005] dynamically adapted the pre-
sented content and hyperlinks to stereotypical assumptions
about a user, and to what a user has already accessed and
seems interested in. The augmented audio reality system for
museums ec(h)o [Hatala and Wakkary, 2005] treated user in-
terests in a dynamic manner, and adapted its user model on
the basis of a user’s interactions with the system. The col-
lected user modelling data were used to deliver personalised
information associated with exhibits via audio display. The
PEACH project [Stock et al., 2007] developed a multimedia
handheld guide which adapts its user model on the basis of
both explicit visitor feedback and implicit observations of a
visitor’s interactions with the device. This user model was
then used to generate personalised multimedia presentations.

These systems, like most systems in the museum domain,
rely on knowledge-based user models in some way, and
hence, require an explicit, a-priori engineered representation
of the domain knowledge. In contrast, our research investi-
gates non-intrusive statistical user modelling and recommen-

dation techniques that do not require such an explicit domain
knowledge representation [Albrecht and Zukerman, 2007].

3 Domain and Dataset
The GECKO project endeavours to develop user modelling
and personalisation techniques for information-rich physical
spaces, relying on non-intrusive observations of users’ be-
haviour [Bohnert et al., 2008]. Developing such non-intrusive
user modelling and personalisation techniques for museums
requires datasets about visitor behaviour in the physical mu-
seum space (i. e., visitor pathways). Datasets that are suitable
for the development phase can be obtained by manually track-
ing museum visitors. Such a data collection methodology is
clearly inappropriate for model deployment, but it facilitates
model development by eschewing issues related to technol-
ogy selection and instrumentation accuracy.

Museums such as Melbourne Museum (Melbourne, Aus-
tralia) display thousands of exhibits distributed over many
separate galleries and exhibitions. Normally, visitors do not
require recommendations to travel between individual, logi-
cally related exhibits in close physical proximity. Rather, they
may prefer recommendations regarding physically separated
areas. In order to gather data for assessing predictive models
that support appropriate recommendations, we grouped Mel-
bourne Museum’s individual exhibits into semantically co-
herent and spatially confined exhibit areas. This task, which
was performed with the assistance of museum staff, yielded
126 exhibit areas. Figure 1 depicts the site map of Melbourne
Museum showing these exhibit areas, together with one of the
visitor pathways we collected.

To obtain our dataset, we manually tracked visitors to Mel-
bourne Museum from April to June 2008, using a custom-
made tracking tool running on laptop computers [Bohnert and
Zukerman, 2009]. In total, we recorded over 170 visitor path-
ways. We only tracked first-time adult visitors travelling on
their own, to ensure that neither prior knowledge about the
museum nor other visitors’ interests influenced a visitor’s de-
cisions about which exhibits to view. Prior to the data col-
lection, we briefed our trackers on the usage of our tracking
software, the layout of the museum, and its digital represen-
tation on the site map. Additionally, we clarified what should
be considered a viewing event. After the data collection, the
visitor pathways were post-processed using a post-processing
tool we developed. For instance, we removed tracking events
that could not have possibly occurred, e. g., visitor transitions
from one end of the museum to the other and back within
a few seconds, or transitions outside the museum walls and
back. We also removed incomplete visitor pathways, e. g.,
due to a laptop computer running out of battery, or a vis-
itor leaving unexpectedly. The resulting dataset comprises
158 complete visitor pathways in the form of time-annotated
sequences of visited exhibit areas, with a total visit length
of 291:22:37 hours, and a total viewing time of 240:00:28
hours. The dataset also contains demographic information
about the visitors, which was obtained by means of post-visit
interviews conducted by our trackers. In total, we obtained
8327 viewing durations at the 126 exhibit areas, yielding an
average of 52.7 exhibit areas per visitor (41.8% of the exhibit

 - 14 -

(a) Melbourne Museum – Ground level (b) Melbourne Museum – Upper level

Figure 1: Visitor pathway visualised on a site map of Melbourne Museum

Table 1: Dataset statistics

Mean Stddev Min Max
Visit length (hrs) 1:50:39 0:47:54 0:28:23 4:42:12
Viewing time (hrs) 1:31:09 0:42:05 0:14:09 4:08:27

Exhibit areas / visitor 52.70 20.69 16 103
Visitors / exhibit area 66.09 25.36 6 117

areas). Hence, on average 58.2% of the exhibit areas were
not viewed by a visitor. This indicates that there is potential
for pointing a visitor to relevant but unvisited exhibit areas.
Table 1 summarises further statistics of the dataset.

Clearly, the deployment of an automated RS in a museum
requires suitable positioning technologies to non-intrusively
track visitors, and models to infer which exhibits are being
viewed. Although our dataset was obtained manually, it pro-
vides information of the type that may be inferred from sens-
ing data (the work described in [Schmidt et al., 2009] links
sensory and manually obtained information). Additionally,
the results obtained from experiments with this dataset are
essential for model development, as they provide an upper
bound for the predictive performance of our model.

4 Using Gaussian Spatial Processes to Model
and Predict Visitors’ Exhibit Interests

In this section, we first describe how we use viewing time to
quantify interest in exhibits (Section 4.1), and discuss the ap-
plicability of spatial process models [Banerjee et al., 2004]
to the prediction of a visitor’s interest in exhibits in our RS
scenario (Section 4.2). We then propose a model-based col-
laborative approach based on the theory of Gaussian spa-
tial processes for predicting a visitor’s (log) viewing times
(viewed as exhibit interests) from non-intrusive observations
of his/her (log) viewing times at visited exhibits (Section 4.3).

4.1 From Viewing Time to Exhibit Interest
In an information-seeking context, people usually spend more
time on relevant information than on irrelevant information,

as viewing time correlates positively with preference and in-
terest [Parsons et al., 2004]. Hence, viewing time can be used
as an indirect measure of interest. We propose to use log
viewing time (instead of raw viewing time), due to the fol-
lowing reasons. When examining our dataset (Section 3), we
found the distributions of viewing times at exhibits to be pos-
itively skewed (we use the terms ‘exhibit’ and ‘exhibit area’
synonymously in the remainder of this paper). Thus, the usual
assumption of a Gaussian model did not seem appropriate. To
select a more appropriate family of probability distributions,
we used the Bayesian Information Criterion (BIC) [Schwarz,
1978]. We tested exponential, gamma, normal, log-normal
and Weibull distributions. The log-normal family fitted best,
with respect to both number of best fits and average BIC score
(averaged over all exhibits). Hence, we transformed all view-
ing times to their log-equivalent to obtain approximately nor-
mally distributed data. This transformation fits well with the
idea that for high viewing times, an increase in viewing time
indicates a smaller increase in the modelled interest than a
similar increase in the context of low viewing times.

4.2 Spatial Statistics in the Context of Our
Application Scenario

Spatial statistics is concerned with the analysis and predic-
tion of geographic data [Banerjee et al., 2004]. Utilising spa-
tial processes, the field deals with tasks such as modelling the
associations between observations made at certain locations,
and predicting values at locations where no observations have
been made. The assumption made for spatial processes, that
correlation between observations increases with decreasing
site distance, fits well with our RS scenario, where viewing
times are usually more correlated the more related exhibits
are. Hence, by introducing a notion of spatial distance be-
tween exhibits to functionally specify this correlation struc-
ture, we can use spatial process models for predicting view-
ing times (i. e., exhibit interests). We use s1, . . . , sn to de-
note the locations of exhibits i, j ∈ I = {1, . . . , n} in a
space providing such a distance measure, i. e., ‖si− sj‖. For
example, ‖si − sj‖ can be computed from feature vectors
representing the items (similarly to content-based RS), from
item-to-item similarities (similarly to item-to-item collabora-
tive filtering [Sarwar et al., 2001]), or from physical distance.

 - 15 -

In this paper, we explore the two latter options: Item-to-Item
Distance and Physical Distance.

• Item-to-Item Distance (I2I). Item-to-item collaborative
filtering [Sarwar et al., 2001] utilises a database of rat-
ings to compute item-to-item similarities, and predicts
a current user’s rating of an unseen item from his/her
ratings of those items that are most similar to the item
in question. Inspired by how item-to-item similarities
are computed in this process, we use the observed log
viewing times to derive the I2I distance measure as fol-
lows. We first transform the log viewing times into z-
scores by normalising the values for each visitor sepa-
rately. This ensures that varying viewing behaviour does
not affect the similarity computation.1 Secondly, we cal-
culate item-to-item similarities using Pearson’s correla-
tion coefficient on the normalised log viewing times of
exhibits i and j (using only the normalised log viewing
times of those visitors that have viewed both exhibits i
and j). The resulting similarity value from within the in-
terval [−1, 1] is finally transformed into a distance mea-
sure by mapping it onto a value in [0, 1] (a similarity
value of −1 yields a distance of 1, and a similarity of 1
yields a distance of 0).

• Physical Distance (PD). Museums are carefully themed
by curatorial staff, such that closely-related exhibits are
in physical proximity. Based on this observation, we
hypothesise that physical walking distance between ex-
hibits is inversely proportional to their (content) simi-
larity. Thus, we use physical walking distance PD as
a measure of distance between exhibits. Specifically,
a SVG file-based representation of Melbourne Museum
was used to calculate the walking distances by mapping
the site map (Figure 1) onto a graph structure which pre-
serves the physical layout of the museum (i. e., prevent-
ing paths from passing through walls or ceilings). We
normalised the resulting distances to the interval [0, 1].

4.3 Our Gaussian Spatial Process Model
In this section, we utilise theory from the area of spatial
statistics (Section 4.2) to formulate a Gaussian spatial process
model, called Spatial Process Model (SPM), for predicting a
museum visitor’s interests in unseen exhibits (i. e., log view-
ing times) from his/her viewing behaviour at visited exhibits.

Let U = {1, . . . ,m} be the set of all visitors, and
I = {1, . . . , n} be the set of all items. Typically, for a vis-
itor u ∈ U , we have viewing times for only a subset of I , say
for nu exhibits. Denoting a visitor’s log viewing time vec-
tor with ru, we collect all observed log viewing times into a
vector r = (r1, . . . , rm) of dimension

∑m
u=1 nu. Associated

with each exhibit i ∈ I is a log viewing time mean µi and
a standard deviation σi. Let µ = (µ1, . . . , µn) be the vector
of mean log viewing times, and σ = (σ1, . . . , σn) the vector
of standard deviations. Furthermore, µu and σu are the vec-
tors of means and standard deviations respectively for only
those exhibits viewed by a visitor u. For example, if visitor 1

1We also tested a variant of the I2I measure without visitor-wise
normalisation. However, this variant yielded inferior results.

viewed exhibits 2, 3, 7 and 9, then µ1 = (µ2, µ3, µ7, µ9) and
σ1 = (σ2, σ3, σ7, σ9).

Similarly to spatial processes, SPM assumes a special cor-
relation structure between the viewing times of different ex-
hibits. In our experiments, we use a powered exponen-
tial [Banerjee et al., 2004]:

ρ(‖si − sj‖;φ, ν) = exp (− (φ‖si − sj‖)ν) ,

where φ > 0 and 0 < ν < 2. That is, ρ(‖si − sj‖;φ, ν)
models the correlation between the log viewing times of ex-
hibits i and j (ρ(‖si − sj‖;φ, ν) depends on the sites si
and sj of exhibits i and j only through the distance
‖si − sj‖). Let H(φ, ν) be a correlation matrix with com-
ponents (H(φ, ν))ij = ρ(‖si−sj‖;φ, ν) collecting all these
correlations, and let Hu(φ, ν) denote a visitor u’s correlation
matrix (dimension nu × nu). That is, Hu(φ, ν) corresponds
to H(φ, ν) without the rows and columns for unvisited ex-
hibits. Also, let θ =

(
µ,σ, τ2, φ, ν

)
be a vector representing

the 2n+ 3 model parameters, where τ2 denotes the variance
of non-spatial error terms necessary to fully specify the model
(these terms model non-spatial variation in the data). Then,
modelling the data using Gaussian spatial processes (a de-
tailed derivation appears in [Bohnert et al., 2009]), r given θ
is multivariate normal of dimension

∑m
u=1 nu. As the view-

ing times of different visitors u = 1, . . . ,m are independent,
the model simplifies to

ru |θ ∼ N (µu,Σu) for all u = 1, . . . ,m, (1)

where Σu = σu1nu
Hu(φ, ν)σu1nu

+ τ21nu
is a visitor u’s

covariance matrix, and 1nu
is the identity matrix of dimen-

sion nu × nu.
We employ Bayesian inference using SPM’s likelihood

function derived from Equation 1 to estimate θ from r (in
particular, we use slice Gibbs sampling [Neal, 2003]). This
solution offers attractive advantages over the classic frequen-
tist approach, such as the opportunity of incorporating prior
knowledge into parameter estimation via the prior distribu-
tion, and capturing the uncertainty about the parameters via
the posterior distribution.

Given the model parameters θ =
(
µ,σ, τ2, φ, ν

)
, our

model is fully specified, and we can use standard multivari-
ate normal theory to predict a current visitor a’s log viewing
times of unseen exhibits, say ra,1, from a vector of observed
log viewing times ra,2. This is because (ra,1, ra,2) |θ is nor-
mally distributed (similarly to Equation 1). If we use the fol-
lowing notation[

ra,1
ra,2

]
|θ ∼ N

([
µa,1
µa,2

]
,

[
Σa,11 Σa,12
ΣTa,12 Σa,22

])
,

then the conditional distribution p (ra,1|ra,2,θ) is normal
with mean vector and covariance matrix

E (ra,1|ra,2,θ) = µa,1 + Σa,12Σ−1
a,22 (ra,2 − µa,2) ,

Cov (ra,1|ra,2,θ) = Σa,11 − Σa,12Σ−1
a,22ΣTa,12,

where E (ra,1|ra,2,θ) represents a personalised prediction
of the log viewing times ra,1. Additionally, a measure
of confidence in this prediction can be easily derived from

 - 16 -

Cov (ra,1|ra,2,θ), i. e., by using the variances on the diago-
nal of this matrix.

Being a model-based approach, SPM offers advantages
over memory-based collaborative filters. For instance, the
model parameters θ =

(
µ,σ, τ2, φ, ν

)
have a clear inter-

pretation, and the confidence measure provided by the model
supports an informed interpretation of the model’s predic-
tions. Additionally, recommendation generation is sped up by
decoupling the model-fitting phase from the prediction phase.

5 Evaluation
This section reports on the results of an evaluation performed
with our dataset (Section 3), including comparison with a
nearest-neighbour collaborative filter.2

5.1 Experimental Setup
To evaluate the predictive performance of our Spatial Process
Model (SPM), we implemented two additional models: Mean
Model (MM) and Collaborative Filter (CF). MM, which we
use as a baseline, predicts the log viewing time of an ex-
hibit area i to be its (non-personalised) mean log viewing
time µi. For CF, we implemented a nearest-neighbour col-
laborative filtering algorithm, and added modifications from
the literature that improve its performance, such as shrink-
age to the mean [James and Stein, 1961] and significance
weighting [Herlocker et al., 1999]. Additionally, to ensure
that varying exhibit area complexity does not affect the simi-
larity computation for selecting the nearest neighbours (view-
ing time increases with exhibit complexity), we transformed
the log viewing times into z-scores by normalising the values
for each of the exhibit areas separately. Visitor-to-visitor dif-
ferences with respect to their mean viewing durations were
removed by transforming predictions to the current visitor’s
viewing-time scale [Herlocker et al., 1999]. Refer to [Bohn-
ert and Zukerman, 2009] for a detailed description of CF. We
tested several thousand different parameterisations, but in this
paper, we report only on the performance of the best one.

Due to the relatively small dataset, we used leave-one-out
cross validation to evaluate the performance of the different
models. That is, for each visitor, we trained the models with
a reduced dataset containing the data of 157 of the 158 visit
trajectories, and used the withheld visitor pathway for test-
ing. To train and instantiate the SPM variants (i. e., SPM-I2I
and SPM-PD), we obtained a sample of θ =

(
µ,σ, τ2, φ, ν

)
from p(θ|r) by performing slice Gibbs sampling [Neal, 2003]
on the training data. For each of the 129 free model parame-
ters,3 we used (uninformative) independent uniform prior dis-
tributions. We used every 20-th sample after a burn-in phase
of 1000 iterations as a sample of θ from p(θ|r), and stopped
the sampling procedure after 8000 iterations. Thus, in total,
we obtained 350 samples of θ from p(θ|r). This procedure

2For our experiments, we ignore travel between exhibit areas,
and collapse multiple viewing events of one area into one event.

3We set σi =
√
σ2

r,i − τ2 to speed up the sampling process,

where σ2
r,i denotes the sample variance of the log viewing times at

exhibit i, calculated from the observed log viewing times rui. This
reduces the number of free parameters from 255 (126×2+3) to 129.

was followed to obtain samples of θ for both SPM variants,
i. e., for both distance measures I2I and PD (Section 4.2). We
then used the posterior means estimated from these samples
to compute predictions by conditioning a multivariate normal
distribution (Section 4.3). We improved SPM-I2I’s predic-
tive performance by using the (non-personalised) mean log
viewing time µi as a prediction whenever the conditioning
would have been based on fewer than K log viewing times
(in our case, K = 19). This modification was not applied to
SPM-PD. For CF, predictions were computed from the rat-
ings of the nearest neighbours; and for MM, we used µi, esti-
mated from the appropriate reduced dataset, as a prediction.

We performed two types of experiments: Individual Ex-
hibit and Progressive Visit.

• Individual Exhibit (IE). IE evaluates predictive perfor-
mance for a single exhibit. For each observed visitor-
exhibit area pair (u, i), we removed the observation rui
from the vector of visitor u’s log viewing durations, and
computed a prediction r̂ui from the other observations.
This experiment is lenient in the sense that all available
observations except the observation for exhibit area i are
kept in a visitor’s viewing duration vector.

• Progressive Visit (PV). PV evaluates performance as a
museum visit progresses, i. e., as the number of viewed
exhibit areas increases. For each visitor, we started with
an empty visit, and iteratively added each viewed exhibit
area to the visit history, together with its log viewing
time. We then predicted the log viewing times of all yet
unvisited exhibit areas.

For both experiments, we used the mean absolute error
(MAE) to measure predictive accuracy as follows:

MAE =
1∑

u∈U |Iu|
∑
u∈U

∑
i∈Iu

|rui − r̂ui|,

where Iu denotes a visitor u’s set of exhibit areas for which
predictions were computed. For IE, we calculated the total
MAE for all valid visitor-exhibit area pairs; and for PV , we
computed the MAE for the yet unvisited exhibit areas for all
visitors at each time fraction of a visit (to account for different
visit lengths, we normalised all visits to a length of 1).

5.2 Results
Table 2 shows the results for the IE experiment, where both
spatial models (SPM-I2I and SPM-PD) outperform both MM
and CF. Specifically, SPM-I2I achieves an MAE of 0.7756
(stderr 0.0068), and SPM-PD attains an MAE of 0.7548
(stderr 0.0066), outperforming SPM-I2I as well. The pair-
wise performance differences are statistically significant with
p� 0.01 for all model pairings.

The performance of SPM-PD, SPM-I2I, CF and the base-
line MM for the PV experiment is depicted in Figure 2. CF
outperforms MM slightly (statistically significantly for visit
fractions 0.191 to 0.374 and for several shorter intervals later
on, p < 0.05). More importantly, both SPM-I2I and SPM-PD
perform significantly better than MM and CF. For SPM-I2I,
this performance increase is statistically significant for visit
fractions 0.189 to 0.960 when comparing to MM, and except

 - 17 -

Table 2: Model performance for the IE experiment (MAE)

MAE Stderr
Mean Model (MM) 0.8618 0.0071
Collaborative Filter (CF) 0.7868 0.0068
Spatial Process Model using I2I
(SPM-I2I) 0.7756 0.0068
Spatial Process Model using PD
(SPM-PD) 0.7548 0.0066

0.0 0.2 0.4 0.6 0.8 1.0
0.82

0.84

0.86

0.88

0.90

0.92

visit fraction

M
A

E

MM
CF
SPM−I2I
SPM−PD

Figure 2: Model performance for the PV experiment (MAE)

for a few short intervals, for visit fractions 0.375 to 0.902
when comparing to CF. In comparison, SPM-PD performs
significantly better than both MM and CF for visit fractions
0.019 to 0.922 (statistically significantly, p < 0.05). Ad-
ditionally, SPM-PD outperforms SPM-I2I until visit fraction
0.660 (statistically significantly, p < 0.05). Drawing atten-
tion to the initial portion of the visits, SPM-PD’s MAE de-
creases rapidly, whereas the MAE for MM and CF remains
at a higher level. Generally, the faster a model adapts to
a visitor’s interests, the more likely it is to quickly deliver
(personally) useful recommendations. Such behaviour in the
early stages of a museum visit is essential in order to build
trust in the RS, and to guide a visitor in a phase of the visit
where such guidance is most likely needed. A similar im-
provement in performance cannot be observed for SPM-I2I,
which suggests that a visitor’s exhibit interests observed in
close physical proximity are better predictors of interests in
unseen exhibits than interests in exhibits with positively cor-
related viewing times. As expected, MM performs at a rela-
tively constant MAE level. For CF, SPM-I2I and SPM-PD
we expected to see an improvement in performance (rela-
tive to MM) as the number of visited exhibit areas increases.
However, this trend is rather subtle (it can be observed when
plotting the models’ performance relative to MM). Addition-
ally, for all four models, there is a performance drop towards
the end of a visit. We postulate that these phenomena may be
explained, at least partially, by the increased influence of out-
liers on the MAE as the number of exhibit areas remaining to
be viewed is reduced with the progression of a visit. This in-
fluence in turn offsets potential gains in performance obtained
from additional observations. Our hypothesis is supported by
a widening in the standard error bands for all models as a
visit progresses, in particular towards the end (not shown in
Figure 2 for clarity of presentation). However, this behaviour
requires further, more rigorous investigation.

6 Discussion
SPM offers advantages over other model-based approaches in
that, unlike neural networks (and memory-based techniques),
it returns the confidence in a prediction, and its parameters
have a clear interpretation; unlike Bayesian networks, our
model does not require a domain-specific adaptation, such
as designing the network topology. In addition, the dis-
tance measure endows our model with capabilities of hybrid
RS [Burke, 2002; Albrecht and Zukerman, 2007] by seam-
lessly supporting the incorporation of other types of models
(e. g., content-based). The distance measure also alleviates
the cold-start problem. The new-item problem is addressed
by utilising the (distance-based) correlation between this item
and the other items. The new-user problem is similarly han-
dled through the correlation between items rated by a user
and the other items (when utilising Physical Distance as the
distance measure, our model can make useful personalised
predictions after only one item has been rated).

Our dataset is relatively small compared to other real-world
RS applications. Although a high number of ratings per user
slows down the slice Gibbs sampler due to repeated inversion
of matrices of high dimension, employing our model with
larger datasets should not represent a problem in practice.
This is because the number of ratings per user is usually small
compared to the number of users and items, and the compu-
tational complexity of evaluating the likelihood function de-
pends only linearly on the number of users in the database.

7 Conclusions and Future Work
In this paper, we utilised the theory of spatial processes to de-
velop a model-based approach for predicting users’ interests
in exhibits (i. e., implicit item ratings) within a RS in the mu-
seum domain. We applied our model to a real-world dataset
collected by tracking visitors in a museum, using two mea-
sures of item-to-item (content) distance: (1) distances com-
puted from item-to-item similarities (as in item-to-item col-
laborative filtering), and (2) physical walking distance. For
both distance measures, our model attains a higher predictive
accuracy than nearest-neighbour collaborative filters. Addi-
tionally, the model variant using physical distances outper-
forms that using distances computed from item-to-item sim-
ilarities. Under the realistic Progressive Visit setting, our
model using physical distance to measure item-to-item dis-
tance rapidly adapts to a user’s ratings (starting from as little
as one rating), thus alleviating the new-user problem common
to collaborative filtering. This is not the case for the model
variant based on distance computed from item-to-item simi-
larities, which suggests that a visitor’s interests observed for
exhibits in close physical proximity are better predictors of
interests in unseen exhibits than those interests for exhibits
with positively correlated viewing times.

In the future, we intend to hybridise our model by incor-
porating content-based item features into our distance mea-
sure, and to explore hybrids of models utilising a variety of
item-to-item distances. We also plan to extend our model
to fit non-Gaussian item ratings, e. g., [Diggle et al., 1998;
Yu et al., 2006].

 - 18 -

Acknowledgments
This research was supported in part by grant DP0770931
from the Australian Research Council. The authors thank
Carolyn Meehan and her team from Museum Victoria for
their assistance; and David Abramson, Jeff Tan and Blair
Bethwaite for their help with the computer cluster.

References
[Albrecht and Zukerman, 2007] D.W. Albrecht and I. Zuker-

man. Introduction to the special issue on statistical and
probabilistic methods for user modeling. User Modeling
and User-Adapted Interaction, 17(1-2):1–4, 2007.

[Aroyo et al., 2007] L. Aroyo, N. Stash, Y. Wang, P. Gorgels,
and L. Rutledge. CHIP demonstrator: Semantics-driven
recommendations and museum tour generation. In Pro-
ceedings of the Sixth International Conference on the Se-
mantic Web (ISWC-07), pages 879–886, 2007.

[Banerjee et al., 2004] S. Banerjee, B.P. Carlin, and A.E.
Gelfand. Hierarchical Modeling and Analysis for Spatial
Data. Chapman & Hall/CRC, 2004.

[Bell et al., 2007] R. Bell, Y. Koren, and C. Volinsky. Chas-
ing $1,000,000: How we won the Netflix progress
prize. ASA Statistical and Computing Graphics Newslet-
ter, 18(2):4–12, 2007.

[Bohnert and Zukerman, 2009] F. Bohnert and I. Zukerman.
Non-intrusive personalisation of the museum experience.
In Proceedings of the 1st and 17th International Confer-
ence on User Modeling, Adaptation, and Personalization
(UMAP-09), pages 197–209, 2009.

[Bohnert et al., 2008] F. Bohnert, I. Zukerman, S. Berkov-
sky, T. Baldwin, and L. Sonenberg. Using interest and
transition models to predict visitor locations in museums.
AI Communications, 21(2-3):195–202, 2008.

[Bohnert et al., 2009] F. Bohnert, D.F. Schmidt, and I. Zuk-
erman. Spatial processes for recommender systems. In
Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI-09), 2009.

[Breese et al., 1998] J.S. Breese, D. Heckerman, and C.
Kadie. Empirical analysis of predictive algorithms for col-
laborative filtering. In Proceedings of the 14th Interna-
tional Conference on Uncertainty in Artificial Intelligence
(UAI-98), pages 42–52, 1998.

[Burke, 2002] R. Burke. Hybrid recommender systems: Sur-
vey and experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, 2002.

[Cheverst et al., 2002] K. Cheverst, K. Mitchell, and N.
Davies. The role of adaptive hypermedia in a context-
aware tourist guide. Communications of the ACM,
45(5):47–51, 2002.

[Diggle et al., 1998] P.J. Diggle, J.A. Tawn, and R.A. Moy-
eed. Model-based geostatistics. Applied Statistics,
47(3):299–350, 1998.

[Hatala and Wakkary, 2005] M. Hatala and R. Wakkary.
Ontology-based user modeling in an augmented audio re-
ality system for museums. User Modeling and User-
Adapted Interaction, 15(3-4):339–380, 2005.

[Herlocker et al., 1999] J.L. Herlocker, J.A. Konstan, A.
Borchers, and J.T. Riedl. An algorithmic framework for
performing collaborative filtering. In Proceedings of the
22th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR-
99), pages 230–237, 1999.

[James and Stein, 1961] W. James and C.M. Stein. Estima-
tion with quadratic loss. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Prob-
ability, vol. 1, pages 361–379, 1961.

[Neal, 2003] R.M. Neal. Slice sampling. The Annals of
Statistics, 31(3):705–767, 2003.

[Parsons et al., 2004] J. Parsons, P. Ralph, and K. Gallager.
Using viewing time to infer user preference in recom-
mender systems. In Proceedings of the AAAI Workshop
on Semantic Web Personalization (SWP-04), pages 52–64,
2004.

[Petrelli and Not, 2005] D. Petrelli and E. Not. User-centred
design of flexible hypermedia for a mobile guide: Reflec-
tions on the HyperAudio experience. User Modeling and
User-Adapted Interaction, 15(3-4):303–338, 2005.

[Resnick and Varian, 1997] P. Resnick and H.R. Varian.
Recommender systems. Communications of the ACM,
40(3):56–58, 1997.

[Sarwar et al., 2001] B. Sarwar, G. Karypis, J.A. Konstan,
and J.T. Riedl. Item-based collaborative filtering recom-
mendation algorithms. In Proceedings of the 10th Inter-
national Conference on the World Wide Web (WWW-01),
pages 285–295, 2001.

[Schmidt et al., 2009] D.F. Schmidt, I. Zukerman, and D.W.
Albrecht. Assessing the impact of measurement uncer-
tainty on user models in spatial domains. In Proceedings
of the 1st and 17th International Conference on User Mod-
eling, Adaptation, and Personalization (UMAP-09), pages
210–222, 2009.

[Schwaighofer et al., 2005] A. Schwaighofer, V. Tresp, and
K. Yu. Learning Gaussian process kernels via hierarchi-
cal Bayes. In Advances in Neural Information Processing
Systems 17 (NIPS-04), pages 1209–1216, 2005.

[Schwarz, 1978] G.E. Schwarz. Estimating the dimension of
a model. The Annals of Statistics, 6(2):461–464, 1978.

[Stock et al., 2007] O. Stock, M. Zancanaro, P. Busetta,
C. Callaway, A. Krüger, M. Kruppa, T. Kuflik, E. Not, and
C. Rocchi. Adaptive, intelligent presentation of informa-
tion for the museum visitor in PEACH. User Modeling
and User-Adapted Interaction, 18(3):257–304, 2007.

[Yu et al., 2006] S. Yu, K. Yu, V. Tresp, and H.-P. Kriegel.
Collaborative ordinal regression. In Proceedings of
the 23rd International Conference on Machine Learning
(ICML-06), pages 1089–1096, 2006.

 - 19 -

Optimal Set Recommendations based on Regret

Paolo Viappiani
Department of Computer Science

University of Toronto
Toronto, ON, Canada
paolo@cs.toronto.edu

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON, Canada
cebly@cs.toronto.edu

Abstract

Current conversational recommender systems do not of-
fer guarantees on the quality of their recommendations,
either because they do not maintain a model of a user’s
utility function, or do so in anad hocfashion. In this pa-
per, we propose an approach to recommender systems
that incorporates explicit utility models into the rec-
ommendation process in a decision-theoretically sound
fashion. The system maintains explicit constraints on
the user’s utility based on the semantics of the prefer-
ences revealed by the user’s actions. In particular, we
propose and investigate a new decision criterion,set-
wise maximum regret, for constructing optimal recom-
mendation sets. This new criterion extends the mathe-
matical notion ofmaximum regretused in decision the-
ory and preference elicitation to sets. We develop com-
putational procedures for computing setwise max re-
gret. We also show that the criterion suggests choice
sets for queries that are myopically optimal: that is, it
refines knowledge of a user’s utility function in a way
that reduces max regret more quickly than any other
choice set. Thus setwise max regret acts both as guar-
antee on the quality of our recommendations and as a
driver for further utility elicitation.
Our simulation results suggest that this utility-
theoretically sound approach to user modeling allows
much more effective navigation of a product space than
traditional approaches based on, for example, heuristic
utility models and product similarity measures.

Introduction
Recommender systems can help users navigate product
spaces and make decisions involving very large sets of al-
ternatives. Conversationalrecommender systems rely on
mixed-initiative interactions, with both the user and the sys-
tem taking an active role in the decision process. User feed-
back can be entered in many forms, for instance, as direct
answers to queries, orcritique of the options displayed by
the system.

Many recommender systems employ some form ofdiver-
sity to show a set of products that might be appealing to the
user. Intuitively, diversity overcomes a key problem with
presentation of thetop-k items based on some estimate of

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a user’s score: the latter tends to produce results that are
very similar one to each other, and thus not offer much ac-
tual “choice” for a user. This is especially true when we
recognize that estimated scores or preferences are likely to
be very crude. Diversity is also important in practice: we
cannot generally predict howpatienta user will be. They
may terminate the exploration of product space at any time,
hence the recommender system should be able to provide
anytimerecommendations, reflecting the best recommen-
dations given the information provided by the user so far.
This characteristic of conversational recommenders is simi-
lar to the exploration-exploitation dilemma in reinforcement
learning. Since we do not know know how much time the
user is willing to spend in order to improve the recommenda-
tion, we want to show products that are both: (a) expected to
be rated highly given the current information about the user;
and (b) are maximally informative should the user critique
(or otherwise provide feedback on) them.

Many authors have considered the importance of diversity
in the recommendations. For example, researchers in case-
based reasoning have proposed techniques based on greedy
maximization of diversity (McSherry 2002), defined as an
aggregate of a distance metric, or as a weighted tradeoff be-
tween diversity and the recommendation score (Smyth and
McClave 2001). However diversity and dissimilarity mea-
sures does not consider the information that we have about
the user’s preference. While they guarantee that the set con-
tains alternatives that differ in their features, they do not use
at all the information about a user’s preferences available
from previous user actions and feedback. It has been argued
that diversity should be insteadtailored to the system’s be-
lief about the user (Price and Messinger 2005).1

To maximize the information presented to the user in a
recommendation set, and recommend a set ofoptimal rec-
ommendations, it is necessary to maintain an explicit rep-
resentation of the uncertainty in the preference model and
a sound decision-theoretic semantics of the interaction in
the first place. In fact, most practical conversational recom-
mender systems (especially those using critiquing) do not
use an explicit model of a user’s preferences, or only main-

1Indeed, the natural decision theoretic account of set recom-
mendations immediately suggests diversity w.r.t. belief about a
user’s preferences (Boutilieret al. 2003).

 - 20 -

tain such a model in an ad hoc, heuristic fashion. In this pa-
per, we develop an approach to set-based recommendations
with an explicit utility model. We represent the uncertainty
w.r.t. the user model with constraints of her utility func-
tion induced by choices or critiques. To construct a suitable
recommendation set, we develop a novel criterion,setwise
maximum regret, that captures the idea of providing a set of
jointly optimal recommendations. Our qualitative model of
uncertainty has two key advantages over probabilistic mod-
els (Price and Messinger 2005): relatively simple prior infor-
mation in the form of bounds or constraints on user prefer-
ences can be exploited (rather than probabilistic priors); and
exact computation is much more tractable (in contrast with
probabilistic models of utility that generally require reason-
ing with densities that have no closed form (Boutilier 2002;
Chajewska and Koller 2000)).

To make this model effective, user actions should be asso-
ciated with a precise, soundsemantics. For instance, a user
critique is assumed to reveal some aspect of the user’s pref-
erences and this is used to update an explicit utility model.
More precisely, in our work, unit critiques and compound
critiques places linear constraints on a user utility function.
The advantage of this approach is that we can use decision-
theoretically sound criteria to:

1. suggest or recommend a product;

2. bound the difference in the quality of a recommended
product and the optimal option for the user;

3. determine which options and critiques carry the most in-
formation to help speed up the navigation process; and

4. suggest to the user when to terminate the process (i.e.,
when further interaction will offer only modest improve-
ment in recommendation quality).

We adopt the notion ofminimax regret(Boutilier et al.
2006a) to make product suggestions in the face of utility
function uncertainty. This robust decision criterion allows
us to bound the loss (difference from optimal) of any rec-
ommendation. We propose and investigate a new decision
criterion,setwise maximum regret, for constructing optimal
recommendation sets. This new criterion extends maximum
regret to sets of products rather than a single product. We de-
fine set maximum regret, argue that minimizing setwise max
regret is the best means for constructing a set of options for
a user, and develop effective computational procedures for
computing optimal recommendation sets for setwise regret.

We presentcritiquing as a possible application domain.
While user-controlled exploration in traditional critiquing
systems does not offer any guarantees (practical, empirical,
or theoretical) of either sufficient or efficient exploration of
the space (A user may cycle through a set of similar products
or converge at a product far from optimal), our regret-based
recommender allows us to provide guarantees on the quality
(utility) of the recommended product vis-à-vis feasible al-
ternatives. We also show with simulations thatregret-based
critiquing can lead to much more efficient exploration of the
product space and lead to better decisions in practice.

In Sec. 2 we introduce our model of regret-based recom-
mendation and describe our strategy for selection of a joint

set of recommended alternatives using setwise minimax re-
gret. In Sec. 3 we discuss computation of setwise max re-
gret and minimax regret, both for configuration problems
modeled as a constraint satisfaction problem (CSP) and for
product databases, while in Sec. 4 we briefly discuss the
performance of elicitation. Finally, in Sec. 5, we perform
simulations of complete critiquing-based recommender sys-
tems, comparing our regret-based approach to state of the art
critiquing algorithms such as dynamic critiquing and incre-
mental critiquing.

Regret-based Recommendation Systems
We begin this section by presenting our formalization of the
decision problem, reviewing minimax regret for robust rec-
ommendation and elicitation, and then defining our key con-
cepts of setwise max regret and setwise minimax regret.

Underlying Decision Problem
We assume a recommendation system is charged with the
task of recommending an option to a user in a multi at-
tribute space (e.g., computers, cars, apartment rental, etc.).
Products are characterized by a finite set of attributesX =
{X1, ...Xn}, each with finite domainsDom(Xi). Let X ⊆
Dom(X) denote the set offeasible configurations. For in-
stance, attributes may correspond to the features of vari-
ous apartments, such as size, neighborhood, distance from
public transportation, etc., withX defined either by con-
straints on attribute combinations (e.g., constraints on com-
puter components that can be put together), or by an explicit
database of feasible configurations (e.g., a rental database).

The user has autility functionu : Dom(X) → R. In what
follows we will assume either alinear or additive utility
function depending on the nature of the attributes (Keeney
and Raiffa 1976). In both additive and linear models, we
assume thatu can be decomposed as follows:

u(x) =
∑

i

fi(xi) =
∑

i

λivi(xi)

where each local utility functionfi assigns a value to each
element ofDom(Xi). In classical utility elicitation, these
values can be determined by assessing local value func-
tionsvi overDom(Xi) that are normalized on the interval
[0, 1], and importance weightsλi (

∑
i λi = 1) for each at-

tribute (Keeney and Raiffa 1976; Fishburn 1967). This sets
fi(xi) = λivi(xi) and ensures that global utility is normal-
ized on the interval[0, 1]. A simple additive model in the
rental domain might be:

u(Apt) = f1(Size) + f2(Distance) + f3(Nbrhd)

WhenDom(Xi) is drawn from some real-valued set, we of-
ten assume thatvi (hencefi) is linear inXi.2

Since a user’s utility function is not generally known, we
often writeu(x; w) to emphasize the dependence ofu on

2Our approach relies considerably on the additive assumption,
though can easily be generalized to more general models such
as GAI (Fishburn 1967; Bacchus and Grove 1995; Braziunas and
Boutilier 2007a). The assumption of linearity is simply a conve-
nience; nothing critical depends on it.

 - 21 -

user-specific parameters. In the additive case, the values
fi(xi) over∪i{Dom(Xi)} serve as a sufficient parametriza-
tion ofu (for linear attributes, a more succinct representation
is possible). The optimal product for the user with utility pa-
rametersw is thatx ∈ X that maximizesu(x; w). Our goal
is to recommend, or help the user find, an optimal product,
or one whose utility is near optimal.

Regret-based Recommendation

In probabilistic approaches to recommendation, a distribu-
tion over preferences—typically in the form a density over
utility function parameters—is maintained, and the option
with highest expected utility is recommended (Chajewskaet
al. 2000; Boutilier 2002; Boutilieret al. 2003). When a set
of alternatives need to be recommended, the expectimax or
EMAX criterion can be used (Boutilieret al. 2003; Price and
Messinger 2005). One difficulty with probabilistic models is
that one requires probabilistic prior information over utility
models, which can be difficult to formulate and represent.
Another is that exact computation can often be computation-
ally intense; this is especially true since (arguably) natural
density models for utility functions are rarely closed under
the type of evidence provided by user interaction (e.g., be-
havioral observation or answers to queries) (Boutilier 2002;
Chajewska and Koller 2000)); as a result, computationally
demanding fitting of (say) mixture models is required after
every model update.

Instead, we propose the use of minimax regret to generate
recommendation sets. As we will see, this obviates the need
to complex probabilistic reasoning, yet can offer robust rec-
ommendations and provide very effective guidance for the
user. In traditional regret-based approaches, a single recom-
mendation is made using the minimax regret (Savage 1954)
criterion. For multiple joint recommendations, we develop
the notion ofsetwise minimax regret(defined below). We
can summarize the correspondence between the Bayesian
and the regret-based approach with the following table:

Probabilistic approach Regret approach
Expected Utility Minimax Regret

Expected Max (EMAX) Minimax SetwiseRegret

In this paper we propose a framework that maintains a set
W of feasible utility models, and at each step, the system
shows a set of recommendations that arejointly optimal with
respect to minimax regret. At a very high level, our regret-
based recommender works as follows:

1. The setW is initialized given some initial constraints;

2. The current recommendations are determined (using the
setwise minimax regret);

3. After each user action,W is refined to reflect the new
constraints imposed by the user’s feedback;

4. The process repeats (steps 2 and 3) until the user is satis-
fied or minimax regret reaches some target threshold.

This process is appealing for two reasons. First, the current
recommendation (i.e., set of options) is always optimal; in

other words, it minimizes setwise max regret given the cur-
rent information about the user’s utility function, making it
extremely robust in the presence of utility function uncer-
tainty (in a way to be made precise below). Second, max re-
gret is a well-defined progress metric that lets the user know
the cost and benefit of further exploration of product space.
Finally, the information contained in user selection of some
choice from the recommended set is maximally informative
(in a sense defined below).

Minimax Regret
Minimax regret has been advocated as a means for robust
optimization (Kouvelis and Yu 1997), and has more re-
cently been used for decision making with utility uncer-
tainty (Boutilier et al. 2001; Salo and Hämäläinen 2001;
Boutilier et al. 2006a).

Assume that through some interactions with a user, and
possibly using some prior knowledge, we determine that her
utility function w lies in some setW . Following (Boutilier
et al. 2006a) we define:

Definition 1 Given a set of feasible utility functionsW , we
define thepairwise max regretMR(x,y; W) of x,y ∈ X;
the themax regretMR(x; W) ofx ∈ X; theminimax regret
MMR(W) of W ; and theminimax optimal configuration
x∗

W as follows:

MR(x,y; W) = max
w∈W

u(y; w) − u(x; w) (1)

MR(x; W) = max
y∈X

MR(x,y; W) (2)

MMR(W) = min
x∈X

MR(x, W) (3)

x
∗
W = arg min

x∈X
MR(x, W) (4)

Intuitively,MR(x; W) is the worst-case loss associated with
recommending configurationx; i.e., by assuming an adver-
sary will choose the user’s utility functionw from W to
maximize the difference in utility between the optimal con-
figuration (underw) andx. The minimax optimal configu-
rationx∗

W minimizes this potential loss.MR(x, W) bounds
the loss associated withx, and is zero iffx is optimal for all
w ∈ W . Any choice that is not minimax optimal has strictly
greater loss thanx∗

W for somew ∈ W .
Minimax regret has proven to be an effective tool in utility

elicitation in a variety of domains. A decision support or
recommender system can query (or otherwise interact with)
a user providing additional constraints on the utility setW
until minimax regret reaches some acceptable level (possibly
optimality), elicitation costs become too high, or some other
termination criterion is met.

Example Consider the following example, where the op-
tions oi are defined using two features/coordinatesx1 and
x2:

x1 x2

o1 0.35 0.68
o2 0.9 0.2
o3 0 0.75
o4 1 0
o5 0.5 0.3

 - 22 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utility parameter w1

ut
ili

ty

o1

o2

o3

o4

o5

Figure 1: Each options is represented by a single line in the
utility space.

We assume linear utility:u(x;w) = w1x1 +w2x2 wherew
is vector of tradeoff weights, withw2 = 1−w1, 0 ≤ w1 ≤ 1;
and the local value functions for each coordinate are identity
functions. (i.e.,vi(xi) = xi). Given these assumptions,
utility is one-dimensional; it can be written asu(x;w) =
(x1 − x2)w1 + x2. So we deal only with the uncertainty on
the single parameterw1.

This simple example is convenient because it is easy to
visualize option utilities as a 1D function ofw1 graphically.
The utility of the different options are shown in Fig. 1 with
respect to the parameterw1. We notice that, for some values
of w1, each of the optionso1, o2, o3 ando4 is optimal, but
not soo5. When considering a particular value ofw1 (a
particular utility function) theactual regret(or real loss) is
the difference between the utility of the best option given
w1 and the utility of our recommendation in that case. For
instance, forw1 = 0.9, the best option iso4 with utility 0.9,
while o1 has utility0.38, so the actual regret ofo1 would be
0.9 − 0.38 = 0.52. Max regret accounts for the uncertainty
overw1 and it is the maximum of the possible actual regret
values (foro1 is 0.65 whenw1 = 1).

When the options are few as in this case, we can compute
the max regret of each choice by explicitly enumerating the
maximum the pairwise regret of that choice against any pos-
sible adversarial choice of option. The table below illustrates
this, where each row corresponds to a recommendation, each
column to an adversarial choice, and we display the pairwise
max regret (allowing the adversary to choose utility) in the
cells. The max regret of an option is shown in the last col-
umn, and corresponds to the maximum value in its row. In
the unconstrained situation (wherew1 can take any value
between0 and1), we have the following values:

MR(oi, oj) o1 o2 o3 o4 o5 MR(oi)
o1 0 0.55 0.07 0.65 0.15 0.65
o2 0.48 0 0.55 0.1 0.1 0.55
o3 0.35 0.9 0 1.00 0.5 1
o4 0.68 0.2 0.75 0 0.3 0.75
o5 0.38 0.4 0.45 0.5 0 0.5

Minimax regret is0.5, and the minimax optimal recom-
mendation is optiono5; its max regret occurs at adversarial
choice of utilityw1 = 1, and choice of optiono4. It can be
easily shown that regret is maximized at one of the vertexes
of the feasible regionW whenW is a bounded, convex poly-
tope (such a polytope induced by the interactions we discuss
later).

Now imagine that, perhaps as the result of interactions
with the user, we learn that0.2 ≤ w1 ≤ 0.6. The new min-
imax regret value for this constrained case is0.138. This
value corresponds to recommendationo1, and adversarial
optiono2 and utility w1 = 0.6. In this case, the constraints
0.2 ≤ w1 andw1 ≤ 0.6 decrease minimax regret signifi-
cantly. However usually constraints are not added directly as
such, but result from the acquisition of knowledge acquired
through a variety of interaction modalities, such as direct
user preference queries, or passive observation of user be-
havior. For instance, comparison queries ask the user which
of two proposed options is preferred. The impact of the in-
formation acquired depends greatly on the comparison, as
different options can lead to different degrees of regret re-
duction.

A natural meta-heuristic for generating elicitation queries
is the current solution strategy (CSS), first described in
(Boutilier et al. 2006a). This strategy would ask the user
whether she prefers the minimax regret optionx∗

W or the
adversary optionxw = MRAdv(x∗

W , W).

In our example, starting from the unconstrained spaceW ,
CSS would select{o4, o5} (the minimax regret option and
the adversarial option) and ask the user to compare them.
Now, let’s assume that the user asserts that she preferso4

over o5; then a new constraintu(o4; w1) ≥ u(o5; w1),
equivalent tow1 ≥ 0.375, is added to our model. In the
spaceW o4≻o5 resulting from the incorporation of this con-
straint, the minimax regret is0.1, resulting from recom-
mendationo2 and adversarial optiono4. Option o4, even
if known to be better thano5, has max regret of0.18 (at
w1 = 0.374, with adversarial optiono1). Therefore, option
o2 will be recommended.

Minimax regret offers recommendations that are robust
given the uncertainty of the preference model. In this ex-
ample,o5 is recommended (in the unconstrained setting)
even though it cannot possibly be optimal foranyuser util-
ity function; this is so because it prevents “disastrous” sit-
uations, such as would occur if optionso1 or o2 are recom-
mended whenw1 is very low (despite the fact that for a good
part of utility space, these options are optimal. Note, that as
knowledge of user utility increases, more accurate recom-
mendations are made; for example, recommendingo2 when
we learn thato4 is preferred too5.

 - 23 -

Optimal Recommendation Sets: Setwise Regret
In most cases the value of a set of recommendations is de-
pendent on the elements of the set jointly, not on each in-
dividually. If the user is going to benefit from only one of
the recommendations (example: recommending apartments)
then the utility of the set is then the maximum utility among
the individual options, i.e., the one the user will pick from
the set.

The problem of set recommendations has been addressed
using probabilistic expectation: Price and Messinger (Price
and Messinger 2005) optimize set recommendations using
the EMAX criterion, defined as the expectation of the max-
imum utility among the options in the set.

In order to retrieve optimal set recommendations, we de-
fine the notion ofsetwise max regret. The setwise max re-
gret of a recommendations set can be seen as the equivalent
of EMAX in our non-probabilistic framework. Suppose we
have a slate ofk options to present to the user and want to
quantify the possible loss by restricting the user’s decision
to options in that slate. Intuitively, the user may select any
of the k options as being “optimal.” An adversary want-
ing to maximize regret should do so assuming the any such
choice is possible—unlike max regret, we allow the user to
select from among any of the set ofk options. In this for-
malization, we choose the set ofk options first, but delay
the final choice from the slate onlyafter the adversary has
chosen a utility functionw. The regret of a set is then the
minimum difference between the utility of the best config-
uration underw and the utility of the options in the slate.
Specifically, define thesetwise maximum regretof option set
Z = {x1, . . . ,xj} to be:

SMR(Z; W) = max
x′∈X

max
w∈W

min
x∈Z

u(x′; w) − u(x; w)

SMR-Adv(Z; W) = arg max
x′∈X

max
w∈W

min
x∈Z

u(x′; w) − u(x; w)

Setwise max regret has some intuitive properties. First,
adding new items to a set cannot increase setwise max re-
gret: SMR(A ∪ B, W) ≤ SMR(A, W). At the same time
incorporating options that are known to be dominated given
W does not change setwise max regret: in other words, if
u(a,w) > u(b,w) for somea ∈ Z and allw ∈ W , then
SMR(Z ∪ {b}, W) = SMR(Z, W). Finally, the max regret
associated with recommending the entire product set is zero:
SMR(X, W) = 0. This is the equivalent to asking the user
to directly choose the best option from the space of available
options—obviously, a task of with extreme cognitive cost,
and one that runs counter to the spirit of recommendation
assistance! But should the user be able to answer correctly,
it guarantees optimality.

Setwise max regret can be equivalently written in as fol-
lows:

SMR(Z, W) = max
y∈X

max
w∈W

[u(y; w) − max
x∈Z

u(x; w)] (5)

This captures the intuition that, givenw, the option (among
those inZ) that determines setwise max regret is that with
highest utility with respect tow. In fact, it can be useful to
explicitly partition utility space with respect to which option
in Z is maximal. We define the utility subsetWZ→xi as the

set of utilities such thatxi has greater utility than any option
in Z.

W
Z→xi = {w ∈ W : u(xi; w) > u(xj ; w) ∀j 6= i, 1 ≤ j ≤ k}

The set of allWZ→xi for anyxi ∈ Z partitionsW (we
ignore the possibility of ties over full-dimensional subsets of
W , which can easily be dealt with, but complicate the pre-
sentation marginally). An important observation (that will
be used later) is that we can rewrite the setwise max-regret
SMR as the aggregate maximum of the (individual) max-
regret considering a partition of the utility space according
to which option has higher utility.

Observation 1 GivenZ = {x1, . . . ,xk} and, for1 ≤ i ≤
k,

SMR(Z, W) = max[MR(x1, W
Z→x1), . . . ,MR(xk, W

Z→xk)]
(6)

Example (continued) We now consider setwise max re-
gret for the example introduced above. Let the number of
options in a recommendation set bek = 2. The following
combinations are ranked best according to the setwise regret
criterion.

Set SMR Adversary Adversary W
{o1, o4} 0.07 o3 w1 = 0
{o1, o2} 0.1 o4 w1 = 1
{o3, o2} 0.1 o4 w1 = 1
{o3, o4} 0.11 o1 w1 = 0.42

The set{o1, o4} is the best choice for a joint recommen-
dation of two options, corresponding to a value of regret of
0.07. Other combinations, such as{o1, o2}, {o3, o2} and
{o3, o4}, also have a relative low value of regret.

A set recommendation can often have dramatically lower
regret than the minimax optimalsinglerecommendation (in
this case,o5).

It is interesting the fact that the optimal recommendation
set is composed of two options,o1 ando4 that, when con-
sidered alone, are associated with high regret. Any set in-
cludingo5, the single best recommendation, is ranked poorly
with respect to setwise regret.

We now consider the case of larger sets. If we need to
select a slate of three options (k = 3), the regret will be
0.04 and the recommendation would be{o1, o3, o4}; in this
case the adversary would picko2, and the valuew1 = 0.51
(intersection point ofo1 ando4).

In the case of four options to be selected (k = 4), the set
{o1, o2, o3, o4} would be recommended and it would be as-
sociated to a setwise regret of0: the slate includes all the
options that can ever become optimal (considering Observa-
tion 1, it follows that for anyWZ→oi that partitionsW , the
max regret has to be0).

Now we consider how setwise regret changes when new
information is included. We consider a slate of two options
to be selected (k = 2) and we suppose that the user asserts
the preference ofo4 overo5. The recommendation set is still

 - 24 -

Figure 2: Alpha beta pruning can speed up the search, de-
pending on the evaluation order. In this case,x1 has regret
0.5 againstx3, that is worse than the value 0.4 (max regret
of x2), so we do not need to testx1 againstx2.

{o1, o4} but with a much lower value of (setwise) regret:
only 0.04.

We conclude the discussion of the example with some re-
marks on the optimization process. The adversary’s utility
does not necessarily corresponds to one the vertex of the
feasible region, as in the single recommendation case; it
may also lie in any intersection of the hyperplanes associ-
ated with the options. For instance (in the unconstrained
case) the setwise regret of{o3, o4} is maximized for the
valuew1 = 0.42 (the utility that makeso3 ando4 equally
preferred).

Computation of Setwise Minimax Regret
In this section we discuss how to efficiently compute regret-
based recommendations. We first discuss how to compute
minimax regret for single recommendations and then de-
scribe how to modify these procedures to compute setwise
minimax regret for recommendation sets. We distinguish
two settings: configuration problems, where options are
defined by variables and configuration constraints (i.e., as
solutions to a constraint satisfaction problem (CSP)); and
database problems, where options are enumerated in a prod-
uct database.

Computing Minimax Optimal Single
Recommendations
Configuration problems In configuration problems, opti-
mization over product spaceX is formulated as a constraint
optimization problem or MIP. In such domains, minimax re-
gret computation can be formulated as a MIP, and solved
practically for large problems using techniques such as Ben-
der’s decomposition and constraint generation. We refer
to (Boutilier et al. 2006a; 2004; Braziunas and Boutilier
2007a) for more details. Our MIP formulations for setwise
minimax regret below will draw heavily on these techniques,
but necessitate important modifications.

Database problems When options are enumerated in a
product database, minimax regret computation requires to

repeated computation of the pairwise regret between a can-
didate recommendation and an adversarial option in order to
identify the option with minimax regret. For ease of presen-
tation, assume a linear utility function as above, defined by
weightswi overm attributes. Pairwise regretMR(x,y, W)
of recommendationx and adversarial optiony is readily
computed with the following LP:

max
w:wi∈[0,1]

∑

1≤i≤m

wi(yi − xi) (7)

s.t.
∑

i

wi = 1 (8)

w ∈ W (9)

Here we assume the feasible parameter setW is captured
by linear constraints. A similar LP can be formulated for
discrete-valued attributes, without assuming linearity, just
additivity. Hybrid models with continuous and discrete at-
tributes can easily be represented with a combination of
these two representations. Generalized additive utility mod-
els models (Fishburn 1967; Braziunas and Boutilier 2006;
2007b) can also be easily represented in this framework.
This means that pairwise regret can be computed extremely
efficiently (e.g., in a few milliseconds using CPLEX on the
types of problems discussed below).

Minimax regret computation is more complex because
we need to maximize over all possible adversarial choices,
and minimize over all possible recommendations. A naive
approach would consider every pair of options, requiring
O(n2) pairwise regret computations for a database of size
n, where each of these computations requires the solution of
an LP of size proportional to the number of utility parame-
ters.

However, since minimax regret can be seen as a game be-
tween the recommender and an adversary, the computation
can be greatly improved in practice by formulating the op-
timization as a minimax search and using standard pruning
techniques. Unlike typical games, the search tree has very
limited depth: only two ply, one choice of recommendation
by the MIN player (attempting to minimize regret) and one
choice of adversarial option by the MAX player (attempting
to maximize the regret of the recommendation).3 Note that
the game has a large number of actions, once per product in
the database. The MIN player (recommender) moves first,
the MAX player (adversary) second. The leaves of the mini-
max tree are labeled with the pairwise max regret of the two
choices on its path.

A full evaluation of the tree requires the solution of
n(n − 1) pairwise regret LPs (noting that the MIN player’s
choice need not be explicitly evaluated or even represented
as a possible MAX choice, since it must yield pairwise regret
of 0). However, it is generally not necessary to evaluate ev-
ery node of the tree asAlpha-beta pruning(see (Russell and
Norvig 2003) for an introductory description) can be used to
eliminate branches from evaluation.

3The choice of the utility function by the adversary is dictated
by pair of options, so it need not be modeled as a move.

 - 25 -

Alpha-beta pruning is simple in such a simple game tree:
during the tree evaluation, we maintain an upper bound
UB (initially +Inf) at the root, representing the max regret
of the best solution found so far (from the perspective of
MIN), and lower boundsLB(n) at each MAX node, one
for each possible MIN choice (or recommendation). Ev-
ery time we evaluate a leaf node, we compute pairwise re-
gretMR(omin, omax, W) of MIN’s choiceomin and MAX’s
choiceomax on the path. We update the lower bound at
the corresponding MAX node, and prune (α cut 4) when-
everLB(n) ≥ UB. This is becauseMR(omin, omax, W) ≤
MR(omin, W). At the same time, whenever we complete
the evaluation of a MAX noden, we update the upper bound
UB to min(UB, v(n)) wherev(n), the value of the node, is
the maximum value among the leafs.

The efficiency of this pruning depends on the order in
which nodes are evaluated (Russell and Norvig 2003); this
is especially true given the very shallow, broad nature of our
tree. Pruning is most effective when, at each node, the best
children (with respect to the relevant node evaluation, MIN
or MAX) are evaluated first. Figure 2 shows, in our simple
example, that in the best case only 5 nodes out of 9 need
to be evaluated (i.e., 5 pairwise regret maximization). To
speed up the search, we consider a heuristic that first evalu-
ates choices at the MIN (recommender) node that are likely
to be good candidates for minimizing max regret; and we
first evaluate at at MAX (adversarial) nodes options that are
likely to induce high regret against the given MIN choice.
These heuristics give us an evaluation order for both MIN
and MAX choices and can lead to considerable pruning. We
discuss each in turn.

For the MIN node, we note that the regret of any option
is maximized at one of the vertices of the feasible region
W . Thus we samplet vertices (for instance, by consider-
ing extreme weights that maximize the importance of one
of the attributes) and refer to the thew so-sampled asrefer-
ence utilities. These are used to initialize the lower bounds
LB(n): we simply compute the actual regret with respect to
these utilities for the option that leads to (MAX node)n. We
then evaluate MIN’s childrenn in increasing order of initial
lower boundLB(n).

To order the children of MAX node, for each MAX node
n, we consider the feasible utility functionw− that mini-
mizes the utility the MIN choice. (This requires a simple
optimization.) The option that maximizes utility atw− (i.e.,
the optimal choice underw−) is likely to give a high value
of for pairwise regret and thus represents a potentially good
adversary. Moreover, once we have generatedw−, we can
use it to update the lower bound by considering the actual
regret for each option. MAX choices are evaluated in order
of decreasing utility underw−.

In practice, these heuristics can significantly speed up the
computation of minimax regret in product databases. Table 1
shows that number of pairwise regret checks (LPs) is almost
linear in the number of options in the database; indeed, with
these orderings, MAX nodes are often pruned immediately
without even considering an adversarial choice. (These are

4beta cuts are not possible given the depth of the tree

size attributes constraints num of pairwise checks
40 4 0 41
200 5 0 207
400 7 10 492
1000 10 0 1003
1000 10 60 1998
1000 15 30 999

Table 1: Number of pairwise regret checks to compute min-
max regret on some sample datasets. We evaluate the search
tree with our heuristics of reference utilities.

experiments run on synthetic data for illustrative purposes.)

Set Recommendations: Setwise Minimax Regret
We now consider the modification of the techniques above
for setwise minimax regret. Naturally, setwise max regret
is more computationally demanding, requiring selection of
a set of options. However, it is still possible to formulate the
computation in a MIP for configuration problems. Database
problems are more challenging: the adversarial search pre-
sented above for single-item recommendation can be ap-
plied directly, with replacement of a single move by the rec-
ommender (MIN player) byk moves, corresponding to the
choice ofk options for the slate. However, performance can
take a dramatic hit as the size of the desired recommenda-
tion set increases. However, we develop a simple heuristic
hill-climbing strategy that seems to provide very good rec-
ommendation sets in practice.

Configuration problems: MIP formulation For config-
uration problems we formulate the problem of setwise min-
imax regret following the general strategy for single-option
minimax regret, formulating as a (MIP) minimization with
exponentially many constraints. We use a constraint gen-
eration procedure to prevent enumeration of the entire con-
straint set (Boutilieret al. 2006a; 2004). However, there
are some critical differences in the formulation, which we
describe here.

Setwise minimax regret for configuration problems can be
formulated as the following MIP.

min
M,I

j
w ,Xj ,V

j
w

M

s.t.M ≥
X

1≤j≤k

V
j
w ∀w ∈ Vert (10)

V
j

w ≥ w · (x∗
w − X

j) + (Ij
w − 1)mbig (11)

∀j ∈ [1, k] ∧ ∀w ∈ Vert (12)
X

1≤j≤k

I
j
w = 1 ∀w ∈ Vert (13)

I
j
w ∈ {0, 1} (14)

V
j
w ≥ 0 ∀j ∈ [1, k], ∀w ∈ Vert (15)

This MIP minimizesM by: (a) choosingk options (or
configurationsxj designated by variablesXj (where each
Xj is a vector ofn attributes) for the recommendation set;

 - 26 -

(b) selecting, for each adversaryw, one of those options
(thejth option) as the choice that has minimum max regret
against an adversary, and ensuring thatM is greater than the
true regret of thejth option relative to every possible choice
of adversary utility function and option.

Note however that this constraint need not be applied to
(continuously many) utility functions or exponentially many
adversarial choices. In the MIP, we post these constraints
only for each vertex ofW (i.e., w ∈ Vert(W)) and for
the optimal product choicex∗

w for that vertex. This relies
on the observation that regret maximized at vertices ofW ,
and, for any adversarial choice ofw, the adversarial option
that maximizes the pairwise regret for any user choice is the
optimal option forw.5

However, this MIP still requires (potentially) exponen-
tially many constraints, one for each element ofVert(W).
We can make computation much more effective by applying
constraint generation, observing that at the optimal solution,
very few of these constraints are likely to be active. Our
procedure works as follows: we solve a relaxed version of
the MIP above—themaster problem—using only the con-
straints corresponding to a small subsetGen ⊂ Vert(W)
of the constraints in the MIP above. We then test whether
any unexpressed constraints are violated at the current so-
lution. This involves computing the true setwise max re-
gret of the slate generated by the master problem. If the
true setwise max regret is of the slate is greater thanδ, we
know that a constraint has been violated. Specifically, the
computation of setwise max regret will produce the element
w ∈ Vert(W) and optimal productx∗

w that corresponds to
the maximally violated constraint at the current master so-
lution. So if a constraint is violated, we add this maximally
violated constraint toGen, tightening the MIP relaxation,
and repeat; if not, we are assured that the current solution
minimizes setwise max regret.6

In the formulation,mbig is an arbitrary big number, that
we need to encode the fact that, for any givenw, only the
option with the highest utility (among those in the slate) with
respect tow contributes to the actual setwise regret.

TheSMR maximization subproblem can be also encoded
with a MIP, similar to (Boutilieret al. 2006b). The optimiza-
tion makes use of a decision variable to explicitly represent
the setwise regret,M , to be maximized and we constrain
M to be greater than the single max regretMR(xj , W), for
each option in the slate.

Database Problems: A Hill-climbing Strategy As dis-
cussed above, while minimax search can be applied directly

5V j
w is the actual regret of optionXj of the slate with respect to

the utility w when the correspondingIj
w is activated. For anyw,

one and only oneIj
w is set to1. In order to minimizeM , the op-

timization will activate theIj
w corresponding to thexj with lower

actual regret. The first constraint (10) captures the idea that for a
slate of options, givenw, the regret of the joint slate is the mini-
mum among the individual values of regret (in the summation, all
but one term are zeros).

6Note that the adding a new constraint requires the introduction
of new variables to the master problem. Every time we add a new
w to Gen, k new variablesI andV are necessary.

to the problem of setwise minimax regret for database prob-
lems, scaling is sometimes a concern. We now present a
heuristic hill-climbing strategy that scales much more effec-
tively. We describe it in the context of database problems,
but it can also be used directly for configuration problems.

The central idea is that is possible to modify a given
recommendation setZ in such a way that setwise max re-
gret cannot increase, and usually decreases until a high
quality set is found. We define theMMR-transformation
T to be a mapping that refines a recommendation setZ
by partitioning the current feasible utility spaceW into
{WZ→xi}, ∀xi ∈ Z, as discussed in Observation 1. In each
partition we compute thesingle recommendation that has
minimax regret in that region of utility space, and define the
new set recommendationT (Z) to be the collection of these
(single) minimax-optimal recommendations.

Definition 2 Define theMMR-transformationT : Z → Z′,
whereZ = {x1, . . . ,xk}, to beT (Z) = {x′

1, . . . ,x
′
k} such

that for all 1 ≤ i ≤ k:

x′
i = MMR-Opt(WZ→xi)

We can show thatT cannot increase setwise max regret.

Observation 2 For any set recommendation Z
SMR(T (Z)) ≤ SMR(Z)

We use the MMR-transformation to define our heuristic
search strategy to produce good recommendation sets; in-
tuitively, we repeatedlyT until a fixed point (with respect to
setwise max regret, not the set itself) is found.

Alg 1 Hill-climbing-T algorithm (HCT)
The algorithm considers an initial setZ, and rewritesZ us-
ing T until a fixed-point is found.

• RepeatZ := T(Z)

• Until SMR(T (Z),W) = SMR(Z, W)

We initialize the slateZ using the current solution strategy
(CSS), empirically, this seems to produce the most promis-
ing recommendation sets. Fork = 2, this means that the
initial set isZ = {x∗

W , xw}, wherex∗ = MMR-Opt(W),
andxw = MRAdv(W).

For larger sets (k > 2), there is not a standard definition
of the CSS. We propose to use the following strategy, that
we callchain of adversaries, to generate the initial slate. We
start from{x∗

W , xw} and repeatedly maximize setwise max
regret given the current set, in some sense maximizing the
diversity of choices from perspective of utility space. This
gives the set{x1, . . . ,xk} where:



x1 = x∗
W

xi = Adv({x1, ..,xi−1}, W) 2 ≤ i ≤ k

The chain of adversaries requires to solve single minimax
regret once, and thenk − 2 setwise regret maximizations.
The chain of adversaries can be seen as a generalization of
CSS to sets of any size, and could also be considered as an
alternative, faster strategy to select recommendations.

 - 27 -

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

steps

m
ax

 r
eg

re
t

CSS
HCT

Figure 3: The hillclimbing strategy based on setwise regret
outperforms the current solution strategy in this experiment
(20 runs).

Myopic Elicitation
In addition to produce final recommendations, our criterion
can also be used as a driver for further elicitation of the util-
ity function of the user. In fact, whenever we consider a slate
of recommendations, the user may give us some feedback,
perhaps selecting the option that she prefers among those in
the set. This information is very valuable, and as we have
seen in the initial example, can be used to reduce regret. It
is therefore interesting to assess the value of a recommenda-
tion set also with respect to the possible feedback.

An important observation is that in the case of compari-
son queries (the user selects the preferred option in a slate),
the set ofk optimal recommendations that minimize setwise
regret is also the optimal choice set for a comparison query
with respect tomyopic worst case regret(WR), a measure of
the value of information of a query.

TheWorst-case Regret(WR) of a comparison query based
on a choice setZ = {x1, ..,xk} is defined as

WR({x1, .., xk}) = max[MMR(W Z→x1), .., MMR(W Z→xk)]
(16)

WR considers the “single” max regret in each possible
scenario. It is possible to verify thatWR(Z) ≤ SMR(Z);
the worst case regret is always lower (or equal) than the set-
wise max regret.

The optimality of minimax setwise recommendations (we
omit the full proof for reasons of space) with respect toWR
is based on the consideration (an extension of Observation 2)
that the transformationT introduced in the previous section
is also such thatSMR(T (Z)) ≤ WR(Z) (the proof requires
considering the different partitions imposed by Observa-
tions 1 and compare the two expression componentwise).
We call Z∗ the optimal recommendation set according to
setwise regret. A setZ′ such thatWR(Z′) < WR(Z∗) but
SMR(Z′) > SMR(Z∗) leads to contradiction.7

7If we apply the transformationT to Z′ we obtain a set̄Z such

We performed some preliminary experiments in order to
evaluate our recommendation strategy from the prospective
of elicitation. We are interested in quantifying the reduc-
tion of regret in practice. In Figure 3 we compare the ef-
ficiency of an elicitation based on ourSMR criterion and
the current solution strategy (CSS), considering a syhnthetic
dataset with5000 options and10 attributes. We plot max
regret in function of the number of queries (steps).SMR is
optimized using the hill-climbing strategy (HCT).

Example Critiquing
As an evaluation setting, we apply our regret-based recom-
mender to example-critiquing. This domain is interesting
because current systems usually rely on heuristics and we
expect that an utility-based approach can be greatly benefi-
cial.

Critiquing is a setting where the user expresses feedback
on options that the system shows to her. In particular we
consider a particular version of critiquing, often called the
dynamic critiquingmodel (Reillyet al. 2005), where acur-
rentproduct or recommendation is displayed, and the user is
invited to move to a different product by choosing particu-
lar actions (laid out in the interface) that change the product.
They can includeunit critiques, which request modification
of a particular product attribute; e.g., “give me a laptop that
is lighter than the current one.”

Often alternativesuggestionsor compound critiquesare
used in which multiple attributes (“lighter and faster pro-
cessor, but more expensive”) are tweaked, or in which a se-
lection is made from a system-suggested set of alternative
products (“let me see laptop 3 instead of the current one”).

The set of possible critiques is generated by the system,
and the user chooses one of the possible actions. At each in-
teraction, the user may choose to critique the current product
if she is not completely satisfied with it, or simply because
she wishes to explore the product space in more depth.

In general those systems use heuristics to generate the set
of possible critiques. However, we expect that better perfor-
mance can be obtained if critiquing suggestions are selected
according to a decision-theoretically sound criterion as our
setwise minimax regret.

In order to implement our approach, it is necessary to
give a precise semantics to each of the critiquing actions.
We identify two main reasons a user will critique an option.
First, she may want to explore the product space in an effort
to better understand either the space of feasible options or
her own preferences. This latter desire makes sense espe-
cially when one adopts the view commonly held in behav-
ioral economics that decision support systems should help
peopleconstructtheir preferences (not just articulate them)
(Slovic 1995). Second, she may wish to improve the current
product, making tradeoffs among her preferences for differ-
ent attributes. It is this latterexploitiveor improvement mode
that critiquing systems fail to account for adequately when
deciding on appropriate product suggestions. In this evalua-

that SMR(Z̄) ≤ WR(Z′) < WR(Z∗) ≤ SMR(Z∗) but this
means thatSMR(Z̄) < SMR(Z∗), contradicting the optimality of
Z∗ with respect toSMR.

 - 28 -

tion we use critiques of the latter type to constrain the set of
possible user utility functions.

In the following, we describe our simulation setting and
present our results.

Experiments

To validate our regret-based approach to critiquing we de-
signed a framework that simulates a full interaction of a user
with a user interface. As in a real system, each simulation
comprises a number of cycles of interaction, each showing a
current product which the user can critique using either unit
or the selection of one of the suggested recommendations.

The simulated user continues the critiquing process until
the perceived increase in utility is lower than some thresh-
old. We assume that among all possible critiquing actions,
the one with highest perceived improvement will be chosen
by the user.

In our experiment, at each interaction the system displays:

• thecurrent product,
• a choice ofunit critiquesof the current product (they re-

quest the modification of a particular product attribute),
• a set ofsuggestions, alternative options that can change

focus for the search, presented as such or labeled ascom-
poundcritiques (“lighter and faster processor, but more
expensive”)

At each step, the user can choose to either select the cur-
rent product (and finish the interaction) or to tweak it in or-
der to improve it and get better recommendations in the next
cycle.

We compare our regret-based approach to three other ap-
proaches that use compound critiques. In our case, we use
the generation of a set of recommendations (based on set-
wise regret) to display as alternatives. One is selected as
current productand the others are displayed assuggestions.

We briefly review the different critiquing approaches and
then we present the experimental results.

Dynamic Critiquing

The dynamic critiquingmodel (Reillyet al. 2004) makes
use of a particular similarity metric to retrieve the current
product and uses the APriori datamining algorithm to pro-
pose alternative compound critiques. The algorithm dynam-
ically generates compound critiques by discovering com-
mon feature patterns among the set of products. Essentially,
each compound critique describes a set of products in terms
of the features they have in common. For example in the PC
domain, a typical compound critique might be “Faster CPU
and a Larger Hard Drive.” Whenever a product is shown to
the user as the current product, the APriori datamining algo-
rithm is used to quickly discover these patterns and convert
them into a set of suggested compound critiques. Each com-
pound critique corresponds to a product that is, among all
products satisfying the pattern most similar to the current
one.

The generation of suggestions consists of two steps. First,
each product is matched against the current product to pro-
duce lists ofcritique patterns, each comprising an attributes

and a comparison operators from the set:<,>,¬,=. An ex-
ample pattern might be:{[Price>], [ProcessorSpeed>]}.
Second, the algorithm uses APriori to find recurrent cri-
tiquing patterns; a compound critique based on a pattern
is then presented to the user it has sufficient support in the
product database. In our experiments, the support threshold
is set to 0.3 and selection of compound critiques corresponds
to thelow-supportstrategy in (Reillyet al. 2004).

Incremental Critiquing

Incremental critiquing (Reillyet al. 2005) (IC) improves
the basic dynamic critiquing model by incorporating a user
model. While suggestions are still based on the APriori al-
gorithm (as above), the retrieval of the next product associ-
ated with a critiquing action is based on aquality metricthat
values both thescore given to the product by the preference
model and its similarity to the current product.

In the implementation we developed for our experiments,
we take advantage of the fact that the preference ordering
over attributes is known: the score is dictated by a linear
utility function that gives equal weight to all attributes. The
initial product is the option with maximum utility. When
retrieving the next example from the set of products that sat-
isfy the user-chosen critique, we select the productx that
maximizesscore(x) ·Similarity(x,y), wherey is the prod-
uct recommended at the previous cycle, andscore is the
heuristic utility function.

Incremental Critiquing: MAUT

Another implementation of incremental critiquing (Reillyet
al. 2007) uses a simple multi attribute utility (MAUT) model
to make recommendations and generate compound critiques
(rather than similarity). In this approach, a simple additive
utility modelu is generated, initially giving equal weight to
all attributes; each time an attribute is critiqued, its weight
is multiplied by a constant (and all weights renormalized).
The original design of this algorithm makes use of param-
eterized value functions for each attribute, where the value
taken by the current option is considered preferred. Since
our experimental set up assumes that the local preference
ordering over attribute values is known, we instead assume
a linear utility model.

Suggestions are generated using optimization with respect
to the estimated utility model, and thek best products are
presented as alternative cases. A limitation of this approach
is its reliance on a fixed utility model (as opposed to rea-
soning with the space of possible user utilities). Moreover,
options thatall have high value in a single utility sample
are unlikely to be diverse or informative enough to generate
useful distinctions.

Regret-based critiquing

Our version of dynamic critiquing exploits setwise minimax
regret using the ideas above. Specifically, at any point in
the interaction cycle, we generate the current optimal rec-
ommendation set (with respect to minimax setwise regret),
and propose one of these options a current product. The re-
mainder of the set is used to display suggestions.

 - 29 -

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

m
ax

 r
eg

re
t

Regret−based
IC: wsim
IC: maut
DC

Figure 4: Maximum regret of the recommended op-
tion at each step for four algorithms: regret-based cri-
tiquing (regret), dynamic critiquing with compound cri-
tiques generated with APriori (DC), incremental critiquing
with weighted similarity and APriori (IC) and incremental
critiquing with a multiattribute utility model (IC maut).

Empirical Results
In the experiments we compare the four different versions of
dynamic critiquing discussed above: the original dynamic
critiquing algorithm (similarity plus APriori), incremental
critiquing, incremental critiquing with MAUT, and regret-
based critiquing. We used a C implementation of the APri-
ori algorithm (Bodon 2003). All systems make available
unit critiques of any attribute (and user’s adopt an expected
improvement semantics). We evaluate the performance of
all algorithms with respect to recommendation efficiency
and offer some speculative examination of regret-based cri-
tiquing in terms the tradeoff between cognitive cost and
number of compound critique options presented at each in-
teraction.

We evaluate the different critiquing methods by compar-
ing the quality of the recommendations with respect to max
regret. We tested the methods on a real database of 200
apartments, using randomly drawn utility functions (as de-
scribed above), andk = 3 suggested products at each in-
teraction cycle. All results are averaged over 20 simulated
users. Fig. 4 shows the maximum regret of the recom-
mended product at each stage of the interaction. We note
that regret-based critiquing outperforms the other methods
of generating compound critiques by a wide margin. This
is true when considering both the “anytime” profile of the
method (i.e., the degree to which minimax drops) and its fi-
nal convergence: our technique converges on a product who
max regret is about 3% on average, while the MAUT incre-
mental critiquing settles at about 10% (and the others worse,
with dynamic critiquing unable to reduce max regret to less
than 18%).

More interesting is the fact that regret-based critiquing of-
fers better “actual” recommendations, as measured by true
regret (difference from the true optimal recommendation).
Regret-based critiquing is designed to attackboundson re-

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

steps

re
al

 lo
ss

Regret−based
IC: wsim
IC: maut
DC

Figure 5: True regret (real loss) of the recommended op-
tion at each step for four algorithms: regret-based cri-
tiquing (regret), dynamic critiquing with compound cri-
tiques generated with APriori (DC), incremental critiquing
with weighted similarity and APriori (IC) and incremental
critiquing with a multiattribute utility model (IC maut).

gret (i.e., worst-case loss); so one might wonder whether
other techniques find better products despite being unable to
“prove” that they are good. Fig. 5 shows this not to be the
case. While other critiquing techniques recommend prod-
ucts that are much better than their regret-bounds suggest,
regret-based critiquing is able to consistently find the opti-
mal product (and find a near-optimal product in as few as
five or six interaction cycles). By contrast, the other three
methods are unable to identify the optimal option at conver-
gence.

Conclusions
In this paper we presented a novel formalization of recom-
mendations of a joint set of alternatives based on the notion
of regret. The criterion that we propose, setwise max regret,
represents an intuitive extension of the traditional regret cri-
terion for single recommendations.

We show how optimal recommendation sets (with re-
spect to our criterion) can be computed with mixed integer
programming (MIP) methods and the constraint generation
technique when options are constructed from a set of config-
uration constraints. Alternatively, set recommendations can
be obtained using a hill-climbing strategy interleaved with
adversarial search in discrete settings.

We discuss the problem of utility elicitation, showing
that our recommendation strategy reduces max regret more
quickly than any other possible choice. Finally we present
an application of these principles for critiquing systems.

Our reliance on explicit utility modeling and minimax
regret provides a powerful new means of generating good
critiques and making good product recommendations. Our
regret-based critiquing recommender can often lead to opti-
mal recommendations using very few, say, compound cri-
tiquing interactions, and outperforms other dynamic cri-
tiquing techniques both in speed of convergence and the
quality of the final recommendations.

The incorporation of noisy feedback is an important next

 - 30 -

step; we are currently considering the possibility of a clar-
ification dialogue. The idea is to verify information that is
sensitive with respect to regret.

Largely unaddressed in our critiquing model is the need
for users to explore the product space, one of the main ad-
vantages of critiquing. We are currently developing hybrid
models in which the system and/or user explicitly distin-
guishes exploratory actions from improving actions. Even
with such a distinction, there is still the interesting question
of modeling usersearch processesin a way that would allow
insight into preferences to be drawn during exploration as
well. Finally, the development of models of cognitive costs
using techniques from behavioral economics, decision the-
ory and psychology remains an important avenue of future
research.

References
Fahiem Bacchus and Adam Grove. Graphical models for prefer-
ence and utility. InProceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence (UAI-95), pages 3–10, Mon-
treal, 1995.

Ferenc Bodon. A fast apriori implementation. In Bart Goethals
and Mohammed J. Zaki, editors,Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations
(FIMI’03) , volume 90 ofCEUR Workshop Proceedings, Mel-
bourne, Florida, USA, 19. November 2003.

Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-
Networks: A directed graphical representation of conditional util-
ities. In Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence (UAI-01), pages 56–64, Seattle,
2001.

Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active
collaborative filtering. In Christopher Meek and Uffe Kjærulff,
editors,UAI, pages 98–106. Morgan Kaufmann, 2003.

Craig Boutilier, Tuomas Sandholm, and Rob Shields. Eliciting
bid taker non-price preferences in (combinatorial) auctions. In
Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI-04), pages 204–211, San Jose, CA, 2004.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schu-
urmans. Constraint-based optimization and utility elicitation us-
ing the minimax decision criterion.Artifical Intelligence, 170(8–
9):686–713, 2006.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuur-
mans. Constraint-based optimization and utility elicitation using
the minimax decision criterion.Artif. Intell., 170(8-9):686–713,
2006.

Craig Boutilier. A POMDP formulation of preference elicitation
problems. InProceedings of the Eighteenth National Conference
on Artificial Intelligence (AAAI-02), pages 239–246, Edmonton,
2002.

Darius Braziunas and Craig Boutilier. Preference elicitation and
generalized additive utility. InAAAI, 2006.

Darius Braziunas and Craig Boutilier. Minimax regret-based elic-
itation of generalized additive utilities. InProceedings of the
Twenty-third Conference on Uncertainty in Artificial Intelligence
(UAI-07), pages 25–32, Vancouver, 2007.

Darius Braziunas and Craig Boutilier. Minimax regret based elic-
itation of generalized additive utilities. InProceedings of the
Twenty-third Conference on Uncertainty in Artificial Intelligence
(UAI-07), pages 25–32, Vancouver, 2007.

Urszula Chajewska and Daphne Koller. Utilities as random vari-
ables: Density estimation and structure discovery. InProceedings
of the Sixteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI-00), pages 63–71, Stanford, 2000.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making ra-
tional decisions using adaptive utility elicitation. InProceedings
of the Seventeenth National Conference on Artificial Intelligence
(AAAI-00), pages 363–369, Austin, TX, 2000.

Peter C. Fishburn. Interdependence and additivity in multivariate,
unidimensional expected utility theory.International Economic
Review, 8:335–342, 1967.

Ralph L. Keeney and Howard Raiffa.Decisions with Multiple
Objectives: Preferences and Value Trade-offs. Wiley, New York,
1976.

Panos Kouvelis and Gang Yu.Robust Discrete Optimization and
Its Applications. Kluwer, Dordrecht, 1997.

David McSherry. Diversity-conscious retrieval. InECCBR
’02: Proceedings of the 6th European Conference on Advances
in Case-Based Reasoning, pages 219–233, London, UK, 2002.
Springer-Verlag.

Robert Price and Paul R. Messinger. Optimal recommendation
sets: Covering uncertainty over user preferences. InProceedings
of the Twentieth National Conference on Artificial Intelligence
(AAAI’05), pages 541–548, 2005.

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry
Smyth. Dynamic critiquing. In Peter Funk and Pedro A.
González-Calero, editors,ECCBR, volume 3155 ofLecture Notes
in Computer Science, pages 763–777. Springer, 2004.

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry
Smyth. Incremental critiquing.Knowl.-Based Syst., 18(4-5):143–
151, 2005.

James Reilly, Jiyong Zhang, Lorraine McGinty, Pearl Pu, and
Barry Smyth. Evaluating compound critiquing recommenders:
a real-user study. In Jeffrey K. MacKie-Mason, David C. Parkes,
and Paul Resnick, editors,ACM Conference on Electronic Com-
merce, pages 114–123. ACM, 2007.

Stuart Russell and Peter Norvig.Artificial Intelligence: A Mod-
ern Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition
edition, 2003.

Ahti Salo and Raimo P. Hämäläinen. Preference ratios in multi-
attribute evaluation (PRIME)–elicitation and decision procedures
under incomplete information.IEEE Trans. on Systems, Man and
Cybernetics, 31(6):533–545, 2001.

Leonard J. Savage.The Foundations of Statistics. Wiley, New
York, 1954.

Paul Slovic. The construction of preference.American Psychol-
ogist, 50(5):364–371, 1995.

Barry Smyth and Paul McClave. Similarity vs. diversity. In
David W. Aha and Ian Watson, editors,ICCBR, volume 2080
of Lecture Notes in Computer Science, pages 347–361. Springer,
2001.

 - 31 -

Uncovering Functional Dependencies in MDD-Compiled Product Catalogues

Tarik Hadžić and Barry O’Sullivan
Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Ireland
{t.hadzic|b.osullivan}@4c.ucc.ie

Abstract
Product catalogues are usually represented as ta-
bles. They are regularly updated with new vari-
ants and, over time, various forms of inconsisten-
cies or undesirable properties can be introduced,
especially when global changes are made. We ar-
gue that by compiling product catalogues into de-
cision diagrams we can support a number of high-
level queries for detecting and checking for various
forms of inconsistency, as well as verifying other
properties relevant for user interaction. In particu-
lar, a class of functional dependency-based incon-
sistencies can be detected efficiently. An example
is verifying properties such as: “each identical con-
figuration of a product has the same price”. This
paper presents a number of algorithmic advances.
We illustrate the usefulness of our approach by
evaluating these high-level properties over real-
world publicly available product catalogues.

1 Introduction
Uncovering functional dependencies is an important prob-
lem in many artificial intelligence (AI) domains. Many AI
datasets are represented in tabular form, defined in terms of
a set of attributes (columns). A large dataset might be rep-
resented in a database table or spreadsheet and determining
that one or more attributes is functionally determined by val-
ues of other attributes can be of critical importance, e.g. in
analyzing the effect of chemical compounds on cancerogen-
ity or studying the shopping habits of the customers. Func-
tional dependencies are most commonly used in the process
of designing relational database schema.

We suggest that uncovering functional dependencies can
also be useful in an online product configuration system con-
text. For example, various forms of catalogue consistencies
can be expressed as functional dependencies. For example,
checking whether “each identical configuration of a product
has the same price” reduces to verifying that the price at-
tribute is functionally determined by the remaining attributes.
This could be relevant for product catalogues that are regu-
larly updated with new variants, or preprocessed for various
purposes. Furthermore, functional dependencies can help to
reason about the length of user interaction with respect to the

design of the user interface. If a small subset of attributes
functionally determines all the others, then an interface that
encourages a user to first assign attributes from such a subset,
might help reduce the total number of interaction steps.

In this paper we study the problem of identifying and test-
ing functional dependencies amongst subsets of the attributes
X that define a catalogue. Specifically, we consider depen-
dencies of the form Y → x for a subset of variables Y ⊂ X
and variable x ∈ X , which hold if and only if for any two
products p1, p2 from the catalogue, whenever p1 and p2 agree
on attributes Y , i.e. p1[Y] ≡ p2[Y], they also agree on at-
tribute x, i.e. p1[x] ≡ p2[x].

A number of approaches have been suggested in the
database community for uncovering functional dependen-
cies [Huhtala et al., 1999]. However, all of them find de-
pendencies by operating over an explicit representation of the
catalogue, and state-of-the art approaches take linear time,
O(T), in the number of products, T , in the catalogue [Huh-
tala et al., 1999; Schlimmer, 1993]. Other approaches incur
even more complexity by using sorting, inO(T ·log(T)) time,
or explicit comparison of all tuples, inO(T 2) time. Note that
the number of tuples can grow exponentially with the num-
ber of attributes, however most real world catalogues are very
sparse and contain only a tiny proportion of all possible prod-
ucts.

The main contribution of this paper is an approach to un-
covering functional dependencies when a dataset is com-
pressed into a multi-valued decision diagram (MDD) rather
than as an extensionally represented table, the standard in re-
lational database theory. MDDs are directed acyclic graphs
that, for a sorted list of attributes, use prefix and suffix shar-
ing to compactly represent the data. Each product is encoded
as a path, and every edge on the path encodes an attribute-
value pair (variable assignment), xi = a. While the size of an
MDD is, in the worst-case, linear in the number of products,
they can often be exponentially smaller. We propose a number
of algorithms for uncovering functional dependencies; these
algorithms have time complexity that is quadratic in the size
of the MDD. In worst case, when there is no compression,
we get O(T 2) running time. However, whenever the MDD
is small we guarantee a sublinear-time algorithm for testing
Y → x.

We implemented the algorithms we have introduced in this
paper and applied them to several publicly available product

 - 32 -

catalogues. As a result, we have uncovered several properties,
some of which indicate “bugs” in the datasets which have pre-
viously gone undetected.

The remainder of this paper is organised as follows. Sec-
tion 2 presents the necessary technical background required
throughout the paper. We show how functional dependen-
cies can be uncovered in decision diagram representations
of product catalogues in Section 3. A variety of specialised
functional dependencies, called subset-induced dependencies
are presented in Section 4. We define the notion of approxi-
mate dependencies in Section 5, which are inexact forms of
standard functional dependencies. We report on a number of
experiments in Section 6. Section 7 presents a number of
concluding remarks and outlines directions for future work.

2 Background
In this section we provide the necessary background on pre-
liminary concepts and introduce our notational conventions.

2.1 Solution Sets
We are given a set of variables (product attributes) X =
{x1, . . . , xn} defined over finite domains D1, . . . , Dn of pos-
sible values of the attributes of a product. We are also given
a set of solutions (available products) Sol ⊆ D1 × . . . , Dn,
which can be defined either explicitly, e.g. as a set of items
in a product catalogue, or implicitly, e.g. as the set of so-
lutions to a constraint satisfaction problem 〈X,D, F =def

{c1, . . . , cm}〉 defining which products can be manufactured
in a factory. The latter approach is common when defining a
catalogue of configurable products. Consider for example the
following implicit representation of a T-shirt catalogue.
Example 1 (Representing a T-Shirt Catalogue). We are in-
terested in selecting a T-shirt which is defined by three at-
tributes: the color (black, white, red, or blue), the size (small,
medium, or large) and the print (“Men In Black” - MIB or
“Save The Whales” - STW). There are two rules that define
the set of valid combinations: if we choose the MIB print
then the color black has to be chosen as well, and if we
choose the small size then the STW print (including a big
picture of a whale) cannot be selected as the picture of a
whale does not fit on the small shirt. The implicit represen-
tation (X, D, F) of the T-shirt example consists of variables
X = {x1, x2, x3} representing color, size and print. Vari-
able domains are D1 = {0, 1, 2, 3} (black ,white, red , blue),
D2 = {0, 1, 2} (small ,medium, large), and D3 = {0, 1}
(MIB ,STW). The two rules translate to F = {f1, f2},
where f1 is x3 = 0 ⇒ x1 = 0 (MIB ⇒ black) and f2

is (x2 = 0 ⇒ x3 6= 1) (small ⇒ not STW). ♦
The same solution space of the T-shirt example (satisfying

the configuration rules F) can be also given explicitly as a set
of items in a catalogue, as shown in Table 1.

2.2 Decision Diagrams
Decision diagrams are compressed representations of solu-
tion sets Sol ⊆ D1 × . . .×Dn. Formally, decision diagrams
are a family of rooted directed acyclic graphs (DAGs) where
each node u is labeled with a variable xi and each of its out-
going edges e are labeled with a value a ∈ Di. The decision

Table 1: Solution set for the T-shirt example.

color size print
black small MIB
black medium MIB
black medium STW
black large MIB
black large STW
white medium STW
white large STW
red medium STW
red large STW
blue medium STW
blue large STW

diagram contains one or more terminal nodes, each labeled
with a constant and having no outgoing edges. The most well
known member of this family is the binary decision diagram
(BDD) [Bryant, 1986] which is used as a compressed repre-
sentation of Boolean functions in many areas, such as verifi-
cation, model checking, VLSI design [Meinel and Theobald,
1998; Wegener, 2000; Drechsler, 2001], etc. In this paper
we will primarily operate with the following variant, called
multi-valued decision diagrams:
Definition 1 (Multi-valued Decision Diagram). An MDD M
is a rooted directed acyclic graph (V,E), where V is a set of
vertices containing the special terminal vertex 1 and a root
r ∈ V . Further, var : V → {1, . . . , n+1} is a labeling of all
nodes with a variable index such that var(1) = n + 1. Each
edge e ∈ E is denoted with a triple (u, u′, a) of its start node
u, its end node u′ and an associated value a.

We work only with ordered MDDs. A total ordering <
of the variables is assumed such that for all edges (u, u′, a)
var(u) < var(u′). For convenience we assume that the vari-
ables in X are ordered according to their indices. Ordered
MDDs can be considered as being arranged in n layers of
vertices, each layer being labeled with the same variable in-
dex. We will denote as Vi the set of all nodes labeled with
xi, Vi = {u ∈ V | var(u) = i}. Similarly, we will
denote with Ei the set of all edges originating in Vi, i.e.
Ei = {e(u, u′, a) ∈ E | var(u) = i}. Unless otherwise
specified, we assume that on each path from the root to the
terminal, every variable labels exactly one node. An MDD
encodes a CSP solution set Sol ⊆ D1×. . .×Dn, defined over
variables {x1, . . . , xn}. To check whether an assignment
a = (a1, . . . , an) ∈ D1 × . . .×Dn is in Sol we traverse M
from the root, and at every node u labeled with variable xi, we
follow an edge labeled with ai. If there is no such edge then a
is not a solution a 6∈ Sol. Otherwise, if such a traversal even-
tually ends in terminal 1 then a ∈ Sol. We will denote with
p : u1 Ã u2 any path in MDD from u1 to u2. Also, edges
between u and u′ will be sometimes denoted as e : u → u′.
A value a of an edge e(u, u′, a) will be sometimes denoted as
v(e), while a partial assignment associated with path p will
be denoted as v(p). We will use Ch[u] to denote the set of all
outgoing (children) edges of node u. Every path corresponds
to a unique assignment. Hence, the set of all solutions repre-

 - 33 -

sented by the MDD is Sol = {v(p) | p : r Ã 1}. In fact,
every node u ∈ Vi can be associated with two subsets of so-
lutions. Sol(u) = {v(p) | p : u Ã 1} ⊆ Di × . . .×Dn, and
Sol(r, u) = {v(p) | p : r Ã u} ⊆ D1 × . . .×Di−1.

Consider the MDD in Figure 1. It represents directly the
solution set of T-shirt catalogue from Table 1. For each node
we indicate a unique identifier ui. All nodes in the same layer
correspond to the same variable. Node u1 is the root node.
Nodes in the first, second and third layer are V1 = {u1},
V2 = {u2, u3, u4, u5} and V3 = {u6, u7, . . . , u14} respec-
tively. For each edge e we indicate a value v(e). The set
of outgoing edges from, for example, node u2 is Ch[u2] =
{(u2, u6, 0), (u2, u7, 1), (u2, u8, 2)}. The solution set associ-
ated with, for example, node u3 is the set of partial assign-
ments Sol(u3) = {(1, 1), (2, 1)}. There are in total eleven
paths from u1 to 1, corresponding directly to the eleven prod-
ucts in Table 1.

u1

u2

0

u3

1

u4

2

u5

3

u6

0

u7

1

u8

2

u9

1

u10

2

u11

1

u12

2

u13

1

u14

2

1

0 1 1 1 1 1 10 1 0 1

Figure 1: An MDD for the T-shirt catalogue.

The MDD from Figure 1 is as large as explicit representa-
tion in Table 1 - the number of edges is equal to the number
of attribute-value pairs. However, the critical benefit of deci-
sion diagrams is that they can become exponentially smaller
than the size of solution set they encode by merging isomor-
phic subgraphs. Two nodes u1, u2 are isomorphic if they
encode the same solution set Sol(u1) = Sol(u2). In Fig-
ure 2 we show equivalent merged MDDs for the T-shirt so-
lution set. For the sake of clarity, we first indicate how the
nodes have been merged in Figure 2(a) by using the same
unique node identifiers from Figure 1. For example, nodes
{u3, u4, u5} have been merged since they have the same so-
lution sets {(1, 1), (2, 1)}. The same merged MDD, with new
unique node identifiers, is shown in Figure 2(b). The utility
of compressing product catalogues has already been demon-
strated in [Nicholson et al., 2006]. In this paper, unless em-
phasized otherwise, by MDD we always assume an ordered
merged MDD.

On the Size and Construction of Merged MDDs. Given a
variable ordering there is a unique merged MDD for a given
solution set. The size of the MDD depends critically on the
ordering, and could vary exponentially. The merged MDD
representation of a solution set Sol with T entries defined
over n attributes, |Sol| = T , can have at most T · n edges.
However, data often exhibits sharing as illustrated in the T-
shirt example, and a merged MDD might be exponentially

u1

u2

0

{u3,u4,u5}

1 2 3

u6

0

{u7,u8}

1 2

{u9,..,u14}

1 2

1

0 0 1 1

(a) A merged MDD with old unique
identifiers from Figure 1 indicating
how they were aggregated.

u1

u2

0

u3

1 2 3

u4

0

u5

1 2

1

0

u6

1 2

10 1

(b) A merged MDD with
renamed unique node iden-
tifiers.

Figure 2: Merged MDDs for the T-Shirt example. Both
graphs indicate the same structure. In Figure 2(a), for the
sake of clarity, we indicate how the nodes from the uncom-
pressed MDD in Figure 1 have been aggregated to get the
MDD in Figure 2(b).

smaller. In the above example, we reduced the number of
edges from 33 to 13. The effect of merging is best illustrated
by considering two extreme cases. An MDD for solution set
D1× . . .×Dn contains only n internal nodes and

∑n
i=1 |Di|

edges while there are exponentially more solutions T = |D1|·
. . . · |Dn|. In contrast, an MDD where every two edges at
each layer are labeled with a different value is guaranteed to
provide no sharing of nodes, and it would contain T ·n nodes.

An MDD can always be constructed for a given catalogue
in linear time O(T). We start with a direct representation,
such as the T-shirt MDD in Figure 1, and in a single bottom-
up pass detect and merge those nodes that root identical
solution spaces. However, MDDs can be constructed also
from implicit description in the form of constraint satisfac-
tion problem. We first create an MDD Mi for each con-
straint ci, and then use pairwise conjunctions to construct
M1 ∧ . . .∧Mm. Each conjunction of two MDDs can be per-
formed in quadratic time and space. The size of an MDD can
grow exponentially in the number of variables, but in prac-
tice, for many interesting constraints the size is surprisingly
small.

2.3 Functional Dependencies
Given solution set Sol defined over variables X =
{x1, . . . , xn}, and given solution a ∈ Sol, a = (a1, . . . , an),
we define the projection of solution a on variable xi, denoted
as a[xi], to be the value of the i-th coordinate in the tuple,
a[xi] =def ai. Similarly, we define projection of a onto a
subset of variables Y ⊆ X , denoted as a[Y], as a tuple of
values corresponding to variables in Y . Finally, for a given
set of solutions S ⊆ Sol, we define the projection on subset
of variables Y , denoted as S[Y], as a collection of all pro-
jected tuples, S[Y] =def {a[Y] | a ∈ S}.

For a solution set Sol, defined over variables X =
{x1, . . . , xn} we say that a variable xi is functionally deter-

 - 34 -

mined by a subset of variables Y ⊆ X , denoted as Y → xi,
if for any two solutions a1,a2 ∈ Sol, whenever a1 and a2

agree on variables Y (a1[Y] = a2[Y]), they also agree on
variable xi (a1[xi] = a2[xi]). Formally:

Y → xi ⇔def ∀a1,a2∈Sol a1[Y] = a2[Y] ⇒ a1[xi] = a2[xi].

A number of approaches are known in the database com-
munity for uncovering all minimal functional dependencies.
A core operation that is executed repeatedly is testing for
atomic functional dependencies of the form Y → xi. State-
of-the art approaches for testing atomic dependencies first
cluster data in equivalence classes with respect to the value
of xi, and then make multiple linear iterations through the
dataset. This incurs linear complexity in the number of
solutions O(T) [Huhtala et al., 1999; Schlimmer, 1993].
Other approaches incur even more complexity, using sorting
O(T · log(T)) or explicit comparison of all tuples O(T 2).

Application to Recommendation and Configuration
Detecting functional dependencies has applications in many
areas. For example, uncovering that an attribute is function-
ally determined by values of other attributes can be of critical
importance in analyzing the effect of chemical compounds
on cancerogenity, studying the shopping habits of customers,
etc. In this paper however, we suggest that uncovering func-
tional dependencies can also be useful in a recommendation
and interactive configuration context.

Firstly, various forms of catalogue consistencies can be ex-
pressed as functional dependencies. If product catalogues are
frequently updated by the addition, removal or change of its
items, over time various forms of inconsistencies or undesir-
able properties might be introduced. In particular, if care is
not taken, a change of pricing policy might result in the addi-
tion of an item to the dataset that is already present in the cata-
logue but differs in price. Furthermore, catalogue datasets are
often transformed or preprocessed for various forms of anal-
ysis or communication. Such transformations might involve
the removal of “redundant” attributes, such as textual descrip-
tions. If care is not taken, non-redundant attributes might be
removed as well, thus influencing the soundness of the results
of the analysis performed over the processed dataset. Thus,
analyzing functional dependencies can help detect possible
inconsistencies. As an illustration, checking whether “each
identical configuration of a product has the same price” re-
duces to verifying that the price attribute is functionally de-
termined by the remaining attributes.

Secondly, functional dependencies can help us reason
about the length of user interaction with respect to the design
of the user interface. If a subset of attributes Y ⊂ X func-
tionally determines all the other variables, Y → X , then a
user is guaranteed to completely specify the product as soon
as all the variables Y are assigned. Hence, an interface in
which a user is encouraged to first assign variables Y , might
help reduce the total number of interaction steps. This could
be an important addition to recent efforts towards the formal
analysis of user navigation. In [Felfernig, 2006] the author
used a formal model of the recommender process, based on fi-
nite state automata, to support automatic debugging of faulty
models of recommender user interfaces. In [Mahmood and

Ricci, 2007] the authors presented a recommender system
that autonomously learns an adaptive interaction strategy, us-
ing a formal model of user interaction based on Markov de-
cision processes. In [Hadzic and O’Sullivan, 2008] the au-
thors introduced critique graphs as a formalism for analyzing
various aspects of interaction in conversational recommender
systems. In particular reachability of products through cri-
tiquing was discussed.

3 Functional Dependencies in MDDs
The main contribution of this paper is an approach to uncov-
ering functional dependencies when a product (solution) set
is compressed into a multi-valued decision diagram (MDD).
As noted earlier, MDDs are, in the worst-case, linear in the
size of the catalogue O(T), but they can often be exponen-
tially smaller. Since the algorithms we suggest for uncovering
functional dependencies, in this and the following sections,
have quadratic complexity in the size of the MDD, whenever
the MDD is sufficiently small we guarantee a sublinear-time
algorithm for performing atomic dependency tests Y → x.

We will first discuss how to detect directional dependen-
cies, which respect variable ordering and are particularly easy
to detect. We will then discuss uncovering general dependen-
cies of the form X \ {xi} → xi.

3.1 Directional Dependencies
Directional dependencies {x1, . . . , xi−1} → xi state that a
variable xi is determined by the subset of all variables pre-
ceding it in the variable ordering of the MDD. This is a par-
ticularly easy to detect class of dependencies as shown in the
following proposition.

Proposition 1. {x1, . . . , xi−1} → xi iff for all u ∈ Vi, u has
only one outgoing edge |Out(u)| = 1.

Proof. Let p : r Ã u be a path from root to u, e1 : u → u1

and e2 : u → u2 be two outgoing edges and p1 : u1 Ã 1
and p2 : u2 Ã 1 be paths from u1 and u2 to terminal
1 respectively. Then paths (p, e1, p1) and (p, e2, p2) rep-
resent two solutions with identical assignments to variables
{x1, . . . , xi−1} and two different assignments to xi variable,
v(e1) 6= v(e2).

Proposition 1 provides us with a simple test for checking
whether {x1, . . . , xi−1} → xi. It suffices that all nodes in Vi

have exactly one outgoing edge. This can be easily checked
by verifying that the number of nodes and outgoing edges is
the same, |Vi| = |Ei|. The set of all variables implied by
variables preceding in the order are given by:

Imp≺ = {xi | |Vi| = |Ei|}.
3.2 General Dependencies
Variables determined by subsets of variables preceding in the
order, Imp≺, do not account for all implied variables. If vari-
able xi is implied by any subset Y ⊆ X \ {xi} then it will
be also implied by X \ {xi}. Therefore, the set of all implied
variables Imp is the set of all xi such that X \{xi} → xi. To
detect such variables in an MDD, we will use the following
proposition.

 - 35 -

Proposition 2. X \ {xi} 6→ xi if and only if there is a node
u ∈ Vi with two outgoing edges e1 : u → u1, e2 : u → u2

such that v(e1) 6= v(e2) and Sol(u1) ∩ Sol(u2) 6= ∅.

Proof. If X \ {xi} 6→ xi then there are two solutions a =
(a1, . . . , an),a′ = (a′1, . . . , a

′
n) differing only in the i-th co-

ordinate, ai 6= a′i. Let pa and pa′ be the paths encoding
these solutions. These paths must be of the form: pa =
(p, e1, p1), pa′(p, e2, p2), where p is a unique path encoding
(a1, . . . , ai−1). Path p ends in a node u ∈ Vi. Since ai 6= a′i,
v(e1) 6= v(e2) and since v(p1) = v(p2) = (ai+1, . . . , an) it
follows Sol(u1) ∩ Sol(u2) ⊇ {(ai+1, . . . , an)}.

On the other hand, if there is u ∈ Vi with two outgo-
ing edges e1, e2, such that v(e1) 6= v(e2) and Sol(u1) ∩
Sol(u2) 6= ∅ then we can choose two paths p1 : u1 Ã 1,
p2 : u2 Ã 1 such that v(p1) = v(p2). It suffices to
choose any path from root to u, p : r Ã u to construct
paths pa = (p, e1, p1), pa′(p, e2, p2) which encode solu-
tions differing only at the i-th coordinate and thus proving
X \ {xi} 6→ xi.

Assume that for each pair of nodes in the same layer u1, u2

we have precomputed Boolean indicators D[u1, u2]

D[u1, u2] = 1 ⇔ Sol(u1) ∩ Sol(u2) 6= ∅.
Whenever we encounter a pair of nodes (u1, u2) such that
D[u1, u2] = 1, we are guaranteed that there are at least two
paths p1 : u1 Ã 1 and p2 : u2 Ã 1 encoding the same
solution v(p1) = v(p2). Given such labels, we can compute
all functionally determined variables using Algorithm 1. In
each layer we check for all pairs of edges with the same par-
ent e1(u, u1, a1),e2(u, u2, a2) whether D[u1, u2] = 1. As
soon as such edges are found we have proven that xi is not
implied and we may proceed to the next layer. The algorithm
runs in O(

∑n
i=1 |Vi| · |Di|2) steps, since for each node in

each layer u ∈ Vi, we compare in worst case all pairs of its
children edges, and there are at most |Di| × (|Di| − 1)/2
such pairs. The space complexity is O(

∑n
i=1 |Vi|2) since

we have to store Boolean indicators D[u1, u2] for each pair
(u1, u2) ∈ V 2

i .

Algorithm 1: Compute functionally determined vari-
ables.

Data: MDD M(V,E)
Imp = X;
foreach i = 1, . . . , n do

foreach u ∈ Vi, |Ch(u)| > 1 do
foreach e1 : u → u1, e2 : u → u2 do

if v(e1) 6= v(e2) ∧D[u1, u2] = 1 then
Imp ← Imp \ {xi};
go to next layer;

return Imp;

Compatibility pairs D[u1, u2] can be computed in
quadratic time and space using a dynamic programming
scheme from Algorithm 2. We first initialize D[u1, u2] = 0
for all pairs of nodes, except for the terminal 1, setting

D[1,1] = 1. We then, in a bottom-up manner, traverse the
MDD. The recursive relationship used for dynamic program-
ming is based on observing that D[u1, u2] = 1 iff there are
two outgoing edges e1 : u1 → u′1, e2 : u2 → u′2 such
that v(e1) = v(e2) ∧ D[u′1, u

′
2] = 1. The algorithm runs in

O(
∑n

i=1 |Ei|2) time since in each layer Ei each pair of edges
is compared at most once. The algorithm takes Θ(

∑
i |Vi|2)

space, since we introduce a compatibility indicator for each
pair of nodes in the layer.

Algorithm 2: Compute Boolean indicators.
Data: MDD M(V, E)
D[·, ·] = 0, D[1,1] = 1;
foreach i = n, . . . , 1 do

foreach (u1, u2) ∈ Vi × Vi do
if u1 = u2 then

D[u1, u2] = 1;
continue;

foreach e1 : u1 → u′1, e2 : u2 → u′2 do
if v(e1) = v(e2) ∧D[u′1, u

′
2] = 1 then

D[u1, u2] = 1;
break;

return D;

4 Subset-Induced Dependencies
Given a subset of variables Y ⊆ X we may want to compute
the set of all variables implied by Y :

ImpY = {xi ∈ X \ Y | Y → xi}.
This could help us to evaluate an overall impact of a subset
of variables. We could exploit this information in a num-
ber of different settings. In particular, if we find Y such that
ImpY = X \ Y , then regardless of how we assign variables
Y , we would completely specify entire solution. This could
be important for increasing the usability of user interaction
since, if a user is assigning only variables Y we guarantee
that the number of user interactions before completely spec-
ifying a solution is at most |Y |. Furthermore, such an infor-
mation could help organize the visual layout of the variables
in a user interface. If a variable xi is determined by variables
Y , by displaying xi closer to Y in the user interface, a user
would faster evaluate implications of his assignments to Y
variables.

By definition, a variable xi is not implied by Y iff there are
two solutions a1,a2 such that a1[Y] = a2[Y] and ai 6= a′i.
Recall that S[Y] denotes a projection of set S on variables
Y . An observation that would help us detect such variables is
provided in the following proposition.
Proposition 3. Y 6→ xi iff there are two edges e1, e2 ∈ Ei,
e1 : u1 → u′1, e2 : u2 → u′2, such that v(e1) 6= v(e2)
and Sol(r, u1)[Y] ∩ Sol(r, u2)[Y] 6= ∅ and Sol(u′1)[Y] ∩
Sol(u′2)[Y] 6= ∅.

Assuming that for every pair of nodes u1, u2 we have com-
puted Boolean indicators:

UY [u1, u2] = 1 ⇔ Sol(r, u1)[Y] ∩ Sol(r, u2)[Y] 6= ∅

 - 36 -

DY [u1, u2] = 1 ⇔ Sol(u1)[Y] ∩ Sol(u2)[Y] 6= ∅
we could use an adaptation of Algorithm 1 to detect all vari-
ables implied by subset Y . The adaptation is presented in
Algorithm 3.

Algorithm 3: Compute Y -implied variables.
Data: MDD M(V,E), Y ⊂ X , UY , DY

ImpY = X;
foreach i = 1, . . . , n do

foreach (u1, u2) ∈ Vi × Vi do
foreach e1 : u1 → u′1, e2 : u2 → u′2 do

if v(e1) 6= v(e2) ∧ UY [u1, u2] =
1 ∧DY [u′1, u

′
2] = 1 then

ImpY ← ImpY \ {xi};
go to next layer;

return ImpY ;

Compatibility labels UY , DY can be computed in quadratic
time and space using an adaptation of Algorithm 2 which
is presented in Algorithm 4. To construct a recursive rela-
tionship on which the computation is based, for a given pair
of nodes u1, u2 ∈ Vj we have to differentiate between two
cases. If xj 6∈ Y , then DY [u1, u2] = 1 iff there are two
outgoing edges e1 : u1 → u′1, e2 : u2 → u′2 such that
DY [u′1, u

′
2] = 1 regardless of whether v(e1) = v(e2) or

v(e1) 6= v(e2). If xj ∈ Y then DY [u1, u2] = 1 iff in addition
to DY [u′1, u

′
2] = 1 it also holds v(e1) = v(e2). Compatibility

labels UY are computed in an analogous manner.
The algorithm runs in O(

∑n
i=1 |Ei|2) time since for both

traversals, in each layer Ei each pair of edges is compared at
most once. The algorithm takes Θ(

∑
i |Vi|2) space, since we

introduce two Boolean compatibility indicators UY , DY for
each pair of nodes in the layer.

4.1 Finding Minimal Dependencies
Given a subset of variables Y0 ⊆ X such that X \ Y0 → Y0,
it is often required to compute the set of all minimal subsets
of variables Y ⊆ X \ Y0 that imply Y0. In other words, we
want to compute:

Y = {Y ⊆ X \ Y0 | Y → Y0, s.t. 6 ∃Y ′⊂Y Y ′ → Y0}.
There could be an exponential number of such sets, and a
number of approaches has been developed that operate on a
set-containment lattice [Huhtala et al., 1999] and avoid un-
necessary tests Y → x. For example, whenever Y deter-
mines x, Y → x, all supersets of Y also determine x. A
number of similar optimizations are implemented in [Huhtala
et al., 1999]. Extending existing approaches by incorporating
our MDD-tests is an interesting direction for future research,
but falls out of the scope of this paper.

5 Approximative Dependencies
We have so far discussed only exact dependencies, i.e. we de-
tect only whether variable xi is determined or not. However,
a subset of variables Y might have a significant implicative

Algorithm 4: Compute Y -Boolean indicators.
Data: MDD M(V, E), Y ⊂ X
DY [·, ·] = 0, DY [1,1] = 1;
foreach i = n, . . . , 1 do

foreach (u1, u2) ∈ Vi × Vi do
if u1 = u2 then

DY [u1, u2] = 1;
continue;

foreach e1 : u1 → u′1, e2 : u2 → u′2 do
if xi 6∈ Y ∧DY [u′1, u

′
2] = 1 then

DY [u1, u2] = 1;
break;

else if
xi ∈ Y ∧ v(e1) = v(e2) ∧DY [u′1, u

′
2] = 1

then
DY [u1, u2] = 1;
break;

UY [·, ·] = 0, UY [r, r] = 1;
foreach i = 1, . . . , n do

foreach (u′1, u
′
2) ∈ Vi+1 × Vi+1 do

if u′1 = u′2 then
UY [u′1, u

′
2] = 1;

continue;
foreach e1 : u1 → u′1, e2 : u2 → u′2 do

if xi 6∈ Y ∧ UY [u1, u2] = 1 then
UY [u′1, u

′
2] = 1;

break;
else if
xi ∈ Y ∧ v(e1) = v(e2) ∧ UY [u1, u2] = 1
then

UY [u′1, u
′
2] = 1;

break;

influence on a variable x even though it does not imply it ex-
actly. Therefore we are interested in computing a degree of
dependency Y → x. Let d(Y, x) ∈ [0..1] denote such a de-
gree. There is a number of ways to define it. In [Huhtala et al.,
1999] the authors use for the measure a minimal percentage
of solutions that has to be removed in order for dependency
to hold. We however use the following definition:

d(Y, x) =
|Sol[Y]|

|Sol[Y ∪ {x}]|
When Y → x, then |Sol[Y]| = |Sol[Y ∪ {x}]|, and

d(Y, x) = 1. On the other hand, when x is completely
undetermined by Y , then every assignment to Y variables
a ∈ Sol[Y] can be combined with all values in domain for
x, Dx. In that case,

d(Y, x) =
1
|Dx| .

Hence, to each dependency statement Y → x we assign a
measure

d(Y, x) ∈ [
1
|Dx| , 1]

 - 37 -

where larger values indicate larger degrees of dependency,
and when d(Y, x) = 1, Y → x holds exactly. We can in-
terpret this measure as follows - whenever d(Y, x) = d, every
assignment to variables Y can on average be combined with
1
d values of x.

Note that such a statistic can be easily computed using
a BDD-based representation of solution set Sol. A BDD-
package BuDDy [Lind-Nielsen, online] supports both projec-
tion and counting operations. Counting the number of solu-
tions in a BDD is an efficient operation - linear in the number
of nodes. While computing a BDD representation of a pro-
jected solution space, such as Sol[Y], can in theory increase
the size of the BDD - in practice projecting out variables is al-
most always an efficient operation that decreases the number
of nodes significantly.

6 Experimental Evaluation
We have applied our techniques to four well-known product
catalogues that are frequently used in recommender system
research. These are related to digital cameras, laptop comput-
ers, property lettings and travel [Nicholson et al., 2006]. For
the purposes of our evaluation, we analyzed the data under
the same adjustments that are usually done for experimental
evaluation. Firstly, all unique identifiers or textual descrip-
tions, were removed. Secondly, all declared domain values
that did not appear in at least one product, but appeared in the
specification, were also removed. If some values appeared
in datasets but were not declared, we added them to model
specification.

A summary of the properties of the instances are reported
in Table 2. For each instance, Cameras, Laptops, Travel, Let-
tings we show the number of rows in the initial explicit solu-
tion set representation, the number of solutions Sol extracted
from the MDD representation, the number of variables X ,
and minimal, maximal and average domain size. We uncov-
ered that three out of four datasets contain duplicate entries,
since the number of solutions is smaller than the number of
rows.

Table 2: Basic properties of product catalogues. For each in-
stance we show the number of rows in the initial table repre-
sentation, number of solutions Sol extracted from the MDD
representation, number of variables X , and minimal, maxi-
mal and average domain size.

Instance Rows |Sol| X dmin dmax davg

Cameras 210 210 9 5 165 40
Laptops 693 683 14 2 438 42
Travel 1470 1461 7 4 839 134
Lettings 794 751 6 2 174 45

Dependency Analysis
After compiling catalogues into MDDs, we performed a de-
pendency analysis X \ {xi} → xi for each instance and each
attribute. A detailed analysis of product catalogues is pre-
sented in Table 3. For each instance, we list all variables X

and for each variable xi ∈ X we indicate its type (Categor-
ical, Numerical, Boolean), domain size and degree of depen-
dence:

d(X \ {xi}, xi) =
|Sol[X \ {xi}]|

|Sol]| .

Recall that the degree of dependence d(Y, x) captures how
many values of xi can on average be combined with every as-
signment to variables Y . For example, if d(Y, x) = 1/2, then
every assignment to variables Y can on average be combined
with 2 values in a domain of x. If d(Y, x) = 1 then for ev-
ery assignment to Y variables there is exactly one compatible
value in domain of x and hence, x is functionally determined
by Y . We can see from the table that almost all variables are
functionally determined, and those that are not have a very
high level of functional dependency. This is not surprising
given that the price of the product is the most distinguishing
attribute - behaving similarly as a unique key in a database.
However, to our surprise, price is not functionally dependent
in any of the catalogues! This indicates that in each cata-
logue there are identical configurations which have different
prices! This is particularly emphasized for the Lettings cata-
logue, where degree of dependence is 0.563. This means that
each configuration of remaining attributes on average has two
different prices.

After analyzing more closely the variable specification and
original and processed datasets, we discovered that a Street
attribute of the Lettings catalogue was not declared in the
dataset specification. Therefore, the preprocessing step ig-
nored the corresponding column. Hence, a number of let-
tings with identical specifications and in the same region were
treated as identical even though they were offered in different
streets of the same region. For the same reason, the number
of duplicate entries in Table 2 of the Lettings catalogue was
disproportionably large.

7 Conclusions
In this paper we presented an approach to computing func-
tional dependencies over an MDD representation of a prod-
uct catalogue. We focused on verifying catalogue consis-
tencies as an application relevant within an online configu-
ration/recommendation context. Using functional dependen-
cies as an analytic tool we discovered that a set of publicly
available product catalogues exhibits specific characteristics
that have not been noted to-date; some of these characteristics
can be regarded as bugs in the catalogue definition or in the
preprocessing step of the catalogues. This warrants caution
in the future investigations in the area of web-based config-
uration and recommender systems that rely on preprocessed
forms of product catalogues. The fact that the datasets might
violate some consistency criteria should be taken into account
when drawing conclusions from experimental evaluations.

We also identified that functional dependencies can be
used to formally reason about the length of user interac-
tion. This topic fits within recent research about recom-
mender systems [Felfernig, 2006; Mahmood and Ricci, 2007;
Hadzic and O’Sullivan, 2008] but was not the focus of this
paper. Instead, it would be pursued in future work. In ad-
dition, in the future we plan to further investigate the utility

 - 38 -

Table 3: A dependency analysis of product catalogues Cameras, Laptops, Travel and Lettings. For each instance, we list
variables X and for each variable we indicate its type , domain size and degree of dependence. Variable type Boolean* indicates
that beside yes or no values, a value unknown is also permitted.

Instance Variable Type Domain size Degree of dependence
Cameras Format Categorical 5 1.0

Storage type Categorical 7 1.0
Storage amount Numerical 12 1.0
Manufacturer Categorical 15 1.0
Optical zoom Numerical 21 1.0
Digital zoom Numerical 22 1.0
Resolution Numerical 31 1.0
Weight Numerical 87 1.0
Price Numerical 165 0.966

Laptops Microphone Boolean 2 0.995
Speakers Boolean 2 0.998
DVD Boolean* 2 1.0
Floppy Boolean 2 1.0
Modem Boolean* 3 1.0
CDROM Boolean* 3 1.0
Pointing device Categorical 3 1.0
RAM Numerical 9 1.0
Screen size Numerical 9 1.0
Processor type Categorical 10 1.0
Processor speed Numerical 15 0.998
HD size Numerical 28 0.998
Weight Numerical 64 1.0
Price Numerical 438 0.855

Travel Transport Categorical 4 0.999
Accommodation Categorical 6 0.998
Holiday type Categorical 8 0.964
Duration Numerical 9 0.998
Number of persons Numerical 11 0.991
Region Categorical 65 0.971
Price Numerical 839 0.809

Lettings Type Categorical 2 0.993
Furnished Boolean 2 0.968
Baths Numerical 6 0.981
Beds Numerical 8 0.955
Area Categorical 80 0.650
Price Numerical 174 0.563

 - 39 -

of decision diagrams for recommending general configurable
products.

Acknowledgements
Hadzic is supported by a Post-doctoral Research Fellowship
from the Irish Research Council for Science, Engineering and
Technology. O’Sullivan is supported by Science Foundation
Ireland (Grant Number 05/IN/I886). We would like to thank
anonymous reviewers for their useful comments.

References
[Bryant, 1986] R. E. Bryant. Graph-based algorithms for

boolean function manipulation. IEEE Transactions on
Computers, 1986.

[Drechsler, 2001] Rolf Drechsler. Binary decision diagrams
in theory and practice. International Journal on Software
Tools for Technology Transfer (STTT), 3(2):112–136, May
2001.

[Felfernig, 2006] Alexander Felfernig. Diagnosing faulty
transitions in recommender user interface descriptions. In
Advances in Applied Artificial Intelligence, pages 869–
878. Springer-Verlag, 2006.

[Hadzic and O’Sullivan, 2008] Tarik Hadzic and Barry
O’Sullivan. Critique graphs for catalogue navigation. In
RecSys ’08: Proceedings of the 2008 ACM conference on
Recommender systems, pages 115–122, New York, NY,
USA, 2008. ACM.

[Huhtala et al., 1999] Ykä Huhtala, Juha Kärkkäinen, Pasi
Porkka, and Hannu Toivonen. Tane: An efficient algorithm
for discovering functional and approximate dependencies.
The Computer Journal, 42(2):100–111, March 1999.

[Lind-Nielsen, online] J. Lind-Nielsen. BuDDy - A Binary
Decision Diagram Package.
http://sourceforge.net/projects/buddy,
online.

[Mahmood and Ricci, 2007] Tariq Mahmood and Francesco
Ricci. Learning and adaptivity in interactive recommender
systems. In ICEC ’07: Proceedings of the ninth interna-
tional conference on Electronic commerce, pages 75–84,
New York, NY, USA, 2007. ACM.

[Meinel and Theobald, 1998] C. Meinel and T. Theobald.
Algorithms and Data Structures in VLSI Design. Springer,
1998.

[Nicholson et al., 2006] Ross Nicholson, Derek Bridge, and
Nic Wilson. Decision diagrams: Fast and flexible support
for case retrieval and recommendation. In Proceedings
of Eighth European Conference on Case-Based Reasoning
(ECCBR 2006), 2006.

[Schlimmer, 1993] Jeffrey C. Schlimmer. Efficiently induc-
ing determinations: A complete and systematic search al-
gorithm that uses optimal pruning. In ICML, pages 284–
290, 1993.

[Wegener, 2000] Ingo Wegener. Branching Programs and
Binary Decision Diagrams. Society for Industrial and Ap-
plied Mathematics (SIAM), 2000.

 - 40 -

Effectiveness of different recommender algorithms
in the Mobile Internet: A case study

Kolja Hegelich and Dietmar Jannach
Technische Universität Dortmund

44221 Dortmund, Germany
kolja.hegelich@tu-dortmund.de, dietmar.jannach@tu-dortmund.de

Abstract

Despite the broad use of Recommender Systems (RS) tech-
nology in various domains, the number of publicly available
reports on the actual business value of such systems is lim-
ited.
This paper presents first results of an empirical evaluation of
how different recommendation algorithms affect the naviga-
tion and buying behavior of a sample of over 155.000 dif-
ferent customers on a commercial Mobile Internet portal for
cell phone games. The evaluated RS algorithms include item-
based collaborative filtering, SlopeOne, a content-based as
well as a hybrid technique, which were compared with naive
approaches based on top-selling and top-rated items.
The analysis shows that RS measurably affected the naviga-
tion and buying behavior of the portal visitors. The personal-
ized recommendation lists not only attracted more clicks on
detailed item descriptions but also lead to an overall sales in-
crease when compared with control groups that received non-
personalized recommendations or no recommendations dur-
ing the evaluation period.
The comparison of different algorithms brought no clear win-
ner that consistently outperformed the others. However, the
results indicate that the choice of the recommendation tech-
nique should depend on the specific navigational situation in
which recommendation lists are presented.

Introduction & previous studies
Although the interest in recommender systems technology
has been increasing in the last years both in industry and
research and although recommender applications can nowa-
days be found on many web sites of online retailers, nearly
no studies about the actual business value of such systems
have been published that are based on real-world transaction
data.

In the research community, the performance of a recom-
mender system is mainly measured based on its accuracy
with respect to predicting whether a user will like a certain
item or not1. The implicit assumption is that the online user
– after establishing trust in the system’s recommendations

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See (Herlocker et al. 2004) for an overview on evaluation met-
rics for recommender systems.

or because of curiosity – will more often buy these recom-
mended items from the shop.

However, a shop owner’s key performance indicators re-
lated to a personalized web application such as a recom-
mender system are different ones. Establishing a trustful
customer relationship, providing extra service to customers
by proposing interesting items, maintaining good recom-
mendation accuracy and so on are only a means to an end.
While these aspects are undoubtedly important for the long-
term success of a business, for an online retailer, the impor-
tant performance indicators are related (a) to the increase of
the conversion rate, i.e., how web site visitors can be turned
into buyers, and (b) to questions of how to influence the vis-
itors in a way that they buy more or more profitable items.

Unfortunately, only few real-world studies in that context
are available because large online retailers do not publish
their evaluations of the business value of recommender sys-
tems. Only a few exceptions exist. Dias et al. (Dias et
al. 2008), for instance, recently presented the results of a
21-month evaluation of their probabilistic item-based rec-
ommender system running on a large Swiss e-grocer web
portal. Their measures include “shopper penetration”, “di-
rect extra revenue” and “indirect extra revenue”. Their anal-
ysis showed different interesting points. First, a relatively
small (when compared to overall sales) extra revenue can
be generated directly by the recommender. The fact that di-
rect revenues measurably increased when the probabilistic
model went through a periodic update suggests that good
recommendation accuracy is still important, despite some
legitimate criticism of simple accuracy measures (McNee,
Riedl, and Konstan 2006). The more important business
value, however, comes from indirect revenues caused by the
recommender systems. Indirect revenues include the money
spent on repeated purchases of items initially recommended
by the system and on items sold from categories to which the
customer was newly introduced to through a recommended
item. This in turn also supports the theory that diversity in
recommendation lists is a valuable property as “unexpected”
items in these lists may help to direct users to other, possibly
interesting categories.

An earlier evaluation based on real-world data was pre-
sented in (Shani, Brafman, and Heckerman 2002), where the
authors performed different experiments on an online book-
store. During their experiment, visitors of the web shop re-

 - 41 -

ceived buying proposals either from a “predictive” or a new
Markov Decision Process recommender. Thus, they were
able to compare the respective profits that were generated
by different techniques during the observation period. In
addition, at least for a period of seven days, the recommen-
dation functionality was fully removed from the web shop.
Although this sample is statistically too small, the compar-
ison of sales numbers of two consecutive weeks (one with
and one without the recommender) showed a 17% drop in
the recommender-less week.

Another initial study on how recommender systems influ-
ences the buying behavior of web shop visitors is presented
in (Zanker et al. 2006). In this work, it was shown that the
recommendations of a virtual advisor for premium cigars
can stimulate visitors to buy cigars other than the well-
known Cohibas and thus increase sales diversity, which is
interesting from an up-selling and cross-selling perspective
and could also create “indirect revenue” as described in
(Dias et al. 2008); see also (Fleder and Hosanagar 2007)
for a discussion of the role of sales diversity in recommender
systems.

In (Zanker et al. 2008), a different study using the same
recommendation technology was made in the tourism indus-
try, where it could be observed that the number of accommo-
dation availability enquiries is measurably higher when web
site visitors are guided by the virtual advisor. Another eval-
uation of how different information types and recommenda-
tion “sources” influence consumers can be found in (Senecal
and Nantel 2004).

Similar to these works, our paper focuses on evaluating
the business value of recommender systems in a commercial
context. In addition, it aims to answer the question whether
certain algorithms perform better than others in a certain en-
vironment and application domain in the line of the work of,
e.g., (Breese, Heckerman, and Kadie 1998) or (Zanker et al.
2007).

Application and personalization overview
The study presented in this paper was conducted in the con-
text of a Mobile Internet portal of a large telecommunica-
tions provider in Germany. Customers access this portal
through their mobile devices and are offered a wide range
of applications and games, which they can directly purchase
and download to their cell phones.

Figure 1 shows the entry screen of the games area of the
portal. Customers explore the item catalog in the following
ways:

• Through manually-edited or non-personalized lists such
as “New items” or “Top10 items” (top area of screen).

• Through direct text or image links (teasers) to certain
items that are shown on the middle area of the start screen.

• Through predefined standard categories (lower area) such
as “A - Z”, “From 99 Cent”, or “Action & Shooters”.

• In addition, after a purchase, when the payment confirma-
tion is displayed, customers are presented with a list of
other, possibly interesting items (post-sales recommenda-
tion).

Figure 1: Catalog navigation and categories

Accordingly, the portal was extended with personalized
content as follows.

1. A new top-level link “My Recommendations“ was intro-
duced that leads to a personalized recommendation list.
(“Meine Empfehlungen” in German).

2. The games presented in the lower two of the four text
teasers and the first image teaser on the start page were
personalized. Due to existing contracts the first two text
links and the two lower image links were manually pre-
defined. The manually edited links remained the same
during the whole experiments, which allowed us to ana-
lyze the effects of personalizing the other links indepen-
dently.

3. The lists in the standard categories such as “99 Cent” were
personalized except for categories such as “A-Z”, which
have a “natural” ordering.

4. The games presented on the post-sales page were also per-
sonalized.

During the experiments, different algorithms were used
to calculate the personalized recommendations. In order to
measure the effect of personalization, members of the con-
trol group were shown non-personalized or manually-edited
lists which are based on the release date of the game.

Customers can immediately purchase and download
games through the portal by choosing items from the pre-
sented lists. The relation between their navigation and buy-
ing behavior can therefore be easily determined as all por-
tal visitors are always logged-in. Several thousand games
(across all categories) are downloaded each day through the

 - 42 -

platform. The prices for the games range from free evalua-
tion versions (demos) over “99Cent-Games” to a few Euro
for premium games and the amounts are directly charged to
the customer’s monthly invoice. Note that in contrast to the
study in (Dias et al. 2008), where users purchase the same
goods repeatedly, customers in our domain only purchase
the same item once, i.e., our domain is similar to popular
recommender systems application areas such as books and
movies.

From the perspective of the application domain, the pre-
sented game portal stands in the line of previous works in
the area of recommender systems for mobile users. Recent
works in the field of mobile recommenders include, e.g.,
(Miller et al. 2003), (Cho, Kim, and Kim 2004), (van der
Heijden, Kotsis, and Kronsteiner 2005), (Ricci and Nguyen
2007), (Li, Wang, and Geng 2008) or (Nguyen and Ricci
2008). Content personalization approaches for the Mobile
Internet are presented also in (Pazzani 2002),(Billsus and
Pazzani 2007) and (Smyth, Cotter, and Oman 2007). In
(Smyth and Cotter 2002), finally, the effects of personaliz-
ing the navigational structure on a commercial WAP portal
are reported.

It can be expected that this area will attract even more at-
tention in the future because of the rapid developments in
the hardware sector and the increasing availability of cheap
and fast mobile Internet connections. Note that in contrast
to some other approaches, our system does not exploit addi-
tionally available information such as the current geographi-
cal position or demographic and other customer information
known to the service provider. Standard limitations of Mo-
bile Internet applications such as relatively small network
capacity and limited display sizes however apply.

Algorithms and ratings
During the four week evaluation period, customers were
assigned to seven different groups when they entered the
games section of the portal. For each group, the item lists
were generated in a different way. For the first four groups,
the following recommendation algorithms were used.

• Item-based collaborative filtering (CF) (Sarwar et al.
2001) as also used by Amazon.com (Linden, Smith, and
York 2003).

• The recent and comparably simple SlopeOne algorithm
(Lemire and Maclachlan 2005).

• A content-based method using a TF-IDF representation of
the item descriptions and the cosine similarity measure.

• A “switching” (Burke 2002) hybrid algorithm that uses
the content-based method when less than 8 item ratings
are available and item-based collaborative filtering other-
wise.

Two groups received non-personalized item lists, one
based on the average item rating (“TopRating”) and one
based on the sales numbers (top sellers). For the final group,
the control group, the recommendation lists were manually
edited as it was before the personalization features have been
introduced. Within most categories, the ordering was based
on the release date of the game or chosen based on existing

contracts. The top-level link ”My Recommendations” was
not available for the control group. During the whole evalu-
ation period, customers remained in their originally assigned
group.

From all customers that visited the games portal dur-
ing the evaluation, a representative sample of over 155.000
was included in the experiment, so each group consisted of
around 22.300 customers. Note that only such customers
were chosen for which all algorithms were able to produce a
recommendation, i.e., users for which a minimum number of
ratings already existed. Also only such frequent customers
were assigned to the control group and the groups receiving
non-personalized recommendations, which guarantees that
similar customer segments are compared. The catalog of
recommendable items consisted of about 1.000 games.

A five-point rating scale from −2 to +2 was used in the
experiments. Since the number of explicit item ratings was
very low and only about two percent of the customers have
issued at least one rating, also implicit ratings have been
taken into account: both clicks on item details as well as
actual purchases were interpreted as implicit ratings. When
no explicit rating was given, a view on item details was inter-
preted as a rating of 0 (medium); several clicks on the same
item were not counted. An actual purchase was interpreted
as a rating of 1 (good) for the item. Explicit ratings override
these implicit ratings.

In order to achieve the best possible recommendation ac-
curacy, the item similarities and the average differences for
the collaborative filtering and the SlopeOne techniques were
computed using the full customer base and not only the
155.000 customer sub-sample.

Evaluation
The following hypotheses are in the center of our evaluation.

• H1: Personalized recommendations attract more cus-
tomers to detailed product information pages (item view
conversion rate).

• H2: Personalized recommendations help to turn more vis-
itors into buyers (sales conversion rate).

• H3: Personalized recommendations stimulate individual
customers to view more items.

• H4: Personalized recommendations stimulate individual
customers to buy more items.

The detailed evaluation will show that depending on the
navigational situation of the portal visitor different phenom-
ena with respect to the effectiveness of recommendation al-
gorithms can be observed. Before considering the overall
effect of the use of recommendation technology on the por-
tal, we will discuss the individual results obtained for these
different situations.

Measurement 1: My Recommendations
The following results are related to the personalized recom-
mendation list that is presented when the customer clicks on
the “My Recommendations” link as shown in the top area of
Figure 1. Throughout the evaluation, we will use different

 - 43 -

colors to highlight data rows in the charts that are signifi-
cantly different (p < 0.01) from each other.

The conversion rate measurements (hypotheses H1 and
H2) are given in Figure 2, which depicts the item view con-
version rate for visitors of the “My Recommendations” list,
and Figure 3 that shows how many of the users that visited
the “My Recommendations” section actually purchased an
item2.

Figure 2: Conversion rate: Item views to “My Recommen-
dations” visits

Figure 3: Conversion rate: Buyers to My Recommendations
visits

In Figure 2 we see that the different algorithms fall into
two groups: One, where about two thirds of of the customers
actually click on at least one of the presented items and one,
where only 55% are interested in the recommended items.
Considering the actual numbers, the differences between the
two groups are significant (p < 0.01).

From the personalized methods, only the SlopeOne algo-
rithm did not attract significantly more visitors than the non-
personalized list of top rated items. Interestingly, the non-
personalized top seller list also has a good item view con-
version rate, i.e., placing generally-liked, top-selling items
in a recommendation list seems to work quite well in the
domain.

When the sales conversion rate is considered, we see in
Figure 3 that only the CF method helps to turn more visitors
into buyers (Hypothesis H2).

2In Figures 2 to 5, the control group is not depicted, because
the “My Recommendations” section, which was newly introduced
for measuring the impact of personalization, was not available for
them.

Figure 4: Item views per “My Recommendations” visits

Figure 5: Item purchases to “My Recommendations” visits

The evidence for our hypotheses H3 (more item views per
customer) and H4 (more purchases per customer) in the con-
text of the “My Recommendations” section can be seen in
Figures 4 and 5. Figure 4 shows that all recommendation
algorithms (except for SlopeOne) stimulate users to click on
more items. Compared with the findings with respect to the
conversion rates, this can be interpreted as follows: while
top seller lists help to stimulate one or the other customer
to click on an item detail, personalized lists seem to contain
more items that are interesting to a customer.

When it comes to actual purchases (game downloads),
Figure 5 shows that most personalized methods and
even the simple SlopeOne algorithm outperform the non-
personalized approaches.

Figure 6: Game purchases and demo downloads in “My
Recommendations”

Note that for some of the games provided on the mobile

 - 44 -

portal, free evaluation versions (demos) are available. If not
mentioned otherwise, all numbers given with respect to con-
version rates and sales figures are related to all item down-
loads, i.e. free demos plus actual game purchases. Figure
6 now repeats the numbers of Figure 5, but also shows the
fraction of demo downloads and purchased games. Due to
the nature of the algorithms and the particularities of the ap-
plication (see more details in Measurement 4) , the recom-
mendation lists produced by the TopRating and SlopeOne
methods contain a relatively high portion of demo games.
Given the high number of actual downloads, these demo rec-
ommendations seem to be well-accepted, but unfortunately,
these two techniques perform particularly poor when the
games are not free. The item-based, content-based and hy-
brid technique, on the other hand, not only help to sell as
many items as a simple top-seller promotion but also make
users curios about demo games. The TopRating method
only raises interest in demo versions. The list of top sell-
ing items is generally dominated by non-free, mainstream
games, which explains the fact nearly no demo games are
chosen by the users.

Measurement 2: Post-sales recommendations
The next navigational situation in which product recommen-
dations are made is when a customer has purchased an item
and the payment receipt is displayed. About 90.000 cus-
tomers who actually bought at least one item during the eval-
uation period have been involved in the experiment. Overall,
the evaluation sample contains more than 230.000 views of
the post-sales 5-item recommendation lists, meaning that on
average, customers bought more than one item.

The experimental setup is nearly identical with Measure-
ment 1 and customers received their recommendations based
on different recommendation algorithms. The recommenda-
tion list of the control group was manually edited and or-
dered by game release date. Items that the current customer
has already purchased before were removed from these lists.

The same hypotheses were tested in this experiment, i.e.,
to what extent recommender systems stimulate customers to
view and buy more items. The results are shown in Figures
7 to 10.

Figure 7: Conversion rate: Item views to post-sales list
views

With respect to the conversion rates, the following ob-
servations can be made. First, the manually edited list of
recent items (viewed by the control group) worked quite
well and has raised more customer interest than the non-
personalized techniques and even the SlopeOne algorithm

Figure 8: Conversion rate: Buyers to post-sales list views

Figure 9: Item visits per post-sales list views

Figure 10: Item purchases to post-sales list visits

(Figure 7). When it comes to actual purchases (Figure 8),
however, the manually-edited list did not help well to turn
more visitors into buyers. Interestingly, the relative im-
provement caused by personalized recommendations with
respect to this conversion rate is higher on the post-sales
recommendation page than in the “My Recommendations”
sections. Again, the CF algorithm worked best; in absolute
numbers, the differences between the various techniques are
significant, p < 0.01. With respect to the number of item
visits and purchases per customer (Figures 9 and 10), it can
again be observed that the different recommendation tech-
niques not only stimulated visitors to view more items but
actually also helped to increase sales. It can also be seen
that displaying a list of top-selling items after a purchase
leads to a particularly poor effect with respect to the overall
number of downloads.

Another observation is that the items that are recom-
mended by the SlopeOne technique and the TopRating
method are also downloaded very often (see 10), presumably
because the recommendation lists again contain many free
demos. Figure 11 therefore shows the ratio of demo down-
loads to game purchases, which is quite similar to the one

 - 45 -

from the “My Recommendations” section, i.e., recommend-
ing top-selling or newly released items does not stimulate
additional interest in free evaluation versions (demo games).
The trend toward interest in demo versions seems to be a bit
more amplified than in the “My Recommendations” section,
which indicates that after a purchase transaction, customers
first have a look on another, but free, game.

Figure 11: Game purchases and demo downloads on post-
sales page

Finally, in this navigational context, the content-based
method could raise some initial customer interest (Figure
9), perhaps because games are recommended that are quite
similar to previously downloaded ones. However, while cus-
tomers viewed some of the items, they had no strong ten-
dency of purchasing them, probably because the games were
– according to the general tendency of content-based meth-
ods – too similar to games they already know. The list of
top selling items again contained mostly of non-free games,
which explains the small fraction of demo games here; the
same holds for the control group.

Measurement 3: Start-page recommendations
This measurement analyzes the effect of the personalized
recommendations on the start page as shown in Figure 1.
Remember that some elements in these lists are edited man-
ually but were static during the experiment. Thus, we did
not include item visits or purchases from these links (that
could have been other banner advertisements as well) in the
evaluation.

During the experiment, the personalized elements of the
list, i.e., the last two text teasers and the first image teaser,
were determined based on the top-3 list of the individual rec-
ommendation algorithms or based on the non-personalized
lists of top-selling and top-rated items. Customers assigned
to the control group received manually-determined recom-
mendations which were ranked by release date.

For this experiment, we will only show the conversion rate
figures for the different teaser elements on the start page.

Figure 12 shows the percentage of portal visitors that fol-
lowed one of the personalized product links on the start
page. On average, the image teaser was clicked on by around
6% of the users. Although the image only represents the
third-ranked item of the recommendation algorithms and is

also positioned after the text links, its conversion rate is sig-
nificantly higher than for the text links. Since this also holds
for the non-personalized methods, the attractiveness of the
third link can be attributed to its visual representation. In-
terestingly, however, the image teaser leads to a good con-
version rate with respect to actual sales (Figure 13). With
respect to these conversion rates, both the CF method and
the content-based method lead to a significant increase of
item detail clicks and purchases. It can be also observed that
the conversion rates of the first text teaser can even be better
than the image teaser, when the text links are personalized.
Thus, personalization can partially even outweigh the disad-
vantages of the unflashy representation.

Another particularity of this measurement on the start
page is that the manually-selected items used for the control
group lead to comparably good conversion rates, especially
with respect to item visits. A possible explanation could be
that customers have no special expectations with respect to
the offers on the start page. The fact that the manually se-
lected items are newly released ones might further contribute
to the good acceptance.

Although recommending items based on their average
customer rating (as done by the SlopeOne and the TopRat-
ing technique) worked well in the first two experiments, this
approach does not work particularly well on the start page,
i.e., customers seem to prefer either new items or items that
are somehow related to their previous buying history.

Finally, when it comes to the number of purchases in-
duced by the recommendation lists, the personalized tech-
niques clearly outperformed the manually defined lists, at
least for the first two teaser elements, see Figure 14.

Note that we also compared the item click and sales num-
bers of the other four and statically defined image and text
teasers with the personalized ones. It could be seen that al-
though the personalized items are partially placed lower on
the screen and are thus harder to select, the received sig-
nificantly more clicks and lead to more sales than the non-
personalized links.

Measurement 4: Overall effect on demo downloads
In Measurement 1 and 2 we have seen that SlopeOne and
the non-personalized technique based on item ratings lead to
significantly more views and downloads of demo games. In
this measurement, the goal was to analyze whether this trend
also exists when the entire platform is considered, including,
e.g., all other personalized and non-personalized navigation
possibilities.

Note that no explicit category in the navigation tree for
“free demos” exists. Games for which free evaluation ver-
sions exist, can however appear in all other personalized
and non-personalized item listings in the portal. In addition,
customers are pointed to demos in two additional ways: a)
through direct-access links that are sent to them in sales pro-
motions b) through pointers to other demo games that are
displayed after a demo has been downloaded.

The distribution of views and downloads of demo games
during the four-week evaluation period for the different rec-
ommendation groups is shown in Figure 15. Overall, about

 - 46 -

Figure 12: Conversion rate: Item views to start page visits

Figure 13: Conversion rate: Purchases from start page visits

Figure 14: Purchases per start page visits

38.000 downloads have been observed for the selected sub-
sets of customers. When considering the actual downloads,
we see that the ranking of the algorithms remains the same;
the differences are even amplified.

As already quickly mentioned in previous sections, this
result can be explained by different facts that are related to
the particular application setting and the nature of SlopeOne
and the top-rating algorithm, which both tend to rank demo
games highly in the different categories described above for
the following reasons. First, as demo games can be down-
loaded at no cost and user ratings are only possible on the
platform after a download, more explicit ratings are avail-
able for these games. Next, explicit ratings tend to be above-
average also in this domain. Note that a similar phenomenon
can also be observed in other datasets such as the Movie-
Lens rating database. Finally, as customers receive a non-
personalized pointer to another demos after downloading a
free game, a reinforcement of the effect occurs.

An in-depth analysis, whether the downloads that were
stimulated by the different algorithms lead to significantly
different demo-download/purchase conversion rates is be-
yond the scope of the current study. What could, however,

Figure 15: Distribution of demo game item views and down-
loads

be observed in a first analysis is that the demo/purchase con-
version rate is significantly higher when the demo was pro-
moted by a recommendation list (as opposed to a banner ad-
vertisement).

 - 47 -

Measurement 5: Overall effects
In this final measurement reported in this paper, the overall
effect of the personalized recommendations (as an add-on
to the other navigational options) situations was evaluated.
Again, the interesting figures are related to item view and
sales conversion rates (H1 and H2) as well as to the ques-
tion whether more items are viewed and sold by individual
customers (H3 and H4).

With respect to the conversion rates (hypotheses H1 and
H2), no significant differences between the personalized and
non-personalized variant could be observed, when the plat-
form is considered as a whole. On average, about 80% of
all observed customers have viewed at least one item and
around 57% have bought at least one game, independent of
the recommendation algorithm group they were assigned to.
These figures are nearly identical for all seven test groups.
For the item view conversion rate, for instance, the numbers
only range from 79.6% to 80.3%. Thus, although slight im-
provements could be observed in individual (personalized)
situations as described above, the influence on the overall
conversion rate is too small and thus, the percentage of portal
visitors that view or purchase items could not significantly
be increased by the additional use of personalized recom-
mendation lists.

There could be different reasons for this non-effect. First,
remember that beside the described personalized lists, there
are various other ways in which customers can access the
item catalogs. Many customers for instance use the built-
in search functionality of the portal; the ranking of search
results is not personalized. The list of new items (see Fig-
ure 1) is also one of the most popular ways of browsing the
catalog and used by significantly more people than, for in-
stance, the new “My Recommendations” section. Our anal-
ysis shows that personalizing this particular list does not im-
prove the conversion rates as customers always prefer to see
the latest releases on top of such a list. Second, remember
that only customers have been considered in the evaluation,
for which a minimum number of rating already existed, i.e.
users who are in generally interested in games. An evalua-
tion of whether more new users can be tempted to purchase
items was not in the focus of the evaluation.

With respect to the hypotheses H3 and H4 (increased
number of item views and sales per customer), the following
observations can be made. Regarding the average number
of item views per customer (H3), we see that all personal-
ized algorithms outperform the non-personalized topseller
list and the control group. Similar to the effect of Measure-
ment 4, SlopeOne and the simple ranking based on average
customer rating raised the most attention. Thus, H3 could
only partially be validated at the global scale as also the non-
personalized top-rating technique was successful.

The observations made with respect to the number of pur-
chased/downloaded items per customer (H4) are shown in
Figure 16.

The figure shows that the additional attention raised by
SlopeOne and the “Top Rating” algorithm also leads to an
measurably increased number of items purchased and down-
loaded per customer. Figure 17 shows the number of down-
loaded items (including the demos) for the different algo-

Figure 16: Average number of purchases including free
downloads per customer on entire platform

rithms. If we, finally, look at the actual sales numbers
for non-free games only (Figure 18), we can see that al-
though the Top-Rating list raised attention for free demos,
it did not lead to increased sales for non-free items. Over-
all, all personalized techniques were more successful than
the non-personalized one. On the global scale, the differ-
ence was however – a bit surprisingly – only significant for
the content-based method, which indicates that customers
tend to spend money on items that are similar to those they
liked in the past. In fact, a closer look on the performance
of the algorithms in specific sub-categories shows that the
content-based method often slightly outperforms the other
methods with respect to non-free games. While the dif-
ferences were not significant in the individual situations –
which is why we did not include these figures here – these
slightly higher sales numbers sum up to a significant differ-
ence on the global scale. Examples of categories in which
the content-based method worked slightly better with re-
spect to non-free games are the “new games”, “half-price”,
or “erotic games” section of the download portal.

Overall, the increase in actual sales that are directly stim-
ulated by the recommender system is between 3.2% when
compared to the Top-Rating technique and around 3.6%
when no personalized recommendation is available.

In general, these last observations suggest that in situa-
tions where the user has no strong expectations on a certain
genre (such as the “MyRecommendations” section), collab-
orative methods – which also recommend items of cate-
gories that the user has not seen before – work particularly
well. In many other situations, however, users tend to prefer
recommendations of game sub-categories that they already
know. One exception is the post-sales situation, where users
are, non-surprisingly, not interested in purchasing games
which are very similar to the one he or she has bought a
moment ago.

Figure 17: Total number of purchases and downloads

 - 48 -

Figure 18: Total number of purchases (without demos)

Summary
In this work, the effects of personalized item recommenda-
tion in various navigational contexts on a Mobile Internet
game portal were analyzed. Different standard recommen-
dation techniques have been implemented on the portal and
deployed in parallel in a real-world setting for a period of
four weeks. In addition, non-personalized techniques based
on top-selling or top-rated items have been used for compar-
ison purposes.

The findings can be summarized as follows.

Ratings in the Mobile Internet
The amount of explicit item ratings was very low on the
considered Mobile Internet portal and only about 2% of the
users issued explicit ratings. While we are not aware of
any studies that compare the willingness of customers to
rate items in different settings, we suspect that the relatively
high effort for submitting an item vote using a mobile device
compared to a web browser discourages users to participate
in this community process. When using only explicit ratings
(in combination with a minimum number of neighbors as to
decrease the Mean Absolute Error MAE), the coverage and
applicability of individual algorithms quickly degrades. An
analysis for the item-to-item algorithm for instance showed
that the item coverage degrades to less than 50% when the
minimum number of neighbors is set to the value of 20. In
our experiments we therefore also took two types of implicit
ratings into account: item views and item purchases, as the
offline analysis showed that this combination leads to a good
coverage (between 90% and 95%) for the item-based recom-
mender. Note however that the MAE was also not very help-
ful to predict the accuracy of different algorithms in advance
when including these implicit ratings. An offline evaluation
showed that due to the high number of similar ratings very
similar and low (below 0.2 points on the five-point scale)
MAE values were achieved. An analysis of whether or not
using different values for implicit ratings can help to further
improve the recommendation accuracy, was not part of the
current study.

Recommending in navigational context
In this study, the effects of personalized recommendations
have been measured in different navigational situations such
as the start page of the portal or the post-sales situation.
In addition, we differentiated between the interest that was

raised by the recommendations and the actual effect on the
buying behavior of the customers.

With respect to the navigational context, customers seem
to react slightly differently to recommendations, probably
because of different expectations. In the dedicated “My Rec-
ommendations” section of the portal, classical collaborative
filtering and the hybrid technique are particularly good at
raising customer interest as customers view many of the rec-
ommended items. While customers are also easily stim-
ulated to download free games by the comparably simple
SlopeOne and TopRating method, these techniques do not
lead to a significant increase in non-free games. A similar
effect can be observed in the post-sales situation; the trend
toward free demo downloads is even amplified in this situ-
ation. Thus, the item-based, content-based and hybrid tech-
nique which lead to a good number of purchases but also
raise additional interest in demos, seems to be a good choice
here.

On the portal entry page, the recommendation of top-rated
items (or topsellers) has a particularly poor effect and the
personalized methods lead to significantly better results. A
listing of newly released items on the start page works how-
ever also quite well.

In certain navigational situations, we observed that per-
sonalization worsens the conversion rates and sales num-
bers. In the section on new items, which contains games
of the last three weeks, the strict chronological order with
the newest items on top works best. Most probably, the vis-
itors of the “New” category enter this section regularly and
only check the first few lines for new arrivals.

Finally, when measuring the number of game downloads
including the demos on the entire platform, it shows that
naive approaches such as TopRating and the comparably
simple SlopeOne technique work sufficiently well to raise
the users’ interest in individual games. The important re-
sult, however, is that with respect to actual sales, the content-
based and the item-based methods were clearly better than
all others. Overall, it could be demonstrated that recom-
mender systems are capable to stimulate a measurable in-
crease in overall sales by over 3 percent on the entire plat-
form.

Acknowledgement
The work was supported by Twistbox Games Ltd. & Co.
KG, Germany. The described portal is based on Twistbox’s
Nitro-CDP™ content-download platform.

References
Billsus, D., and Pazzani, M. J. 2007. Adaptive news ac-
cess. In Brusilovsky, P.; Kobsa, A.; and Nejdl, W., eds., The
Adaptive Web, volume 4321 of Lecture Notes in Computer
Science, 550–570. Springer.
Breese, J. S.; Heckerman, D.; and Kadie, C. M. 1998. Em-
pirical analysis of predictive algorithms for collaborative
filtering. In Cooper, G. F., and Moral, S., eds., Proceedings
of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, 43–52.
Burke, R. 2002. Hybrid recommender systems: Survey and

 - 49 -

experiments. User Modeling and User-Adapted Interaction
12(4):331–370.
Cho, Y. H.; Kim, C. Y.; and Kim, D.-H. 2004. Per-
sonalized image recommendation in the Mobile Internet.
In Procedings of 8th Pacific Rim International Conference
on Artificial Intelligence, volume 3157 of Lecture Notes
in Computer Science, 963–964. Auckland, New Zealand:
Springer.
Dias, M. B.; Locher, D.; Li, M.; El-Deredy, W.; and Lisboa,
P. J. 2008. The value of personalised recommender systems
to e-business: a case study. In RecSys ’08: Proceedings of
the 2008 ACM conference on Recommender systems, 291–
294.
Fleder, D. M., and Hosanagar, K. 2007. Recommender
systems and their impact on sales diversity. In EC ’07:
Proceedings of the 8th ACM conference on Electronic com-
merce, 192–199.
Herlocker, J. L.; Konstan, J. A.; Terveen, L. G.; and Riedl,
J. T. 2004. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. 22(1):5–53.
Lemire, D., and Maclachlan, A. 2005. Slope one predictors
for online rating-based collaborative filtering. In Proceed-
ings of SIAM Data Mining (SDM’05), 471–480.
Li, Q.; Wang, C.; and Geng, G. 2008. Improving personal-
ized services in mobile commerce by a novel multicriteria
rating approach. In WWW’08: Proceeding of the 17th in-
ternational conference on World Wide Web, 1235–1236.
Linden, G.; Smith, B.; and York, J. 2003. Amazon.com
recommendations: item-to-item collaborative filtering. In-
ternet Computing, IEEE 7(1):76–80.
McNee, S. M.; Riedl, J.; and Konstan, J. 2006. Accurate is
not always good: How accuracy metrics have hurt recom-
mender systems. In Extended Abstracts of the 2006 ACM
Conference on Human Factors in Computing Systems (CHI
2006).
Miller, B. N.; Albert, I.; Lam, S. K.; Konstan, J. A.; and
Riedl, J. 2003. Movielens unplugged: experiences with
an occasionally connected recommender system. In IUI
’03: Proceedings of the 8th international conference on
Intelligent user interfaces, 263–266.
Nguyen, Q. N., and Ricci, F. 2008. Long-term and session-
specific user preferences in a mobile recommender system.
In IUI ’08: Proceedings of the 13th international confer-
ence on Intelligent user interfaces, 381–384.
Pazzani, M. J. 2002. Commercial applications of machine
learning for personalized wireless portals. In Proceedings
of the 7th Pacific Rim International Conference on Artifi-
cial Intelligence, 1–5.
Ricci, F., and Nguyen, Q. N. 2007. Acquiring and revising
preferences in a critique-based mobile recommender sys-
tem. IEEE Intelligent Systems 22(3):22–29.
Sarwar, B.; Karypis, G.; Konstan, J.; and Reidl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In WWW ’01: Proceedings of the 10th international
conference on World Wide Web, 285–295.

Senecal, S., and Nantel, J. 2004. The influence of online
product recommendations on consumers’ online choices.
Journal of Retailing 80(2):159 – 169.
Shani, G.; Brafman, R. I.; and Heckerman, D. 2002. An
MDP-based recommender system. Journal of Machine
Learning Research 6:453–460.
Smyth, B., and Cotter, P. 2002. Personalized adaptive nav-
igation for mobile portals. In Proceedings of the 15th Eu-
ropean Conference on Artificial Intelligence, 608–612.
Smyth, B.; Cotter, P.; and Oman, S. 2007. Enabling intelli-
gent content discovery on the mobile internet. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial
Intelligence, 1744–1751.
van der Heijden, H.; Kotsis, G.; and Kronsteiner, R. 2005.
Mobile recommendation systems for decision making ”on
the go”. In ICMB ’05: Proceedings of the International
Conference on Mobile Business, 137–143.
Zanker, M.; Bricman, M.; Gordea, S.; Jannach, D.; and
Jessenitschnig, M. 2006. Persuasive online-selling in qual-
ity and taste domains. In Proceedings of 7th Intl. Confer-
ence E-Commerce and Web Technologies, 51–60.
Zanker, M.; Jessenitschnig, M.; Jannach, D.; and Gordea,
S. 2007. Comparing recommendation strategies in a com-
mercial context. IEEE Intelligent Systems 22(3):69–73.
Zanker, M.; Fuchs, M.; Höpken, W.; Tuta, M.; and Müller,
N. 2008. Evaluating recommender systems in tourism - a
case study from Austria. In Proceedings Information and
Communication Technologies in Tourism, ENTER 2008,
24–34.

 - 50 -

Adapting K-Nearest Neighbor for Tag Recommendation in Folksonomies

Jonathan Gemmell, Thomas Schimoler, Maryam Ramezani, Bamshad Mobasher

Center for Web Intelligence
School of Computing, DePaul University

Chicago, Illinois, USA

{jgemmell, tschimoler, mramezani, mobasher}@cdm.depaul.edu

Abstract

Folksonomies, otherwise known as Collaborative Tagging
Systems, enable Internet users to share, annotate and search
for online resources with user selected labels called tags. Tag
recommendation, the suggestion of an ordered set of tags dur-
ing the annotation process, reduces the user effort from a
keyboard entry to a mouse click. By simplifying the anno-
tation process tagging is promoted, noise in the data is re-
duced through the elimination of discrepancies that result in
redundant tags, and ambiguous tags may be avoided. Tag rec-
ommenders can suggest tags that maximize utility, offer tags
the user may not have previously considered or steer users
toward adopting a core vocabulary. In sum, tag recommenda-
tion promotes a denser dataset that is useful in its own right
or can be exploited by a myriad of data mining techniques for
additional functionality.

While there exists a long history of recommendation algo-
rithms, the data structure of a Folksonomy is distinct from
those found in traditional recommendation problems. We first
explore two data reduction techniques, p-core processing and
Hebbian deflation, then demonstrate how to adapt K-Nearest
Neighbor for use with Folksonomies by incorporating user,
resource and tag information into the algorithm. We further
investigate multiple techniques for user modeling required to
compute the similarity among users. Additionally we demon-
strate that tag boosting, the promoting of tags previously ap-
plied by a user to a resource, improves the coverage and ac-
curacy of K-Nearest Neighbor.

These techniques are evaluated through extensive experimen-
tation using data collected from two real Collaborative Tag-
ging Web sites. Finally the modified K-Nearest Neighbor
algorithm is compared with alternative techniques based on
popularity and link analysis. We find that K-Nearest Neigh-
bor modified for use with Folksonomies generates excellent
recommendations, scales well with large datasets, and is ap-
plicable to both narrow and broadly focused Folksonomies.

Introduction

Folksonomies, also known as Collaborative Tagging Sys-
tems, have emerged as a powerful trend allowing Internet
users to share, annotate and explore online resources through
personalized labels. Several Collaborative Tagging Sys-
tems have recently gained popularity attracting millions of

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

users. Delicious1 supports users as they bookmark URLs.
Flickr2 allows users to upload, share and manage online pho-
tographs. Citeulike3 enables researchers to manage and dis-
cover scholarly references. Still other Collaborative Tagging
Systems specialize in music, blogs and business documents.

At the core of Collaborative Tagging Systems is the post:
a user describes a resource with a set of tags. These
tags may be descriptive (“Folksonomies”), subjective (“awe-
some”), organizational (“toread”) or completely idiosyn-
cratic (“jfgwh”). Taken in isolation an individual annotation
allows a user to organize web resources for later use: re-
sources can be easily sorted, aggregated and retrieved. Re-
sources may be annotated with multiple tags allowing a re-
source to be identified with several topic areas rather than
pigeonholed in a single directory. Moreover users need not
conform to a predefined vocabulary or rigid hierarchy but
may annotate a resource with any tag they wish thereby re-
ducing user effort and limiting the entry cost.

However the utility of tagging extends beyond their im-
mediate use. Taken as a whole, the aggregation of many
annotations results in a complex network of interrelated
users, resources and tags often referred to as a Folkson-
omy (Mathes 2004). The opportunity to explore the Folk-
sonomy unburdened by a preconceived navigational or con-
ceptual hierarchy is crucial to the utility and popularity of
Folksonomies. Users are able to share or discover resources
through the collaborative network and connect to other users
with related interests. Collaborative Tagging Systems can
identify groups of like-minded users, catering not only to
mainstream but also to non-conventional users who are often
under-served by traditional Web tools. Furthermore, users
may enjoy the social aspects of collaborative tagging, at-
tracted by a sense of community not offered by either on-
tologies or search engines.

A distinct advantage of Folksonomies is the richness of
the user profiles. If a user is interested enough in a resource
to annotate it, the tag describes the user as much as it de-
scribes the resource. As users annotate resources, the system
is able to track their interests. These profiles are a powerful
tool for data mining algorithms.

1delicious.com
2www.flickr.com
3www.citeulike.org

 - 51 -

Even though tags offer many benefits both in the short
and long term, they also present unique challenges for rec-
ommendation algorithms. Most Collaborative Tagging Ap-
plications permit unsupervised tagging; users are free to use
any tag they wish to describe a resource. This is often done
to reduce the entry cost of using the application and make
collaborative tagging more user-friendly. Unsupervised tag-
ging can result in tag redundancy in which several tags have
the same meaning or tag ambiguity in which a single tag
has many different meanings. Such inconsistencies can con-
found users as they attempt to utilize the Folksonomy.

Tag recommendation provides a means to overcome these
problems. It reduces the user effort to a mouse click rather
than a keyboard entry. By reducing the effort users are en-
couraged to tag more frequently, apply more tags to an in-
dividual resource, reuse common tags, and perhaps use tags
the user had not previously considered. Moreover, user error
is reduced by eliminating redundant tags caused by capital-
ization inconsistencies, punctuation errors, misspellings and
other discrepancies. The tag recommender can further pro-
mote a core tag vocabulary steering the user toward adopt-
ing certain tags while not imposing any strict rules. The tag
recommender may even avoid ambiguous tags in favor of
tags that offer greater information value. The final result is
a cleaner, denser dataset that is useful in its own right or for
further data mining techniques.

However the data generated through Collaborative Tag-
ging differs from that common in recommendation algo-
rithms. The introduction of tags manifests a third dimen-
sion which must be integrated into recommenders that tra-
ditionally incorporate only two dimensions. In this paper
we demonstrate how K-Nearest Neighbor may be adapted
to recommend tags in Folksonomies. We describe how both
user and resource information can be directly applied in the
algorithm improving both coverage and accuracy while re-
ducing computational costs. In addition several user models
are explored including vectors over the set of tags, vectors
over the set of resources, combinations of these two and fea-
tures derived through Hebbian deflation.

The rest of this paper is organized as follows. We be-
gin by presenting some related work involving the use of
recommendations in Folksonomies. We explore the data
structure of folksonomies and discuss two feature reduc-
tion techniques: p-core processing and Hebbian deflation.
We then outline the basic approach used for recommend-
ing tags in Folksonomies and propose modifications to K-
Nearest Neighbor. After a discussion of the datasets and a
description of the experimental methodology, we evaluate
the proposed modifications using data collected from two
real world Folksonomies. Finally, we compare the modified
algorithm with alternative strategies based on popularity and
link analysis.

Related Work
As Collaborative Tagging Applications have gained in popu-
larity researchers have started to explore and characterize the
tagging phenomenon. In (Macgregor and McCulloch 2006)
and (Golder and Huberman 2006) the authors studied the
information dynamics of Delicious, one of the most popular

Folksonomies. The authors discussed how tags have been
used by individual users over time and how tags for an in-
dividual resource stabilize over time. They also discussed
two semantic difficulties: tag redundancy, when multiple
tags have the same meaning, and tag ambiguity, when a sin-
gle tag has multiple meanings. (Macgregor and McCulloch
2006) provide an overview of the phenomenon and explore
reasons why both Folksonomies and Ontologies will have a
place in the future of information access.

There have been several recent research investigations
into recommendation within Folksonomies. Unlike tradi-
tional recommender systems which have a two-dimensional
relation between users and items, tagging systems have
a three dimensional relation between users, tags and re-
sources. Recommender systems can be used to recommend
each of the dimensions based on one or two of the other
dimensions. (Tso-Sutter, Marinho, and Schmidt-Thieme
2008) applies user-based and item-based collaborative fil-
tering to recommend resources in a tagging system and uses
tags as an extension to the user-item matrices. (Nakamoto et
al. 2008a) and (Nakamoto et al. 2008b) use tags as context
information to recommend resources.

Other researchers have studied tag recommendation in
folksonomies. (Jaschke et al. 2007) compares user-
based collaborative filtering and a graph-based recom-
mender based on the Pagerank algorithm to recommend per-
sonalized tags. (Heymann, Ramage, and Garcia-Molina
2008) use association rules to recommend tags and intro-
duce an entropy-based metric to find how predictable a tag
is. (Lipczak 2008) uses the title of a resource, the posts
of a resource and the user’s vocabulary to recommend tags.
The results show that tags retrieved from the user’s vocab-
ulary outperform recommendations driven by resource in-
formation. However the experiment was performed on data
from Bibsonomy, a Folksonomy focused on scientific pub-
lications, and thus might not be applicable to multi-domain
data that cover.

(Xu et al. 2006) presents general criteria for a good
tagging system including high coverage of multiple facets,
high popularity and least-effort. They categorize tags to
content-based tags, context-based tags, attribute tags, sub-
jective tags, and organizational tags and use a probabilistic
method to recommend tags. (Basile et al. 2007) proposes
a classification algorithm for tag recommendation. (Sig-
urbjörnsson and van Zwol 2008) uses a co-occurrence-based
technique to recommend tags for photos in Flickr. The as-
sumption is that the user has already assigned a set of tags
to a photo and the recommender uses those tags to recom-
mend more tags. (Adrian, Sauermann, and Roth-Berghofer
2007) suggests a semantic tag recommendation system in
the context of a semantic desktop. (Song et al. 2008) uses
clustering to make real-time tag recommendation.

Data Structures of Folksonomies
In this section we define the three-dimensional data struc-
ture of a Folksonomy and describe how to construct two-
dimensional projections. We further explore two data reduc-
tion techniques for use with Folksonomies. The first is a data
selection technique, P -core processing, that reduces the size

 - 52 -

of the data by removing users, resources and tags that occur
less than a predefined number of times. The second is a data
extraction technique, Hebbian Deflation, which produces a
new set of features from a two-dimensional projection of the
Folksonomy.

Data Models

The data structure of a Folksonomy differs from that com-
mon to most traditional recommendation algorithms. A
Folksonomy can be described as a four-tuple D:

D = 〈U, R, T, A〉 , (1)

where, U is a set of users; R is a set of resources; T is a set
of tags; and A is a set of annotations, represented as user-
tag-resource triples:

A ⊆ {〈u, r, t〉 : u ∈ U, r ∈ R, t ∈ T} (2)

A Folksonomy can, therefore, be viewed as a tripartite
hyper-graph (Mika 2007) with users, tags, and resources
represented as nodes and the annotations represented as
hyper-edges connecting a user, a tag and a resource.

The tripartite nature of Folksonomies make it ill suited
for many traditional data mining techniques. User based K-
Nearest Neighbor for example requires a means to measure
the similarity between users. The introduction of a third di-
mension confounds this task.

Aggregate projections of the data can be constructed,
reducing the dimensionality by sacrificing information.
(Schmitz et al. 2006) The relation between resources and
tags can be formulated as a two-dimensional projection, RT ,
such that each entry, RT (r, t), is the weight associated with
the resource, r, and the tag, t. This weight may be binary,
merely showing that one or more users have applied that tag
to the resource, or it may be finer grained using the number
of users that have applied that tag to the resource:

RTtf(r, t) = |{a = 〈u, r, t〉 ∈ A : u ∈ U}| (3)

Such a measure is equivalent to term frequency or tf com-
mon in Information Retrieval. Similarly, term frequency *
inverse document frequency or tf*idf (Salton and Buckley
1988) can be adapted for use with two-dimensional projec-
tions:

RTtf∗idf(r, t) = RTtf(r, t) ∗ log(|R|/nr) (4)

The tf*idf multiplies the tag frequency by the relative dis-
tinctiveness of the tag. The distinctiveness is measured by
the log of the total number of resources, |R|, divided by the
number of resources to which that tag was applied, nr. Sim-
ilar two-dimensional projections can be constructed for UT
in which the weights correspond to users and tags, and UR
in which the weights correspond to users and resources.

While a portion of the information is lost through this pro-
cess the result is a two-dimensional matrix which can be
readily applied to existing data-mining algorithms such as
K-Nearest Neighbor.

P -Core Processing

Through P -Core Processing users, resources and tags are re-
moved from the dataset in order to produce a residual dataset
that guarantees each user, resource and tag occur in at least p
posts (Batagelj and Zaveršnik 2002) (Jaschke et al. 2007).
Here we define a post to include a user, a resource, and every
tag the user has applied to the resource.

The algorithm iterates through the posts, counting the oc-
currence of users, resources and tags. If the occurrence of
these items does not meet the requisite value, p, all occur-
rences of the item and the posts in which it appears are re-
moved from the dataset. Since removing a post based on
the occurrence of one item reduces the count for the other
items in the post, several passes through the dataset may be
required. The result is a smaller denser dataset.

Several reasons exist to use P -Core Processing. By re-
moving infrequent users, resources and tags noise in the data
is reduced; uncommon items whether they be tags used by
only a few users, unpopular resources, or unproductive users
are eliminated from consideration. Because of their scarcity,
these are the very items likely to confound recommenders.
Moreover, by eliminating infrequent items, the size of the
data may be dramatically reduced allowing the application
of the data mining techniques that would otherwise be com-
putationally impractical. In short, P -Core Processing offers
a means reduce noise and focus on the dense regions of the
data.

Hebbian Deflation

Whereas P -Core Processing offers a means to reduce the
size of a dataset through feature selection, feature extraction
techniques generate entirely new features. Many feature ex-
traction techniques exist such as Principle Component Anal-
ysis and Singular Value Decomposition. However, despite
the utility these techniques provide, their computational cost
and memory requirements make them impractical for use on
extremely large datasets common in Folksonomies. Hebbian
Deflation (Oja and Karhunen 1985) offers a means to ap-
proximate these feature extraction techniques with reduced
computational and memory needs.

Given a two-dimensional projection of the Folksonomy
and a preselected number of features, F, Hebbian Deflation
produces two smaller matrices that approximate the origi-
nal projection. Consider for example the two-dimensional
projection RT; Hebbian Deflation will produce two new ma-
trixes, RX and TX, such that:

RT (r, t) ≈

F∑

i=0

RXri ∗ TXti (5)

Since F is often far smaller than either the number of re-
sources or the number of tags the resultant matrixes require
many orders of magnitude less space than the original pro-
jection. Analogous features can be extracted from UR and
UT.

The algorithm requires many inputs: F , the number of
features to be extracted; epochs the number of epochs to
train each feature; and lr the learning rate at which the fea-
tures are adjusted.

 - 53 -

Features are extracted one at a time. To begin, the fea-
tures are set to random weights. Then, for each resource-tag
pair in RT the actual weight is compared with the current
approximation. The features are adjusted based upon the
degree of the error, the learning rate and the corresponding
feature in the opposing matrix. These adjustments are re-
peated for the predetermined number of epochs before the
feature is finally adopted and the next feature is trained.

Input: RT , a projection of a Folksonomy; F , the
number of features to derive; epochs, the
number of epochs to train each feature; lr, the
learning rate

Output: RX and TX, the Hebbian features
for f = 1 → features do

for epoch = 1 → epochs do
foreach (r, t) ∈ RT do

aprox =
∑f

i=1 RXri ∗ TXti

error = RT (r, t)− approx
RX(r, f) += lr ∗ error ∗ TX(t, f)
TX(t, f) += lr ∗ error ∗ RX(r, f)

end

end

end
return RX and TX;

Algorithm 1: Hebbian Deflation

Like many learning algorithms, Hebbian Deflation may
result in overfitting. Overfitting occurs when the features
over specialize in the training data at the expense of general-
ization. In order to combat this, a percentage of the training
data may be held out. At each epoch, the Root Mean Square
Error (RMSE), is calculated both for the ability of the fea-
tures to approximate the training data and for their ability to
approximate the holdout set. If it is observed that the RMSE
is rising for the holdout data even as it is dropping for the
training data, overfitting can be assumed. Then the training
of the current feature may be halted and the training of the
next feature can begin.

Feature extraction through Hebbian Deflation offers many
benefits. It may offer a means to represent the data in a
smaller space, but the features themselves may offer insights
into the data. Domain experts can analyze features for their
characteristics. Users may navigate over the reduced feature
space rather than the larger Folksonomy. Users, resources
and tags may be modeled as a vector over the set of features
allowing reduced computation. Finally, Hebbian Deflation
may reveal similarities among items in a Folksonomy that
remained hidden when the data was expressed as a projec-
tion using tf or tf*idf.

Tag Recommendation in Folksonomies
Recommendation algorithms serve a vital role in Web ap-
plications allowing users to focus on a few relevant items
rather than being overwhelmed by a large unordered set of
mostly inappropriate options. Tag recommendation in Folk-
sonomies reduces the user effort to a mouse click rather than
a keyboard entry. This reduction in effort encourages tag-
ging more resources, promotes the application of multiple
tags to a resource, and may present the user with useful tags

the user had not considered. Moreover by eliminating the
keyboard entry tag recommendation reduces capitalization
inconsistencies, punctuation errors, misspellings, and other
discrepancies that add noise to the data.

The recommendation of high quality tags benefits the user
beyond the annotation process itself. Resources are often
tagged for future reference; by providing the most relevant
tags retrieval of the resources are made easier. Moreover,
when resources are tagged in order to characterize content,
the recommendation of clear descriptive tags can improve
the online experience for other users that are navigating the
site. This is particularly relevant for resources that are not
easily evaluated by computers such as photos, videos, and
music.

Tag recommendation may also be used to assert control
on tag usage without encumbering the user with a strict vo-
cabulary. Ambiguous tags such as can be avoided in pref-
erence of less ambiguous tags Moreover, the recommender
can offer tags with a higher level of detail. The overuse of
redundant tags can also be thwarted by consistently recom-
mending highly used tags while eschewing their less used
counterparts. The result is cleaner denser dataset that is use-
ful in own right for navigation, or for further data mining
techniques.

Basic Recommendation

In traditional recommendation algorithms the input is often
a user, u, and the output is a set of items, I. The user experi-
ence is improved if this set of items is relevant to the user’s
needs.

Tag recommendation in Folksonomies however differs in
that the input is both a user, u, and a resource, r. The output
remains a set of items, in this case a recommended set of
tags, Tr. One of the difficulties presented by tag recommen-
dation is the means to incorporate both user and resource
information into the recommendation algorithm.

Perhaps the simplest recommendation strategy is merely
to recommend the most commonly used tags in the Folk-
sonomy. However such a strategy ignores both user and re-
source information.

Alternatively given a user-resource pair a recommender
may ignore the user and recommend the most popular tags
for that particular resource. This strategy is strictly resource
dependent and ignores the tagging habits of the user. In a
similar fashion a recommender may ignore the resource and
recommend the most popular tags for that particular user.
While such an algorithm would include tags frequently ap-
plied by the user, it ignores the resource information and
may recommend tags irrelevant to the current resource.

An algorithm for tag recommendation in Folksonomies
therefore requires a means to include both user and resource
information in the process so that the recommendation set
includes tags that are relevant to the resource and also repre-
sent the user’s tagging practice.

K-Nearest Neighbor

User Based K-Nearest Neighbor is a commonly used rec-
ommendation algorithm in Information Retrieval that can be

 - 54 -

modified to include both user and resource information. Tra-
ditionally it finds a set of users similar to a query user. From
these neighbors a set of recommended items it constructed.

We can modify this approach by ignoring users that have
not tagged the query resource. Once a neighborhood of sim-
ilar users has been discovered, the algorithm considers only
on those tags that have been applied to the query resource
and calculates a weight for each tag, wt, the average simi-
larity of the neighbors that have applied the tag to the query
resource. Thus the algorithm is resource driven through both
the selection of neighbors and the selection of tags. Still it
remains user driven in that neighbors are determined through
a user model.

Input: uq, a query user; rq, a query resource; k,
number of neighbors to consider; n, the number
of tags to recommend

Output: Tr , a set of recommended tags
foreach u ∈ U that has annotated rq do

su = similarity(u, uq)
end
Let N be k nearest neighbors to uq;
foreach u ∈ N do

foreach t that u applied to rq do
wt += su/k

end

end
Sort tags by wt;
Let Tr be the top n tags;
Return Tr

Algorithm 2: K-Nearest Neighbor Modified for Folk-
sonomies

K-Nearest Neighbor is considered a lazy algorithm; the
bulk of its computation takes place after the query. Tra-
ditional approaches would require a comparison between
the query user and every other user. However, since the
adapted algorithm for K-Nearest Neighbor considers only
those users that have annotated the query resource, the num-
ber of similarities to calculate is drastically reduced. The
popularity of resources in Folksonomies follows the power
law and the great majority of resources will benefit from this
reduced reduction in computation, while a few will require
additional computational effort. As a result the adapted K-
Nearest Neighbor scales well with large datasets, a trait not
shared by many other recommendation algorithms.

User Models

Applications vary in the way they model users. Possible
methods include recency, authority, linkage or vector space
models. In this work we focus on the vector space model
(Salton, Wong, and Yang 1975) adapted from the Informa-
tion Retrieval discipline to work with Folksonomies. Each
user, u, can be modeled as a vector over the set of tags,
where each weight, w(ti), in each dimension corresponds
to the importance of a particular tag, ti.

~ut = 〈w(t1), w(t2)...w(t|T |)〉 (6)

In calculating the vector weights a variety of measures can
be used: binary, term frequency or term frequency*inverse

document frequency. In this work we focus on term fre-
quency. Similarly a user can be modeled as a vector over
the set of resources where each weight, w(ri), corresponds
to the importance of a particular resource, ri.

~ur = 〈w(r1), w(r2)...w(r|R|)〉 (7)

Both of these models however ignore a portion of the user
profile. A user model consisting merely of tags does not con-
sider to which resources those tags have been applied. And
a user model consisting only of resources does not include
the tags applied to them.

The user model may be extended to include both tags and
resources. A new vector can be obtained by concatenating
the two previously mentioned vectors.

~ut+r = 〈w(t1)...w(t|T |), w(r1)...w(r|R|)〉 (8)

While this model does include both tags and resources,
the model does not specify which tags were applied to which
resources. However, the tags and resources may be tightly
coupled in a vector over all tag-resource pairs where each
weight, w(tri), is one if the user has applied tag, t, to the
resource, r, and zero otherwise.

~u(tr) = 〈w(t1r1), w(t1r2)...w(t|T |r|R|)〉 (9)

However these user models risk becoming exceedingly
large and extremely sparse. Hebbian features may be used to
combat this sparsity. For example, features extracted from
either UR or UT may be used to construct the user model:

~uHebbian = 〈f1, f2...f|F |〉 (10)

These extracted features can greatly reduce the computa-
tional costs of calculating similarities since the number of
features is far smaller than the size of the original matrix.
Moreover feature extraction may discover hidden relation-
ships and identify similarities among users that the previ-
ously described models would not capture.

Several techniques exist to calculate the similarity be-
tween vectors such as Jaccard similarity or Cosine similarity
(Van Rijsbergen 1979). In this work we focus on cosine sim-
ilarity.

Boosting Tags

In most traditional recommendation approaches the recom-
mendation set would not include an item the user has already
used. However in Collaborative Tagging Applications users
often reuse tags. Previously used tags are then an important
clue for the recommendation algorithm.

We propose a boosting factor, b, that can be used to pro-
mote tags in the user profile. As an additional step to the
modified K-Nearest Neighbor recommender, b is added to
the weight of the tag if the user has previously applied that
tag to another resource.

 - 55 -

foreach t ∈ T that any u ∈ N has applied to rq do
if (uq has applied t) then

wt = wt + b
end

end

Algorithm 3: Optional Step Including Boost K-Nearest
Neighbor

FolkRank

In (Hotho et al. 2006) the authors proposed an adaptation of
link analysis to the Folksonomy data structure. They have
called this technique Folkrank since it computes a Pagerank
vector from the tripartite graph induced by the Folksonomy.
This graph is generated by regarding U ∪R∪T as the set of
vertices. Edges are defined by the two-dimensional projec-
tions, UT, UR and RT.

If we regard the adjacency matrix of this graph, W , (nor-
malized to be column-stochastic), a damping factor, d, and a
preference vector, p, then we compute the Pagerank vector,
w, in the usual manner:

w = dAw + (1 − d)p (11)

However due to the symmetry inherent in the tripartite
graph, this basic Pagerank can too easily focus on the most
popular elements in the Folksonomy. The Folkrank vector
is taken as a difference between two computations of Pager-
ank: one with a preference vector and one without the pref-
erence vector.

In order to generate tag recommendations Folkrank uti-
lizes the preference vector to bias the algorithm towards the
query user and resource(Jaschke et al. 2007). These ele-
ments are given a substantial weight in the preference vector
where all other elements have uniformly small weights.

We have included this method as a benchmark as it has
been shown to be an effective method of generating tag rec-
ommendations. However it has a distinct disadvantage in
that it requires a complete computation of the Pagerank vec-
tor for each query. This makes the method problematic when
working with data from large Folksonomies.

Experimental Evaluation

Here we describe the methods used to gather data for the
experiments and provide details of our datasets. We then
discuss modifications to N -Fold Cross Validation for Folk-
sonomies and describe our experimental methodology. We
briefly discus the common metrics recall and precision and
then detail the results of our experiments.

Data Sets

We validate our approach through extensive evaluation of
the proposed modifications using data from two real Collab-
orative Tagging Applications: Delicious and Citeulike.

Delicious is a popular Website in which users annotate
URLs. On 10/19/2008, 198 of the most popular tags were
taken from the user interface. For each of these tags the
2,000 most recent annotations including the contributors of

the annotations were collected. This resulted in 99,864 dis-
tinct usernames.

For each user, the “Network” and “Fans” were explored
recursively collecting additional usernames. A user’s Net-
work consists of the other users that the user has explicitly
chosen to watch. Conversely a Fan is another user that has
explicitly chosen to watch the user. This resulted in a total
of 524,790 usernames.

From 10/20/2008 to 12/15/2008 the complete profiles of
all 524,790 users were collected. Each user profile con-
sisted of a collection of annotations including the resource,
tags and date of the original bookmark. The top 100 most
prolific users were visually inspected; twelve were removed
from the data because their annotation count was many or-
ders of magnitude larger than other users and were therefore
suspected to be Web-bots.

Due to memory and time constraints, 10% of the user pro-
files was randomly selected. A P -core of 20 was derived
such that each user, resource and tag appear in at least 20
posts where a post is defined as a user, resource and all tags
that user applied to the resource.

The result was a dataset with 18,105 users, 42,646 re-
sources and 13,053 tags. There are 2,309,426 annotations
and 8,815,545 triples. The average number of tags in a post
is 3.82.

Citeulike is a popular online tool used by researchers to
manage and discover scholarly references. They make their
dataset freely available to download4. On 2/17/2009 the
most recent snapshot was downloaded with data extending
back to 5/30/2007. The data contains anonymous user ids
and posts for each user including resources, the date and
time of the posting and the tags applied to the resource. The
original dataset contains 41,689 users, 1,370,729 resource
and 284,389 tags.

Because of its relatively small size and sparse data, the
Citeulike data cannot support a P -core of 20. Instead a P -
core of 5 was derived. This reduced the size of the data to
2,051 users, 5,376 resource and 3,343 tags. There are 42,277
annotations and 105,873 triples. The average number of tags
in a post is 2.50.

Folksonomy Delicious Citeulike

Users 18,105 2,051

Resources 42,646 5,376
Tags 13,053 3,343
Posts 2,309,427 42,277

Annotations 8,815,545 105,873

Table 1: Datasets

An important distinction between the two datasets is their
focus. Users in Delicious are able to tag any URL avail-
able on the Web. As such an individual’s interests are often
varied encompassing many topics. In Citeulike however re-
searchers tag scholarly publications and their tagging is of-
ten focused in their area of expertise.

4http://www.citeulike.org/faq/data.adp

 - 56 -

The data available for Delicious is also far more abundant.
Using only a fraction of the data scraped from the Website,
the Delicious dataset still has more than fifty times the an-
notations in the Citeulike dataset. Moreover, the Delicious
is far denser supporting a P -core of 20 rather than a P -core
of 5.

Experimental Methodologies

We implemented an extension of N -Fold Cross Validation
for Folksonomies. Each user profile was divided among n
folds, each fold containing approximately 1/n of each user’s
posts. A post includes the user, a resource and all tags the
user applied to that resource. Models were built using n− 1
folds of the data, while the posts in the remaining fold served
as test cases.

Each test case consists of a user, u, a resource, r, and all
the tags the user has applied to that resource. These tags, Th,
are analogous to the holdout set commonly used in Informa-
tion Retrieval. The tag recommendation algorithms accept
the user-resource pair and return an ordered set of recom-
mended tags, Tr . From the holdout set and recommendation
set utility metrics were calculated.

For each evaluation metric the average value was calcu-
lated across all test cases of an individual fold. The average
was then calculated across all folds. Experiments completed
on Delicious consisted of 10 folds, while experiments on Ci-
teulike had 5 folds.

The exception to this methodology are the experiments
completed for Folkrank. Due to the steep computational re-
quired for this approach only one post from each user was
placed in the testing set. Experiments were then run on this
single testing set as described in (Hotho et al. 2006).

Experimental Metrics

Recall is a common metric for evaluating the utility of rec-
ommendation algorithms. It measures the percentage of
items in the holdout set that appear in the recommendation
set. Recall is a measure of completeness and is defined as:

recall = |Th ∩ Tr |/|Th| (12)

Precision is another common metric for measuring the
usefulness of recommendation algorithms. It measures the
percentage of items in the recommendation set that appear
in the holdout set. Precision measures the exactness of the
recommendation algorithm and is defined as:

precision = |Th ∩ Tr|/|Tr| (13)

Hebbian Features

A fundamental assumption of user models based upon Heb-
bian Deflation is that meaningful features can be extracted
from the two-dimensional projections. In order to affirm
this assumption we have taken the two-dimensional projec-
tion of the Delicious dataset, RT, using the tag counts as the
weights and performed Hebbian Deflation to generate RX
and TX. A learning rate of .001 was chosen as this value
allows the features to converge quickly and smoothly. Ini-
tially 100 features were built, but examination of the RMSE

on a 2% overtraining-holdout set showed little improvement
over 50 features. Additionally, 2000 epochs were selected
to train each feature, but in all cases the algorithm halted the
training when it detected overfitting and proceeded to the
next feature.

Table 2 shows selected tags along with their six most sim-
ilar neighbors. (Salton, Wong, and Yang 1975) has demon-
strated similar results using co-occurrence, Folkrank and
context metrics. Similarities are calculated by representing
each tag as a vector of weights over the Hebbian features
and calculating the cosine similarity between two tags.

Initial examination of the nearest tags lends credence to
the assumption that Hebbian Deflation can be used to dis-
cover meaningful features. For example the nearest tags
to “photo” are clearly redundant tags. However other tech-
niques such as stemming and thesaurus tables could provide
the same utility.

The example “toread” demonstrates that this method
goes beyond what other techniques might provide. Where
“photo” had been a descriptive tag, “toread” is an organiza-
tional tag. The ability of the Hebbian features to match it
with things that will in fact be read and other organization
tags illustrated the effectiveness of Hebbian Deflation.

Moreover in the example of “folksonomies” show how
highly related words can be discovered through the Heb-
bian features. “Tags” are of course a crucial part of “folk-
sonomies” that provide “classification” by providing “meta-
data.”

Domain specific words like “mac” or “osx” are difficult
to relate, but again Hebbian features are able to highlight
their similarity. Perhaps the most intriguing example is the
subjective tag “cool.” Hebbian features are able to find two
other subjective tags with high similarity, “interesting” and
“fun”.

Tags can also be modeled from features extracted from
UT; Similarly users and resources may be modeled from
features extracted from the projections. In all cases similar
trends are observed.

Table 3 shows the same experiment completed with data
from Citeulike. Again RT matrix was built from count data.
The learning rate is set to .001. As before, 2000 epochs were
selected, but RMSE testing on a holdout set halted the train-
ing of features when overfitting was detected. 100 features
were extracted, but only the first 20 showed progress in re-
ducing RMSE.

The related tags in Citeulike show similar trends to those
found in Delicious. However because of its sparsity and rel-
atively small size, it appears to be more difficult to extract
features. Nevertheless visual inspection of the tags reaffirms
the assumption that Hebbian Deflation and cosine similarity
offer a method to discover meaningful features.

While this paper proposes using Hebbian features to
model users, these features offer many other uses for Folk-
sonomies. Hebbian features might provide a means for users
to navigate the Folksonomy. After selecting a user, resource
or tag the system could present additional items based upon
the Hebbian features. The user may then select an item from
that list and explore other users, resources or tags that are
similar. By repeating this process the user could traverse

 - 57 -

photo shopping

0.789 photos 0.803 Shopping
0.737 photography 0.780 shop

0.652 pictures 0.560 buy
0.640 foto 0.530 google
0.637 Photo 0.519 store

0.627 fotos 0.469 handmade

toread folksonomy

0.886 article 0.807 tagging
0.816 articles 0.786 tags
0.811 advice 0.691 tag
0.810 Bookmarks 0.635 classification

0.808 to read 0.574 metadata
0.805 interesting 0.523 folksonomies

mac cool

0.849 osx 0.711 interesting
0.840 Mac 0.673 fun

0.778 apple 0.621 imported
0.768 OSX 0.608 how-to
0.653 macosx 0.595 article

0.650 Apple 0.571 useful

Table 2: Selected Delicious tags and their nearest neighbors
using cosine similarity and 50 Hebbian features extracted
from the RTc matrix

datamining networks

0.981 computational 0.840 social networks
0.935 conceptual 0.792 classification

0.933 data-mining 0.751 community
0.930 webservices 0.740 socialnetworks
0.925 tools 0.738 graph

0.915 data mining 0.737 functional

Table 3: Selected Citeulike tags and their nearest neighbors
using cosine similarity and 20 Hebbian features extracted
from the RTc matrix

the Folksonomy or focus in on a particular domain. Heb-
bian features might be particularly useful in this task since
they are able to uncover relationships in the Folksonomy
that other methods, such as co-occurrence, are unable to dis-
cover.

The individual features themselves might be interesting.
A domain expert could analyze the features in an effort to
understand how the Folksonomy is growing, what aspects
are dominating, and which users are having the most impact.

Moreover this reduced yet rich feature space can be uti-
lized in a variety of data mining tasks: recommendation, per-
sonalization, search, navigation, etc.

Experimental Results

Here we present our experimental results beginning with the
tuning of variables. We discuss the impact of the boost vari-
able in the quality of the K-Nearest Neighbor algorithm,
then provide an in depth comparison of the recommendation

Figure 1: The effect of k in KNN on recall and precision
for a recommendation set of 5 tags. Users are modeled as a
vector over the tag space.

Figure 2: The effect of boosting previously used tags in
KNN on recall and precision for a recommendation set of
5 tags. Users are modeled as a vector over the tag space.

techniques.

The experiments with K-Nearest Neighbor require the
tuning of two key variables: k, the number of neighbors,
and b, the boosting factor.

Figure 1 shows the relation between k and the the evalua-
tion metrics recall and precision for a recommendation set of
size 5. The Delicious dataset was used for this experiment.
Weights in the user vector are calculated as the frequency of
tags or tf . This experiment does not include any boosting
factor for previously used tags. As k increases so does re-
call and precision. However this improvement suffers from
diminishing returns until a k of 100 offers little more benefit
than a k of 50. This trend was observed for all K-Nearest
Neighbor experiments. As such, all K-Nearest Neighbor ex-
periments were completed using a k of 50. Similar results
are observed for the Citeulike dataset.

Figure 2 demonstrates the effectiveness of the boosting
modification for K-Nearest Neighbor. The modification
gives extra weight to those tags the user has previously ap-
plied to a resource. This experiment is completed with a k
of 50; b is adjusted in the range of 0 through 0.20 at 0.025
increments. Both recall and precision for a recommendation

 - 58 -

set of 5 tags are sharply improved when b in increased to
0.05. Afterward, the effect of the boosting parameter slowly
diminishes.

Table 4 provides a more detailed view of the effect boost-
ing can have. For example without any boosting factor the
precision for a recommendation set of size 3 is 43.5%. With
the boosting factor, precision is increased to 45.9%, an im-
mediate 3.4% gain. For all size recommendation sets preci-
sion is increased. The boosting factors enables K-Nearest
Neighbor to become more precise.

Likewise recall increases across the board. For example
recall given a recommendation set of size 10 jumps from
66.9% to 69.5%, a 2.6% increase. Boosting therefore ap-
pears to increase the completeness of the recommendation
set.

Delicious

KNN − UT, b = 0.00 KNN − UT, b = 0.05
N Rec. Prec. N Rec. Prec.

1 0.211 0.567 1 0.232 0.606
2 0.332 0.489 2 0.361 0.519
3 0.418 0.435 3 0.450 0.459
4 0.485 0.394 4 0.516 0.413
5 0.538 0.361 5 0.568 0.376
6 0.580 0.333 6 0.609 0.345
7 0.613 0.307 7 0.641 0.317
8 0.636 0.282 8 0.664 0.291
9 0.653 0.259 9 0.682 0.268

10 0.669 0.239 10 0.695 0.248

Citeulike
KNN − UT, b = 0.00 KNN − UT, b = 0.05

1 0.201 0.404 1 0.255 0.509
2 0.292 0.309 2 0.355 0.377
3 0.346 0.252 3 0.407 0.299
4 0.383 0.213 4 0.439 0.247
5 0.407 0.184 5 0.456 0.208
6 0.427 0.162 6 0.465 0.178
7 0.444 0.145 7 0.474 0.157
8 0.457 0.131 8 0.479 0.139
9 0.467 0.120 9 0.484 0.125

10 0.474 0.110 10 0.488 0.113

Table 4: The recall and precision for the top 10 recom-
mended tags of K-Nearest Neighbor applied to the Deli-
cious and Citeulike datasets. Users are modeled as vectors
over the tag space. Vector weights are computed as the tag
frequency. k was set to 50. N is number of tags recom-
mended. Detailed results for two different boost values, 0.00
and 0.05, are presented.

This behavior is consistent with all K-Nearest Neighbor
experiments conducted on the Delicious dataset and across
all user models and all values for k; boosting results in an
approximate 2.0% to 4.0% increase in recall and precision.
The optimum value for b is between 0.05 and 0.075. For
consistency all other K-Nearest Neighbor experiments are
run using a boosting factor of 0.05.

Similar results were discovered using Citeulike data. Pre-

cision for a recommendation set of size 1 jumps from 40.4%
to 50.9%, a dramatic increase of 10.5%. However, this im-
provement diminishes as the size of the recommendation is
increased. Precision for a recommendation set of 5 climbs
from 18.4% to 20.8%, a 2.4% improvement. For a recom-
mendation set of size 10, the improvement shrinks to 0.3%.

An examination of recall shows similar signs. For a rec-
ommendation set of size 1, the improvement is 5.4%. The
improvement drops to 4.7% for a recommendation set of size
5 and drops further to an improvement of 1.4% when N is
increased to 10.

In general boosting tags based upon previous usage is
demonstrated to add additional utility to the K-Nearest
Neighbor algorithm. Yet differences in the improvements
between Delicious and Citeulike offer additional insights.

First the average number of tags per posts in Delicious is
3.82. Citeulike has less with 2.5 tags per post, only 65% the
number found in Delicious. As a result Citeulike presents
a smaller target for tag recommendation. Moreover since
the holdout set is smaller for Citeulike, boosting will have
a greater impact on smaller recommendation sets than on
larger sets when contrasted with Delicious. This is observed
as the improvement to precision garnered from boosting
drops from 10.5% when the recommendation set contains
1 tag to only 0.3% when the recommendation set consists of
10 tags. Improvements in Delicious, on the other hand, are
more stable dropping from 3.9% to 1.8%. An examination of
recall shows a parallel trend; in both cases recall improves
as the size of the recommendation set increases subject to
diminishing returns. However the effect of diminishing re-
turns hampers Citeulike recommendations earlier and more
strongly than it affects Delicious. These observations sug-
gest that care must be taken when comparing recommenda-
tion algorithms across multiple Folksonomies.

Furthermore the two datasets have a markedly different
focus. Delicious users are able to annotate any URL on the
Web often tagging resources across many different topics.
Citeulike users on the other hand are focused on scholarly
publications and often focus primarily on their area of ex-
pertise. This observation suggests that recommendation al-
gorithms giving added weight to resources may be more ap-
propriate for Delicious since user information may befuddle
the recommendation algorithm by incorporating unrelated
tags. Conversely if a user in Citeulike has annotated items
related to his research and does not stray from this topic, the
user profile based on tags could offer exceptional utility.

Evidence for this analysis is provided in the difference of
precision and recall between the two datasets. For a rec-
ommendation set of size 1, boosting a user’s previously as-
signed tags offers a 3.9% gain in Delicious and a 10.5% gain
in Citeulike. This trend continues as N increases until the
improvements gradually diminish. This stark contrast sug-
gests that recommendation algorithms augmented by boost-
ing tags offer more gain for focused Folksonomies such as
Citeulike than broader Folksonomies such as Delicious.

Having ascertained the optimal values for k and the boost-
ing factor we turn our attention to the user models for K-
Nearest Neighbor. Experimental results are shown in Fig-
ure 3 detailing the recall and precision for recommendation

 - 59 -

Figure 3: The comparison of tag recommender strategies for Delicious.

sets of size 1 through 10. For comparison purposes rec-
ommendation algorithms based on popularity are included.
“Most Popular” recommends the most popular tags in the
dataset. “Most popular by User” recommends the most pop-
ular tag for a particular user. “Most popular by Resource”
recommends the most popular tags for a given resource. K-
Nearest Neighbor models users as a vectors over the tag
space (KNN-UT), vectors over the resource space (KNN-
UR), a concatenation of the two (KNN-UR+T), a strict com-
bination of every resource-tag pair (KNN-U(RT)) and as fea-
tures derived through Hebbian deflation on either the UT or
UR matrix (KNN-UT-Hebbian or KNN-UT-Hebbian). For
all K-Nearest Neighbor models, k is set to 50 and the boost
factor is set to .05. “Folkrank” is provided for further com-
parison and adapts link analysis to the folksonomy structure,
recommending tags through manipulation of the preference
vector.

The approach that merely recommends tags that are pop-
ular throughout the Folksonomy achieves poor results in the
Delicious dataset. Recommending popular tags for a spe-
cific user fairs better, but is clearly out done by recommend-
ing popular tags given a specific resource. Nearly all user
models for K-Nearest Neighbor surpass these techniques
based upon popularity. In particular models that treat each
user as a vector over the set of tags appear to perform best for
the Delicious dataset. Folkrank offers additional complete-
ness as seen by its superior recall, but offers less specificity
as measured by it precision.

Similar trends are observed for Citeulike except for a
few notable exceptions. First recommendations that rely on
the popularity of a tag given a user outperform recommen-
dations based on the popularity of a resource. This reaf-
firms our notion that the focused nature of Citeulike is bet-
ter suited for algorithms that rely on user-tag information
whereas resource-tag information is critical in broader Folk-
sonomies where a user’s annotations cover multiple topic ar-
eas.

Folkrank outperforms other methods as a measure of re-
call to a larger extent than in the Delicious dataset, but fur-
ther trails as a measure of precision.

As in Delicious, K-Nearest Neighbor which treats users
as vectors over the set of tags performs strongly in Citeu-
like, whereas the effectiveness of other approaches vary. The
ability of this model to outperform other methods in both
datasets should be noted. This is due to the inherent com-
prehensiveness of the KNN-UT algorithm.

Only those users that have tagged the query resource are
considered for the neighborhood resulting in an algorithm
that focuses on user-resource information. Then only those
tags that have been applied to the query resource are consid-
ered for the recommendation set focusing on the resource-
tag connections. Finally by treating user models as vectors
over the tag space the recommender incorporates user-tag re-
lationships. Consequently the KNN-UT algorithm accounts
for all three aspects of the Folksonomy and is adaptable to
many Folksonomies that may require an emphasis on spe-

 - 60 -

Figure 4: The comparison of tag recommender strategies for Citeulike.

cific relationships. Not surprisingly the user models that per-
form nearly as well as KNN-UT are KNN-UR+T and KNN-
UT-Hebbian which share the same characteristic. Though
KNN-UT-Hebbian does perform relatively poorly in Citeu-
like, likely due to the fact that this dataset is sparse and the
Hebbian features are more difficult to extract.

Beyond recall and precision, time constraints should
be considered when evaluating tag recommendation algo-
rithms. Recommenders based on popularity can perform
much of the computation offline thereby streamlining the
recommendation process. K-Nearest Neighbor on the other
hand is often referred to as a lazy algorithm since it per-
forms the bulk of its computation during the query process.
However since the proposed modifications to the algorithm
limit the number of similarities that must be calculated to
only those users that have tagged the query resource, the
algorithm scales very well with large datasets. The compu-
tational cost may be reduced further if Hebbian features are
extracted from the Folksonomy thereby reducing the length
of vectors used for calculating cosine similarity. Hebbian
deflation however is appropriate only when the data is dense
enough that meaningful features can be extracted.

Folkrank, while it performs well in tag recommendation,
is hampered by computational costs requiring a complete
calculation of the Pagerank vector for each query. For exam-
ple to compute 18,105 recommendations required 80 hours
of computation on a modern dual-core desktop. In contrast
2,309,427 recommendations were completed in less than 1

hour using K-Nearest Neighbor.

Conclusions and Future Work

In this work we have proposed using K-Nearest Neighbor
for tag recommendation in Folksonomies. Due to the unique
data structure of Folksonomies, modifications are required
to adapt the algorithm. Neighbors are selected only if they
have tagged the query resource and tags are selected for the
recommendation set only if they have been applied by the
neighbor to the query resource. These modifications tie user-
resource and resource-tag information into the algorithm
while it dramatically reduces the computational costs. There
exists a myriad of ways in which to calculate user similarity;
We have found that cosine similarity between users modeled
as vectors over the tag space performs well. This model in-
corporates user-tag information into the algorithm. By in-
cluding all three relationships inherent in Folksonomies, the
algorithm is robust for both broad and narrow Folksonomies.
In addition, K-Nearest Neighbor can be improved by boost-
ing tags the user has previously used. The performance of
K-Nearest Neighbor exceeds that of recommendation algo-
rithms based on popularity, while the running time makes it
computationally viable for large real world Folksonomies.

In the future we plan to investigate alternative tag rec-
ommendation strategies and study resource or user recom-
mendation algorithms. Other approaches such as associa-
tion rules mining and neural networks are worth considering

 - 61 -

for recommendation in Folksonomies. Probabilistic Latent
Semantic Analysis offers an alternative means to derive fea-
tures from the Folksonomy. Feature extraction of any sort
presents intriguing opportunities in search, navigation, per-
sonalization and recommendation.

Acknowledgments

This work was supported in part by the National Science
Foundation Cyber Trust program under Grant IIS-0430303
and a grant from the Department of Education, Graduate As-
sistance in the Area of National Need, P200A070536.

References

Adrian, B.; Sauermann, L.; and Roth-Berghofer, T. 2007.
Contag: A semantic tag recommendation system. In
Pellegrini, T., and Schaffert, S., eds., Proceedings of I-
Semantics’ 07, pp. 297–304. JUCS.

Basile, P.; Gendarmi, D.; Lanubile, F.; and Semeraro, G.
2007. Recommending smart tags in a social bookmarking
system. In Bridging the Gep between Semantic Web and
Web 2.0 (SemNet 2007), 22–29.

Batagelj, V., and Zaveršnik, M. 2002. Generalized cores.
Arxiv preprint cs/0202039.

Golder, S. A., and Huberman, B. A. 2006. Usage patterns
of collaborative tagging systems. Journal of Information
Science 32(2):198.

Heymann, P.; Ramage, D.; and Garcia-Molina, H. 2008.
Social tag prediction. In SIGIR ’08: Proceedings of the
31st annual international ACM SIGIR conference on Re-
search and development in information retrieval, 531–538.
New York, NY, USA: ACM.

Hotho, A.; Jaschke, R.; Schmitz, C.; and Stumme, G. 2006.
Information retrieval in folksonomies: Search and ranking.
The Semantic Web: Research and Applications 4011:411–
426.

Jaschke, R.; Marinho, L.; Hotho, A.; Schmidt-Thieme, L.;
and Stumme, G. 2007. Tag Recommendations in Folk-
sonomies. LECTURE NOTES IN COMPUTER SCIENCE
4702:506.

Lipczak, M. 2008. Tag recommendation for folksonomies
oriented towards individual users. In Proceedings of
the ECML/PKDD 2008 Discovery Challenge Workshop,
part of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases.

Macgregor, G., and McCulloch, E. 2006. Collaborative
tagging as a knowledge organisation and resource discov-
ery tool. Library Review 55(5):291–300.

Mathes, A. 2004. Folksonomies-Cooperative Classi-
fication and Communication Through Shared Metadata.
Computer Mediated Communication, (Doctoral Seminar),
Graduate School of Library and Information Science, Uni-
versity of Illinois Urbana-Champaign, December.

Mika, P. 2007. Ontologies are us: A unified model of social
networks and semantics. Web Semantics: Science, Services
and Agents on the World Wide Web 5(1):5–15.

Nakamoto, R. Y.; Nakajima, S.; Miyazaki, J.; Uemura, S.;
Kato, H.; and Inagaki, Y. 2008a. Reasonable tag-based col-
laborative filtering for social tagging systems. In WICOW
’08: Proceeding of the 2nd ACM workshop on Information
credibility on the web, 11–18. New York, NY, USA: ACM.

Nakamoto, R. Y.; Nakajima, S.; Miyazaki, J.; Uemura, S.;
and Kato, H. 2008b. Investigation of the effectiveness of
tag-based contextual collaborative filtering in website rec-
ommendation. In Advances in Communication Systems and
Electrical Engineering, 309–318. Springerlink.

Oja, E., and Karhunen, J. 1985. On stochastic approxima-
tion of the eigenvectors and eigenvalues of the expectation
of a random matrix. Journal of Mathematical Analysis and
Applications 106(1):69–84.

Salton, G., and Buckley, C. 1988. Term-weighting ap-
proaches in automatic text retrieval. Information Process-
ing and Management: an International Journal 24(5):513–
523.

Salton, G.; Wong, A.; and Yang, C. 1975. A vector
space model for automatic indexing. Communications of
the ACM 18(11):613–620.

Schmitz, C.; Hotho, A.; Jaschke, R.; and Stumme, G. 2006.
Mining association rules in folksonomies. In Proc. IFCS
2006 Conference, 261–270. Springer.

Sigurbjörnsson, B., and van Zwol, R. 2008. Flickr tag
recommendation based on collective knowledge. In WWW
’08: Proceeding of the 17th international conference on
World Wide Web, 327–336. New York, NY, USA: ACM.

Song, Y.; Zhuang, Z.; Li, H.; Zhao, Q.; Li, J.; Lee, W.-C.;
and Giles, C. L. 2008. Real-time automatic tag recom-
mendation. In SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and de-
velopment in information retrieval, 515–522. New York,
NY, USA: ACM.

Tso-Sutter, K. H. L.; Marinho, L. B.; and Schmidt-Thieme,
L. 2008. Tag-aware recommender systems by fusion of
collaborative filtering algorithms. In SAC ’08: Proceedings
of the 2008 ACM symposium on Applied computing, 1995–
1999. New York, NY, USA: ACM.

Van Rijsbergen, C. 1979. Information Retrieval.
Butterworth-Heinemann Newton, MA, USA.

Xu, Z.; Fu, Y.; Mao, J.; and Su, D. 2006. Towards the
semantic web: Collaborative tag suggestions. Collabo-
rative Web Tagging Workshop at WWW2006, Edinburgh,
Scotland, May.

 - 62 -

Analysis of Web Usage Patterns in Consideration of Various Contextual

Factors

Jinhyuk Choi
Korea Advanced Institute of Science and

Technology (KAIST)
119, Munjiro, Yuseong-gu

Daejeon, 305-732, Republic of Korea

demon@kaist.ac.kr

Jeongseok Seo
Information and Communications

University (ICU)
119, Munjiro, Yuseong-gu

Daejeon, 305-732, Republic of Korea

chaoticblue1@icu.ac.kr

Geehyuk Lee
Korea Advanced Institute of Science and

Technology (KAIST)
119, Munjiro, Yuseong-gu

Daejeon, 305-732, Republic of Korea

geehyuk@kaist.ac.kr

Abstract

It is important to analyze user’s Web usage logs for
developing personalized Web services. However, there are
several inherent difficulties in analyzing usage logs because
the kinds of available logs are very limited and the logs
show uncertain patterns due to the influences of various
contextual factors. Therefore, speculating that it is necessary
to find what contextual factors exert influences on the usage
logs prior to designing personalized services, we conducted
several experiments in-series not only in situations of
performing designed tasks during short time periods but also
in users’ natural Web environments during a period of
several days. From the results of our experiments, we found
that interest levels, credibility levels, page types, task types,
and languages are influential contextual factors in a natural
Web environment. Moreover, some historical and
experiential patterns that could not be observed in short time
analysis were discovered in the results of long time analysis.
These findings will be useful for other researchers,
practitioners, and especially for developers of adaptive
personalization services.

Introduction

The World Wide Web has a unique characteristic in that
the amount of contained information is continuously
increasing and yet can still be reached easily by users
through various Web services. Moreover, it provides
various types of media so that users can use it for multiple
purposes. Therefore, it is very important for researchers
and practitioners to make the Web even more effective for
finding necessary information.

One of various means by which we can make the Web
more useful is to develop intelligent information delivery
in order to allow users to find their target information more
effectively. A core part of intelligent information delivery
is to search through personalized contents without the
user’s explicit participation. For personalization, it is

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

necessary to learn more about the user and to build a user
model based on this knowledge. This personalization
process is a main topic of research on Web usage mining
(Mobasher et al. 2000; Gauch et al. 2007). However, it is
not easy to learn more user information because we cannot
explicitly ask the user about his/her characteristics or what
he/she is thinking at any particular time we want to know.
This means that we have to find another way to learn more
information about them. From this perspective, many
researchers have looked for effective implicit methods to
learn more about users, and many intelligent methods have
been actively suggested by several researchers (Kelly and
Teevan 2003; Kelly 2004; Kelly and Belkin 2004; Kelly
and Cool 2002; Choi et al. 2007; Hofgesang 2006; Seo and
Zhang 2000; Badi et al. 2006; Al halabi et al. 2007; Kellar
et al. 2005). In their researches, usage logs that are stored
while users visit Web pages have been used to learn about
particular user interests. For examples, the URLs of visited
Web pages, visit period, dwelling time, mouse clicks,
mouse movement, keyboard typing, and visit frequencies
on each Web page have been applied as implicit interest
indicators.

Although many successful results have been provided so
far, there are several inherent difficulties in analyzing
usage logs and extracting necessary information from them.
The first difficulty comes from the fact that the kinds of
available usage logs are very limited, and there are no
standard ways to interpret the meaning of usage patterns.
This means that we have to carefully investigate usage
patterns prior to using the logs as effective indicators.
Secondly, Web users are under the influence of various
contextual factors while they use the Web, as it has
multiple aspects as a simple information tool, social
communication mediator, entertainment source, and so on.
Therefore, usage logs will show very uncertain patterns
because various contextual factors will exert their
influence on the usage patterns concurrently (Kelly and
Belkin 2004). The third difficulty is related with the
historical aspect in that a user’s experiences also exert
influences on the variation of usage patterns. Therefore, a
Web usage pattern analysis should be a long-term process

 - 63 -

because it cannot be adequately performed by studying
only short-time usage. In addition, to analyze a user’s
various characteristics, the usage data should be collected
at the browser side in the user’s real Web environment for
a long period without any constraint on a specific Web
server.

This paper details the results of our experiments in
which we initially tried to find the possibilities of
overcoming the above difficulties. For our experiments,
various usage logs have been collected at the browser side
and carefully analyzed not only in situations of performing
designed tasks during short time periods but also in users’
natural Web environments during a period of several days.
We obtained several interesting findings from the results.
We think that these findings will be useful for other
researchers, practitioners, and especially for developers of
personalization services.

This paper is organized as follows. In section 2, we
review some of the related researches. In section 3, we
describe our experimental procedure and the results that
have been obtained so far are given in section 4. In section
5, summary and future works are introduced.

Related Work

Human Information Behavior

There have been a lot of studies that have focused on
human information behavior analyses in various research
fields. In those studies, the researchers have focused on
several contextual factors that affect a user’s behavior,
conceptualizing the relationships between information-
seeking behavior and contextual factors. In (Sonnenwald
1999), the authors proposed an evolving framework in
which cognitive, social, and system perspectives are
incorporated. In the framework, human information
behavior including information exploration, seeking,
filtering, use, and communication were included. Based on
the framework, various influential factors - physical,
cognitive, affective, economic, social, and political – and
their implications were investigated. In (Johnson 2003), the
needs of an information-seeking behavior analysis in a
multi-contextual environment were presented and a
theoretical framework was suggested. The authors of (Kari
and Savolainen 2007) asserted that users are also
improving along with the change of information
environment, and they found 11 relationships between
individual developmental objectives and information
searching via the Internet. In (Byström and Järvelin 1995;
Borlund and Ingwersen 1997; Bystrom 2002; Vakkari
1999; Vakkari 2001), the influence of task complexity on
information seeking behaviors was investigated. An
overview of the nature of trust, and a framework of trust-
inducing interface design features, were given in (Wang
and Emurian 2005). Particularly in (Wang et al. 2000), the
authors introduced a multidimensional model of user-web
interaction, and three dimensions – user, interface, and the
Web – were considered. In the model, the user dimension

is considered to be influenced by the particular task,
information need, knowledge state, cognitive style,
affective state, and so on. They measured users’ cognitive
styles and affective states before a user study, applying a
process-tracing technique while users were conducting
information-seeking tasks, and found various types of
relationships among the elements of the dimensions. In
(Fogg et al. 2003), based on results of an online qualitative
study, the credibility for Web contents were considered
and important factors of credibility were suggested to
formulate Web design guidance. In (Wathen and Burkell
2002), the authors asserted that users filter out most of the
gathered information and retain only useful information. In
addition, they concluded that the credibility or believability
of information is one of the most important criteria for the
filtering. In (Rieh 2002), the authors found that users judge
cognitive authority and information quality by two types of
judgment - predictive judgment and evaluative judgment –
and they also identified the main facets and keywords of
the judgments through a user study.

From these researches, we found that human information
behavior cannot be studied without the consideration of the
influences of various types of contextual factors. However,
because the purposes of these researches were not to
develop an intelligent system but to construct theoretical
models, they did not study quantitatively how the Web
usage patterns reflect the influences of various contextual
factors.

Web Usage Mining

There has been a lot of effort to quantitatively measure the
influences of contextual factors on Web user behaviors
based on various usage logs in the field of Web usage
mining. Among the various factors, user interest toward
content has been the main focus of researchers. The
various implicit indicators of user interest can be found in
(Kelly and Teevan 2003). In (Kelly 2004), the familiarity
of a topic has been discussed, and the authors concluded
that as one’s familiarity with a topic increases, his/her
searching efficacy increases and reading time decreases.
For user characteristics, cognitive and problem-solving
styles were studied in (Kim and Allen 2002). In their study,
the authors observed various user activities - average time
spent, average number of Websites viewed, average
number of bookmarks made, and average number of times
a search/navigational tool was used for completing a search
task – while the users performed two types of given tasks
in an experimental environment, and the authors found that
there are significant differences among user activities
according to the type of task and user’s problem solving
style. For usage logs, the display time was discussed most
actively. In (Kelly 2004; Kelly and Belkin 2004), based on
gathered data from 7 subjects for 14 weeks, the
relationships between display time and various factors –
task, topic, usefulness, endurance, frequency, stage,
persistence, familiarity, and retention – were investigated,
and the authors concluded that the display time is not
suitable for inferring a user’s interest because there is great

 - 64 -

variation between display time and interest according to
the user; large differences according to the task at hand
also appear. On the contrary, in (Choi et al. 2007), the
viewing time has been used as a good implicit indicator,
and in (Hofgesang 2006), the authors made an assertion
that time spent on a Web page is more important than visit
frequency in inferring a user’s interest. In (Seo and Zhang
2000), bookmarking, time for reading, following up the
HTML document, and scrolling were used as relevant
activities, and a machine learning algorithm was applied to
learn the user’s characteristics. In (Badi et al. 2006),
various parameters of document attributes, document
reading activities, and document organizing activities were
investigated to recognize user interest and document values.
In (Kellar et al. 2005), the authors found that the time spent
is more useful for more complex Web searching tasks. In
(Nakamichi et al. 2006), the authors also used several
quantitative data of user behavior – browsing time and
moving distance, moving speed, and wheel rolling of the
mouse – to detect low usable Web pages.

Most of the researches have analyzed usage logs with
the intention of developing an intelligent system that learns
user characteristics and builds a user model. However,
most of the studies did not fully consider the influences of
various contextual factors, or they focused only on a user’s
interest without consideration of other types of subjective
feedback together. Moreover, most researches except
(Kelly, 2004; Kelly and Belkin 2004) did not consider the
historical aspects of usage data that can only be gathered
by a long-time analysis in a user’s natural Web
environment.

Our Approach

Before everything else, we reviewed previous related
researches carefully and collected contextual factors for
consideration and usage logs that can be obtained at the
browser side. The contextual factors and usage logs that we
considered are given in Table 1.

We carried out not only a qualitative analysis but also a
quantitative one. For ecological validity, we also observed
users in their own personal places. Because some of the
contextual factors are inherently subjective and cannot be
measured with only usage logs, we collected various types
of feedback regarding the current context directly from
users. However, to minimize the burden on the users in this
study, we tried to minimize the number of feedback
questions as much as possible. We developed software that
runs on each user’s PC in order to collect their behavior
logs and feedback in their Web browsing environments.

Contextual Factor

Contextual factors include subjective assessments about
contents, situational factors, a user’s individual
characteristics, and so on. Because these factors cannot be
measured systemically, we designed a process in which we
can obtain the users’ subjective feedback directly. First, we

considered the users’ attitudes toward the current task as
one of the contextual factors. Actually, the types of user
task can be classified into detailed categories – information
seeking, fact-finding, transaction, and browsing (Kellar et
al. 2007). However, we classified user tasks into only two
categories – careful searching and casual searching -
according to the users’ attitudes toward the current task. A
detailed description of the task categorization appears in
section 3.5. There are more contextual factors that cause
users to interact with Web pages. For example, a user may
stay for a relatively long time at a specific Web page
because there are interesting contents there, or the user
feels that the contents are more useful than others.
Sometimes, the user may roll the mouse wheel more
frequently on one Web page than on others because he/she
wants to read the entire content of the page carefully. In
this regard, we selected some further factors that may exert
an influence on user interactions with Web pages. The
factors are interest, credibility, complexity, and difficulty.
The complexity factor tells us how users feel about the
layout structure of a Web page, and hence it may include a
user’s subjective viewpoint of usability and familiarity. We
also included the difficulty factor because we thought that
user behavior is subject to variation according to a
subjective assessment of the difficulty of the contents
displayed.

Web Usage Log

Implicit user interest analysis has shown good performance
at the server-side especially for commercial Websites.
However, in spite of the fact that it is easier to analyze user
interest at the server-side, currently many researchers have
focused on browser-side analyses because user interest can
be analyzed from various Websites, and a user model can

Task Contextual
factors

Usage logs Period

Ex1 Visit
collected
pages
(text only)

Interest Viewing time
Mouse movement
Mouse wheel
Mouse clicks
WM_PAINT

2 hrs

Ex2 Visit
collected
pages

Interest
Complexity
Difficulty
Credibility

Viewing time
Mouse movement
Mouse wheel
Mouse clicks
WM_PAINT

2 hrs

Ex3 Free visits
/ given tasks

Interest
Complexity
Difficulty
Credibility
Task type

Viewing time
Mouse movement
Mouse wheel
Mouse clicks
WM_PAINT

2 hrs

Ex4 Free visit
/ free tasks

Interest
Credibility
Task type

Viewing time
Mouse movement
Mouse wheel
Mouse clicks
Keyboard typing
Visit frequency
Day frequency

2 wks

Table 1. The environment and gathered data of experiments

 - 65 -

be constructed using a wealth of information through a
browser side analysis. In order to analyze users’ implicit
interest at the browser side, we have to monitor several
usage logs, for example, the viewing time, scroll
movement, sequences of visited URLs, keyboard typing,
and so on. In our research, we have chosen several usage
logs to record while users view different Web pages. The
viewing time that has mainly been investigated in the
related researches so far is the time during which users
remain on a particular web page. The mouse wheel counts
the number of WM-MOUSEWHEEL messages (Choi et al.
2007). For mouse and scrollbar movement, we measured
the distance between two consecutive positions of the
mouse cursor and scroll bar at regular intervals and
summed the distances. We also counted the number of
processed WM-PAINT messages, as WM-PAINT
messages are processed when users change the size of their
browser window, scroll within the window, move their
mouse cursor, and so on. The number of mouse clicks and
keyboard typing were also considered. We believe that
these activities are good indicators of user interest
regarding the contents of Web pages. We have chosen
these logs because they can be measured without much
effort. However, for scroll movement, we were unable to
obtain the position of the scrollbar on some of the Web
pages, and the WM-PAINT messages can be affected by
the dynamic content of certain Web pages. This means that
we have to be careful when using these data as logs for
measuring user activities.

We did not record some of the behaviors that have been
considered by other researches – bookmarking, saving,
printing, and coping and pasting – because users do not
always show those behaviors on every valuable Web page,
and hence their records do not suit our purpose.

We collected some physical data of Web pages - the
scroll height, file size, and URL information (top-level
URL and depth of URL) - of each visited Web page.
Moreover, in the course of the experiments, some
additional factors were included when they were required
for analysis. The additional factors were the number of out-

links on a Web page, the Web page type, and the language
presented (e.g., Korean or English).

We also considered carefully some historical factors that
can be analyzed only through relatively long periods of
monitoring. The historical factors include visit frequencies
and day frequency. Among those factors, day frequency is
a new concept that has not been introduced before. A
detailed description of day frequency will be given in a
later section.

Data Collection Software

In some of the previous researches, custom-built browsers
have been used (Kellar et al. 2007), as have some
specialized logging software that works “in stealth mode”
(Kelly and Belkin, 2004). Although there are several merits
in using custom-built browsers, because various data can
be collected easily, we developed a browser-monitoring
module (BMM) that runs behind Internet Explorer without
any modification to the browser, as we wanted to preserve
the natural state of the Web browsing environment as
much as possible.

BMM is a type of monitoring software that was
developed to detect Windows GUI messages while users
read Web pages, and thus it is possible to measure user
activities in real-time without any interruption to the users.
BMM uses a global hooker library, written in C++, which
runs in the background and hooks all Windows operating
system events. In addition, using Windows Shell API,
BMM can access all instances of currently running Internet
Explorers through the COM object. In addition, necessary
properties of Web pages can be obtained from the COM
object. BMM is written in C#, running under a Windows
platform with .NET Framework 2.0.

BMM consists of four components - hooker, data
recorder, data aggregator, and feedback window. The data
to hook are the number of keys pressed, events of program
focus changes, number of WM_PAINT events, mouse
click and mouse wheel messages, and so on. Basically, the
hooker catches every message passed within the operating
system, so we should filter out irrelevant messages to
record only necessary data for our studies. For instance,
because a WM_PAINT message is invoked whenever the
O/S needs to re-draw some parts of a window, we have to
be able to ignore the messages from unfocused windows
and count the number of messages that are invoked for
only the currently focused browser window. The
aggregator can acquire several properties of a Web page by
using a Document Object Model (DOM). Acquired
properties are the viewing size of a document (in pixels),
file size (in bytes), current location of the scrollbar, and
character set of the page. The location of scroll bar is
periodically updated so that the total displacement of the
scrollbar can be estimated. However, a critical issue arises
at several 'fancy' Web pages that have different structures
from standard Web documents, eventually yielding no data
while accessing the DOM property. The data aggregator
also aggregates all data from these multiple components,
and the data recorder stores the aggregated data in a

Figure 1. The feedback window consists of a browser control
to view the contents of visited web pages, a list window to

choose a visited URL, radio buttons to choose the answer of
some questions, and so on

 - 66 -

human-readable XML format for future analysis. After
Web searching, using the feedback window, users can
review the visited Web pages and choose radio buttons that
ask about several types of assessments about the contents
of each Web page. If the users do not want to answer
questions regarding some of the Web pages, they can even
remove the records easily. In figure 1, the structures of the
feedback windows are shown.

Subject

We conducted 4 experiments, each with its own purpose.
The detailed concept of the experiments will be described
in the next section. For each experiment, we recruited
some graduate students who are majoring in computer
science for our subjects. Twenty-five students participated
in the first experiment, 23 in the second, 19 in the third,
and 12 students in the fourth. Among the students, 11 got
through the second, third, and fourth experiments, and one
new subject volunteered for the fourth experiment. All of
the students have a high level of knowledge and experience
about the Internet and the Web. We chose these students as
subjects because all of them use the Web not only for their
work but also for entertainment or distraction. Most of all,
they use the Web for a relatively long time each day so that
we could gather plenty of data from their activities. It also
means that we could observe their Web usage patterns
under various contexts. We paid about 20 dollars to each
subject for their participation in the first, second, and third
experiments, respectively. For the fourth experiment, we
paid 60 to 160 dollars to each subject according to the rate
of the completed feedback.

Experimental Concept and Procedure

There are three main strategies for studying information-
seeking behavior – laboratory experiments, sample surveys,
and field studies (Kellar et al. 2007). Considering these
strategies, we designed four experiments and conducted
them in-series. In the first and second experiments, the
subjects came to our laboratory and browsed some pre-
collected Web pages. In the third experiment, the subjects
performed given information-seeking tasks in our
laboratory. As a final step of each experiment, the subjects
carried out feedback tasks in order to record their own
subjective assessments about each of the Web pages they
had browsed. The fourth experiment was carried out at the
subjects’ own residences. The subjects installed BMM on
their PCs to collect their Web usage logs for a period of
about two weeks. For the feedback process of the fourth
experiment, we let the subjects carry out the feedback tasks
at least once a day. The first and second experiments were
carried out in a blind mode in which the subjects could not
see any information about the contents of each Web page
before viewing them. In other words, no proximal cues
(Chi et al. 2001) were provided.

Experiment 1. The first experiment was a kind of
preliminary study. We collected 120 Web pages that
contain only text and offer information on various topics –

politics, economics, education, engineering, entertainment,
science, health, and sports – with varying content size. The
twenty-five subjects read each page in their own desired
manner from the list of collected Web pages. Because we
wanted to exclude any effect of information clues, we
simply provided numbers on the list without showing any
information about the contents of the Web pages in
advance. Thus, the subjects were supposed to click the
numbers in order to view the contents. To obtain the
appropriate data, the subjects were not told that some
activities would be measured while they were viewing the
Web pages. During the experiments, the subjects’ activities
while reading the Web pages, and some measurable data,
were recorded in a log file for future analysis. In addition,
whenever a subject finished reading a Web page, a small
window appeared wherein the subject recorded his/her
interest level for the contents of the page. There were 5
levels of interest, and the subjects recorded their interest
for the contents of a Web page accordingly. Due to some
malfunctions of the BMM in the users’ browsing
environment and a failure to properly obtain user feedback,
the log files of 5 users were excluded. Therefore, we
analyzed 20 users’ log files. For the first experiment, we
formulated the following simple hypotheses.

1. The number of processed log data is relatively higher on
Web pages that contain interesting contents.

2. The amount of information in a Web page affects the
amount of processed log data.

Experiment 2. Actually, the procedure of the second
experiment was the same as the first experiment except
that we collected ordinary Web pages that contain images,
tables, videos, and frames. It was intended to see whether
there will be differences in usage patterns according to
form of the Web page. When a subject finished reading all
of the Web pages, he/she activated a feedback window
wherein the subject could review all of the pages and
answer some questions about each one visited. In this
experiment, differently from the first experiment that
collected only the interest levels for the contents, we also
wanted to verify the influence of other subjective
assessments of Web pages - difficulty, complexity, and
credibility along with interest – on a 5-point scale. If a
subject clicked one of the URLs on a visited page list in the
feedback window, the contents of the Web page appeared
again, and the subject could then choose his/her points for
the questions regarding the subjective feedback.

Experiment 3. We can find several different
categorizations of Web user behaviors in previous
researches. Most recently, 4 task categories were provided
in (Kellar et al. 2007) - fact finding, information gathering,
just browsing, and transactions. In (White and Drucker
2007), Web users are grouped into navigators and
explorers according to the level of visit variances. In
consideration of these previous works, we also classify a
user’s Web tasks into two groups.

 - 67 -

Task 1: careful searching

This task is a type of information gathering that requires
accuracy, trust, efficiency, and responsibility of the search
results. In our experiment, the given task was to find some
information about their research topics. For examples, they
had to find some Web pages of laboratories in universities
or companies that are related with their research topics and
read the pages carefully to judge the relevance of the
information. We encouraged the subjects to perform this
task as normally as possible.

Task 2: casual searching

This task is a type of information gathering and browsing
that can be performed without any burden or responsibility
regarding the search results. For example, the subjects
could search for some information about their hobbies,
favorite products to buy, famous tourist spots, favorite
sports or movie stars, and so on. We also encouraged the
subjects to perform these tasks as normally as possible.

The subjects performed the two tasks with their own
topics for about 2 hours. The logging data and feedback

details were the same as in the second experiment.
Differently with the first and second experiments that
controlled the subjects’ activities in that the subjects could
only visit the collected Web pages without any pre-
information clues, in the third experiment, the subjects
could visit any Web page that they wanted and use any
search engine or portal site they wanted to use. Therefore,
we observed a lot of re-visitation patterns. Thus, during the
feedback phase, we let the subjects delete the logs of Web
pages that they just used to find other Web pages to visit.
In this way, we excluded the navigational Web pages. The
concepts of the navigational Web pages will be given in
section 4.5.

Experiment 4. For the fourth experiment, 12 graduate
students participated - 4 females and 8 males. They
installed the BMM on their PCs and collected various logs
for about 2 weeks. Some of the subjects participated in our
experiment for 16 days. For their feedback, we encouraged
them to give their feedback levels of each visited Web
page a 5-point scale and choose one of the task types. If a
URL was not a content page according to the subject’s
viewpoint, the URL could be deleted easily and BMM
records a special number for the URL for future analysis.
In this experiment, we collected only three types of
feedback – interest, credibility, and task types - because we
wanted to minimize the subjects’ burden in answering
many questions for all of the visited Web pages visited.

Result

In the series of experiments, we measured the numbers of
several processed messages on each visited Web page and
normalized the value using min-max normalization
according to each subject. We included this normalization
procedure because there would be variances in the amount
of usage logs due to the subjects’ individual differences.

Ex Feedback VT MM MW MC WP
interest 0.695

(**)
0.572
(**)

0.563
(**)

0.475
(**)

0.663
(**)

Ex1

scroll
height

-0.006 0.006 0.261 0.008 0.059

interest 0.771
(**)

0.545
(**)

0.686
(**)

0.559
(**)

0.507
(*)

complexity -0.391
(**)

-0.178
-0.148
(**)

-0.196
-0.599

(*)
difficulty

-0.476 -0.340 -0.532 -0.418
-0.057
(**)

credibility
0.507 0.203

0.411
(*)

0.289 0.241

Ex2

scroll
height

0.074 0.016 0.167 0.001 -0.059

interest 0.396
(*)

0.301
(*)

0.119 0.245 0.229

complexity -0.315
(**)

-0.129
(**)

-0.533
(**)

-0.162
(**)

0.040

difficulty 0.307 0.307 -0.124 0.182 -0.330
credibility 0.609

(**)
0.414
(**)

0.288
(*)

0.412
(**)

0.389

Ex3

scroll
height

0.011 -0.025 0.120 -0.036 -0.022

interest 0.442
(**)

0.315 0.258 0.306 0.282
(KT)

credibility 0.434
(*)

0.138 -0.010 0.222 0.124
(KT)

Ex4

scroll
height

0.056 0.001 0.117 0.017 0.001
(KT)

VT: Viewing time / MM: Mouse move / MW: Mouse wheel /
MC: Mouse click / WP : WM_PAINT / KT: Keyboard typing
*: p-value of ANOVA test < 0.05
**: p-value of ANOVA test < 0.01

Table 2. The values of correlation between feedback level and the
amount of usage logs

1 2 3 4 5
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Interest Levels

M
ea

ns
of

V
ew

in
g

Ti
m

e

1 2 3 4 5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Credibility Levels

M
ea

ns
of

V
ew

in
g

Ti
m

e

1 2 3 4 5
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Complexity Levels

M
ea

ns
of

V
ew

in
g

Ti
m

e

Figure 2. The viewing time according to feedback levels in the
third experiment

 - 68 -

Experiment 1

From the results of the first experiment, we found some
interesting patterns. As we can see in table 2, there were
positive correlations between the amount of all usage logs
and interest levels. Furthermore, from a one-way ANOVA
test, we also found that the amount of the logs shows
significant differences among the interest levels. Based on
this result, we temporally concluded that users have a
tendency to interact more at high-interested Web pages,
and hence all the logs can be used as implicit interest
indicators. One more interest thing is that there was a low
correlation between the amount of usage logs and the size
of the Web pages except for the amount of the mouse
wheel log.

Experiment 2

Actually, we thought that there would be some differences
between the result patterns of the first experiment and
those of the second experiment because the forms of the
Web pages were quite different. However, there were no
big differences between the results. Table 2 shows us that
there were also positive correlations between the amount of
all usage logs and interest levels, similarly with the results
of the first experiment. In addition, we also found
significant differences in the amount of usage logs among
the interest levels. This means that the form of the Web

pages is not an important factor. Differently from the
results of interest level, the difficulty and complexity levels
showed a negative correlation with the amount of usage
logs. The credibility levels showed positive correlations
with the amount of usage logs but the differences of the
amounts among the levels are not statistically significant.
From the results, we concluded that the interest level exerts
the most significant influence on the amount of usage logs,
and that users are inclined to quickly leave Web pages that
have difficult contents or complex structures without many
interactions. Finally, we found that there were low
correlations between the amount of usage logs and the
sizes of Web pages except for the amount of the mouse
wheel log. This was not different with the results of the
first experiment.

Experiment 3

In figure 2 and table 2, we can see that the viewing time
and amount of mouse movement have positive correlations
with the interest levels, and that the differences of the
amounts among the interest levels are also statistically
significant. The amount of mouse wheel use, mouse clicks,
and processed WM_PAINT messages also showed positive
correlations with interest levels, but the differences were
not statistically significant. The amount of usage logs
increased according to the complexity levels, but dropped
steeply at level 5. The difficulty levels showed no large
correlation with the amount of usage logs. The most
interesting pattern that we found in the results of the third
experiment was that the amount of usage logs showed a
positive correlation with the credibility levels, and that the
differences of the amounts of usage logs among the
credibility levels were statistically significant. This result
was not found in the results of the second experiment in
which users browsed pre-collected Web pages without
proximal cues. Therefore, we concluded that the usage logs
are under the influence of credibility levels as well as
interest levels in ordinary Web browsing environments.

In the third experiment, we also checked whether there
are differences in the amount of usage logs according to
the task types and written languages used. From figure 3,
we found that there was a general trend of more interaction
logs recorded during a careful task than during a casual one,
especially on pages of the highest interest and credibility
levels. For written languages, there was a general trend of
more interaction logs on English pages than on Korean
pages, especially on the pages with the highest interest
levels, but there was no large difference according to
credibility levels. These results showed us that the type of
task and written languages used also should be considered
as important influential factors that make differences in the
amount of usage logs created.

Experiment 4

In the fourth experiment, there were some logs that contain
an excessively long viewing time because the experiment
has been conducted in the users’ personal environments.

1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Task(careful/casual)

V
ie

w
in

g
Ti

m
e

un
de

rH
ig

h
In

te
re

st

1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Task(careful/casual)
V

ie
w

in
g

Ti
m

e
un

de
rH

ig
h

C
re

di
bi

lit
y

(a)

1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Language(KOR/ENG)

V
ie

w
in

g
Ti

m
e

un
de

rH
ig

h
In

te
re

st

1 2
0

0.05

0.1

0.15

0.2

0.25

Language(KOR/ENG)

V
ie

w
in

g
Ti

m
e

un
de

rH
ig

h
C

re
di

bi
lit

y

(b)

Figure 3. (a) The differences of viewing time according to task
types (b) the differences of viewing time according to languages

 - 69 -

From figur
the all visi
found that
viewing ti
should fin
logs as sim
from 3 to
differently
was above
viewing tim
the magni
applicabili
figure 5, w
to somew
observe a
time and in
the viewin
set the ma
shows a p
0.5522), an
test, the di
are signific
can use v
based on t
time on th
we found
on the vi
absolutely
contained
experimen
the viewi
statistically
interest an
not find s
and feedb
usage logs
result of th

Addition

Because t
period of
historical
experimen
findings.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

maximun cutline (min.)co
rr

el
at

io
n

co
ef

fic
ie

nt

0.1

0.15

0.2

e
(A

N
O

VA
)

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

4500

view time (sec)

no
.o

fp
ag

es
e 4, we can find that the users stayed on 99% of
ted Web pages for at most 346 seconds. We also

there were some visited logs that showed a
me of over 30 minutes. This means that we
d a maximum cutline in order to filter out some
ply noise. We set various values to the cutline,

25 minutes. As we set the cutline values
, we excluded logs in which the viewing time

the cutline, and then normalized each user’s
e to his/her scale. Finally, we checked whether

tude of the cutline made an impact on the
ty of the viewing time as an indicator. From
e can see that a reasonable cutline should be set
here between 5 and 18 minutes in order to
high positive correlation between the viewing
terest level, and the statistical difference among

g times in each interest level. For example, if we
ximum cutline to 14 minutes, the viewing time
ositive correlation with the interest level (r =
d according to the result of a one-way ANOVA

fferences among the viewing times of each level
antly different (p = 0.0092). This means that we
iewing time to identify interested Web pages
he fact that users will stay for a relatively longer
em than on uninterested Web pages. In addition,
that when we want to infer users’ interest based
ewing time, a careful noise-filtering task is
required. Therefore, we excluded logs that

over 15 minutes of viewing time in the fourth
t. In figure 6 and table 2, we can see that only
ng time showed positive correlations and

significant differences among the levels of
d credibility. It is very interesting that we could
ignificant differences between other usage logs
ack levels. The differences in the amount of
according to the task types were similar with the
e third experiment.

al Findings from Experiment 4

he fourth experiment was conducted during a
about 2 weeks, we can observe some more

patterns that could not be observed in previous
ts. In this section, we introduce some additional

Day frequency and feedback pages vs. non-feedback
pages. Because most of target pages that users want to
access can be reached via portal sites, news sites, and
search engines, we thought that the front pages of these
sites and hub pages within the sites may appear in the
visited URL history more frequently than others. For
example, when a user wants to read a newspaper, he/she
visits the home page of news site and clicks on some links
that seem to contain interesting news. In a similar manner,
whenever a user wants to find some information, he/she
may visit the front page of a search engine first and then
click on one of the links that the search engine retrieves.
Similarly, if the user wants to log onto some commercial
sites or even his/her own Web mail accounts, he/she should
first visit the front page of the service and input his/her
username and password in order to proceed. Therefore, if
we look over the users’ visited URL histories, the
navigational pages - the front pages of portal sites, news
sites and search engines, and any type of hub page – will
appear more frequently than others. Moreover, if the users
visit Websites according to their daily routine, they will
visit some of the Websites everyday in their regular
patterns. In this respect, we thought that the URLs of
navigational pages might be found in logs from each day.
On the contrary, the content pages were shown relatively

Figure 4. The distribution of viewing time

0 5 10 15 20 25 30
0

0.05

maximun cutline (min.)

p-
va

lu

Figure 5. The correlation coefficients (top) and p-values of
significance test (bottom) according to maximum cutline

1 2 3 4 5
0.015

0.02

0.025

0.03

0.035

0.04

Interest Levels

M
ea

ns
of

V
ew

in
g

Ti
m

e

1 2 3 4 5
0.015

0.02

0.025

0.03

0.035

0.04

Credibility Levels

M
ea

ns
of

V
ew

in
g

Ti
m

e

Figure 6. The viewing time according to feedback levels in the
fourth experiment

- 70 -

rarely beca
contents aga

Based on
far, we form
visited UR
pages. For
Day Freque
document f
retrieval an
DF value o
equation (1)

In this eq
experiment,
|{ :j id Url
URL appea
URL is tho
and should

In the fou
was fully u
though we
pages in de
naturally se
expressing t
the number

our expectation. The 12 subjects have mainly deleted the
home pages of search engines, retrieved lists of search
engines, the first pages of portal sites, news lists, home

Figure 7. (
pages an

UR
Day
Vie
Mo
Mo
Mo

Keyb

Table 3. The resu
values of each in

non-feed

1 2
0

2000

4000

6000

8000

10000

12000

14000

16000

(a)
1 2

0

10

20

30

40

50

60

70

80

90

100

(b)

a) The number of feedback pages and non-feedback
d (b) the average number of outlinks contains: 1 –

feedback page / 2- non-feedback page
use the users don’t usually view the same
in and again.
the considerations that we have mentioned so
ulated a very simple hypothesis - everyday-

Ls have a strong chance to be navigational
the hypothesis, we created a variable named
ncy (DF). The concept of DF is very similar to
requency, which is often used in information
d text mining (Salton and McGill 1986), and
f each visited URL can be calculated using
.

(1)

uation, | |D is total number of days in

jd is the URL collection of the j-th day and
}|jd means the number of days where i-th

rs. If a URL exhibits a high value of DF, the
ught to be inappropriate for content extraction
be regarded as a navigational page.
rth experiment, the selection of a contents page
p to the subject’s subjective decision. Even
did not explain the concept of navigational
tail, they found by themselves that there are
veral Web pages that may not be fit for
heir feedback levels. As we can see in figure 7,
of non-feedback pages was much greater than

pages of community sites, online banking sites, intranet
front pages and so on as non-feedback pages. In some of
the previous researches, we found that there were several
attempts to discriminate content pages from navigational
pages using the number of outlinks that are contained in
the pages (Cooley et al. 1999; Fu et al. 2001; Domenech
and Lorenzo 2007). The main idea is that there will be a
larger number of outlinks on navigational pages than on
contents pages. We also thought that this idea is acceptable
so we counted the average numbers of contained outlinks
in both feedback pages and non-feedback pages. However,
as we can see in figure 7, the number of outlinks on
feedback pages was higher than on non-feedback pages in
our results. Therefore, we examined carefully whether the
DF values in feedback pages and non-feedback pages are
significantly different. As we can see in figure 8, the
average DF value of non-feedback pages is higher than the
values of feedback pages, and the difference is statistically
significant (p = 0.0003). We found that the amount of some
usage logs was also different between feedback and non-
feedback pages. From table 3, we can see that viewing time,
the amount of mouse wheel use, and the amount of
keyboard typing were significantly different.

Task Identification by Visited URLs. We believed that
users have their own URL lists that are specific to their
current tasks because they may use the Web based on their
individual previous experiences on the Web. In this
respect, we analyzed the top-level URLs that users visited
during the period of the experiment. As we can see in table
4, over 90% of visited URLs were separable by the tasks.

|{ : } |

| |

j i j

i

d Url d
DF

D




Table 4. The proportion of task separable URLs
1 2
0

1

2

3

4

5

6

(a)
1 2

0

0.05

0.1

0.15

0.2

0.25

(b)

1 2 3
0

0.02

0.04

0.06

0.08

1 - viewTime / 2 - mouseMove / 3 - mouseClick

1 2
0

0.01

0.02

0.03

0.04

1 - mouseWheel / 2 - keyPress

Figure 8. The URL depth of feedback pages and non-feedback
pages (left - a) and the DF values (left - b) : 1 – feedback page /

2- non-feedback page and the mean values of interaction logs: on
feedback pages (right - left bars) and on non-feedback pages

(right - right bars)
- 71 -
logs p-value
L Depth 0.0623
Frequency 0.0003 (*)

wing Time 0.0206 (*)
use Move 0.5314
use Click 0.5258
use Wheel 0.0181 (*)
oard typing 0.0349 (*)

lts of significance test for difference of the
teraction log between feedback pages and
back pages: (*) means significant
user No. task separable (%)
1 92.68
2 92.59
3 93.17
4 95.77
5 75
6 93.86
7 100
8 90.57
9 89.29

10 97.40
11 91.07
12 96.21

In other words, 90% of visited URLs belong to a specific
task only, and hence we can infer the types of current task
easily by checking the top-level URLs. Moreover, as we
can see in figure 9, the number of URLs that users visited
in the casual tasks is much higher than in the careful tasks.
The most interesting patterns are the increasing rates of the
number of visited URLs as time goes on. The number of
visited URLs in the tasks of casual searching increased
more drastically than in careful searching. This means that
the subjects showed the navigator’s patterns in careful
searching tasks but showed the explorer’s patterns in
casual searching tasks (White and Drucker 2007). We
believe that this pattern is meaningful in developing
personalization schemes that are adaptive to current task
types.

Discussion and Future Work

Review of the Result and Summary

We analyzed the results of 4 experiments and recognized
that there are noticeable differences in usage patterns
according to the experimental environment. In this section,
we briefly summarize the interesting differences.

Experiment 1 vs. Experiment 2. The forms of the Web
pages that the subjects visited in the first and second
experiments were different, but we could not see large
differences between the results of the two experiments.
Moreover, the amount of usage logs was not influenced by
the amount of contents or size of the Web pages. We
believe that this pattern came from the fact that Web users
read Web pages in a nonlinear pattern, and that there are
some unique characteristics in reading digital documents
(Liu 2005).

Experiment 2 vs. Experiment 3. In the results of the third
experiment in which the subjects freely select the Web
pages to visit, we observed that the credibility levels
regarding the contents exert a noticeable influence on the
amount of usage logs, but the same pattern has not been

observed in the results of the second experiment in which
the subjects visited pre-collected Web pages even without
any pre-clue about the contents. In addition, there were
significant differences among the amounts of all usage logs
according to interest levels in the results of the second
experiment, but only the amount of viewing time and
mouse movements were affected by the interest levels in
the results of the third experiment.

Experiment 3 vs. Experiment 4. Differently from the
results of the third experiment, we observed that the
viewing time only showed a significant relation with the
interest and credibility levels in the results of the fourth
experiment. This means that the more natural the
environment is, the more unknown factors will exert their
influences on the usage patterns. We also observed in the
results of the third experiment that there are some
differences in usage patterns according to the task types,
such that the amount of usage logs on interested Web
pages in careful tasks is higher than in casual tasks. The
same result was observed in the fourth experiment. Finally,
from historical data analyses, we found that Day
Frequency and some usage logs are significantly different
according to the page types.

Summary. We also briefly summarized all of the observed
patterns as the following.

1) Generally, the amount of usage logs is not under the
influence of the size and form of the Web page.

2) Information scents exert noticeable influence on usage
patterns such that Web users choose links to visit based on
information scents, and the scents also cause the users to
show some uncertain usage patterns while they are viewing
Web pages.

3) The viewing time is the best log to be used as an
implicit feedback indicator if it is pre-processed carefully.
It means that we have to analyze the viewing time more
carefully than other logs to develop personalization
services that are adaptive to user interest.

4) The viewing time is under the influence of interest and
credibility levels. In other words, interest and credibility
levels are the most influential contextual factors in a
natural Web environment. The difficulty and complexity
levels do not create noticeable variations on the amount of
usage logs.

5) The viewing time is also under the influences of current
tasks, written languages, and page types. In addition, page
types are also influential on the variations of other usage
logs such that the amount of mouse wheel use, number of
visits in a day, and the amount of keyboard typing were
significantly different based on the page types.

6) Web users visit different Websites when they are
performing different tasks and they show different
navigational patterns according to the task types.

7) We recognized that some historical and experiential
aspects that may not be observed in short time analysis can
only be found in long time analysis.

1 2
0

5

10

15

20

25

30

35

40

Task(careful/casual)

N
o.

of
To

p-
le

ve
lU

R
L

2 4 6 8 10 12
0

10

20

30

40

50

60

Ta
sk

1

Day
2 4 6 8 10 12

0

10

20

30

40

50

60

Ta
sk

2

Day

Figure 9. The average number of URLs in each task (left), the
increasing rate of average number of URLs in careful task

(middle), in casual task (right)

 - 72 -

Limitations of the experiments

Although many interesting patterns were observed from
our experiments, we also acknowledge the limitations of
our experiments. We cannot expect that the observed
patterns will generalize to a general population because we
recruited small number of people from same population for
our subjects according to our experimental convenience.
However, the results show us valuable usage patterns of
experienced Web users and consequently provide us with a
good insight into further researches.

Future Work

As we already discussed in previous sections, the viewing
time is under the influence of various factors. We cannot
decide what service applications are to be activated based
solely on the fact that viewing time increases on a current
Web page, because the viewing time will be affected by
various factors - interest levels, credibility levels, page
types, tasks, and written languages. Therefore, to find a
user’s characteristics and select the applications
accordingly, it is necessary to intelligently detect what
factors are currently influencing the usage patterns. We
think that it will be very challenging to find current
contextual factors intelligently, but we also think that the
current factors can be identified through some careful
statistical analyses on various historical usage patterns. For
example, as we already discussed in section 4.5, the URLs
of the Web pages that users are currently viewing will give
us information of the current task types. In addition,
because Web users have a tendency to choose Websites to
visit according to their own previous experiences about the
sites, the URLs are also useful for inferring the users’
subjective feedback levels on the contents of Web pages if
we monitor user activities for a long period. Actually, in
the post interviews of the third experiment, the subjects
told us that they use different search engines according to
their current tasks. For examples, they use Google for
careful tasks and Naver – a Korean portal site - for casual
tasks. Therefore, we assume that URL information can be
used very effectively for the purpose of inferring the user’s
contexts. The similarity between the contents of current
Web pages and contents of previous high-interested Web
pages can also be used to infer the interest levels on the
current Web pages. Furthermore, the Day Frequency can
be used to infer the types of Web pages viewed.

If our system can infer the current contextual factors
intelligently, some proactive services can be provided. In
figure 10, we present the concept of a data preparation
service that we are developing in which unnecessary visit
logs and uninterested contents can be filtered out. In
addition, if the system can identify a user’s current task
type correctly, the threshold of the viewing time to find
high-interested Web pages can be applied accordingly.

Finally, we should consider individual differences
because there may be variances according to user
preference, cognitive styles, temperament, and so on.

References

Al halabi W. S.; Kubat. M.; and Tapia M. 2007. Time
spent on a web page is sufficient to infer a user's interest.
In Proceedings of the IASTED European Conference:
internet and multimedia systems and applications, 41-46,
Chamonix, France: ACTA Press.

Badi R.; Bae S.; J. Moore M.; Meintanis K.; Zacchi A;
Hsieh H.; Shipman F.; and Marshall C. C. 2006.
Recognizing user interest and document value from
reading and organizing activities in document triage. In
Proceedings of the 11th international conference on
Intelligent user interfaces, 218-225, Sydney, Australia:
ACM.

Borlund, P. and Ingwersen, P. 1997. The Development of a
Method for the Evaluation of Interactive Information
Retrieval Systems. Journal of Documentation, 53(3):225-
250.

Byström K. and Järvelin K. 1995. Task complexity affects
information seeking and use. Information Processing and
Management, 31(2):191-213.

Chi E. H.; Pirolli P.; Chen K.; and Pitkow J. 2001. Using
information scent to model user information needs and
actions and the Web. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 490-
497, Seattle, Washington, United States: ACM.

Choi J.; Lee G.; and Um Y. 2007. Analysis of Internet
Users’ Interests Based on Windows GUI Messages. In
Proceedings of the 12th International Conference on
Human-Computer Interaction, Lecture Notes in Computer
Science, 4553:881-888.: Springer Berlin / Heidelberg.

Cooley R.; Mobasher B.; and Srivastava J. 1999. Data
Preparation for Mining World Wide Web Browsing
Patterns. Knowledge and Information Systems, 1(1):5-32.

Domenech J. M. and Lorenzo J. 2007. A Tool for Web
Usage Mining. In Proceedings of the 8th International
Conference on Intelligent Data Engineering and

Figure 10. A possible practical solution- the arrows on the left
shows their influential relationships and the arrows on the right

means that the logs can be used for data preparation tasks

 - 73 -

Automated Learning, Lecture Notes in Computer Science,
4881:695-704, D.: Springer Berlin / Heidelberg.

Fogg B. J.; Soohoo C.; Da-nielson D. R.; Marable L.;
Stanford J.; and Tauber E. R. 2003. How do users evaluate
the credibility of Web sites?: a study with over 2,500
participants. In Proceedings of the 2003 conference on
Designing for user experiences, 1-15, San Francisco,
California: ACM.

Fu Y.; Shih M.; Creado M.; and Ju C.. Reorganizing web
sites based on user access patterns. 2001. In Proceedings of
the tenth international conference on Information and
knowledge management, 583-585, Atlanta, Georgia, USA,:
ACM.

Gauch S.; Speretta M.; Chandramouli A.; and Micarelli A.
2007. User Profiles for Personalized Information Access.
The Adaptive Web, Lecture Notes in Computer Science,
4321:54-89,: Springer Berlin / Heidelberg.

Hofgesang P. I. 2006. Relevance of Time Spent on Web
Pages. In Proceedings of KDD Workshop on Web Mining
and Web Usage Analysis, in conjunction with the 12th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Philadelphia, PA.

Johnson J. D. 2003. On contexts of information seeking.
Information Processing & Management, 39(5):735-760:
Elsevier

Kari J. and Savolainen R. 2007. Relationships between
information seeking and context: A qualitative study of
Internet searching and the goals of personal development.
Library & Information Science Research, 29(1):47-69:
Elsevier

Kellar M.; Watters C.; Duffy J.; and Shepherd M. 2005.
Effect of Task on Time Spent Reading as an Implicit
Measure of Interest. In Proceedings of the American
Society for Information Science and Technology,
41(1):168-175.

Kellar M.; Watters C.; and Shepherd M. 2007. A Field
Study Characterizing Web-based Information Seeking
Tasks. Journal of the American Society for Information
Science and Technology, 58(7):999-1018: John Wiley &
Sons.

Kelly D. and Belkin N. J. 2004. Display time as implicit
feedback: understanding task effects. In Proceedings of the
27th annual international ACM SIGIR conference on
Research and development in information retrieval, 377-
384, Sheffield, United Kingdom: ACM.

Kelly D. and Cool C. 2002. The effects of topic familiarity
on information search behavior. In Proceedings of the 2nd
ACM/IEEE-CS joint conference on Digital libraries, 74-75,
Portland, Oregon, USA.

Kelly D. and Teevan J. 2003. Implicit feedback for
inferring user preference: a biblio-graphy. ACM SIGIR
Forum 37(2):18-28. ACM.

Kelly D. 2004. Understanding implicit feedback and
document preference: a naturalistic user study. Ph.D.
Dissertation, Rutgers University. 2004.

Kim K. and Allen B. 2002. Cognitive and task influences
on Web searching behavior. Journal of the American
Society for Information Science and Technology,
53(2):109-119: John Wiley & Sons.

Liu Z. 2005. Reading behavior in the digital environment.
Journal of Documentation, 61(6):700-712. Emerald Group
Publishing Limited.

Mobasher B.; Cooley R.; and Srivastava J. 2000.
Automatic personalization based on Web usage mining.
Communications of the ACM, 43(8):142-151: ACM.

Nakamichi N.; Shima K.; Sakai M.; and Matsumoto K.
2006. Detecting low usability web pages using quantitative
data of users' behavior. In Proceedings of the 28th
international conference on Software engineering, 569-576,
Shanghai, China: ACM.

Rieh S. Y. 2002. Judgement of information quality and
cognitive authority in the Web. Journal of the American
Society for Information Science and Technology,
53(2):145-161: John Wiley & Sons.

Salton G. and McGill M. J. 1986. Introduction to Modern
Information Retrieval: McGraw-Hill.

Seo Y. W. and Zhang B. T. 2000. Learning user's
preferences by analyzing Web-browsing behaviors. In
Proceedings of the fourth international conference on
Autonomous agents, 381-387, Barcelona, Spain: ACM.

Sonnenwald D. H. 1999. Evolving Perspectives of Human
Information Behavior: Contexts, Situations, Social
Networks and Information Horizons. Exploring the
contexts of information behaviour, 176-190: Taylor
Graham Publishing.

Vakkari P. 1999. Task complexity, problem structure and
information actions: integrating studies on information
seeking and retrieval. Information processing &
management, 35(6):819-837: Elsevier.

Vakkari P. 2001. A theory of the task-based information
retrieval process: a summary and generalisation of a
longitudinal study. Journal of Documentation, 57(1):44-
60: Emerald Group Publishing Limited.

Wang Y. D. and Emurian H. H. 2005. An overview of
online trust: Concepts, elements, and implications.
Computers in Human Behavior, 21(1):105-125: Elsevier.

Wang P.; Hawk W. B.; and Tenopir C. 2000. Users'
interaction with World Wide Web resources: an
exploratory study using a holistic approach. Information
processing & management, 36(2):229-251: Elsevier.

Wathen C. N. and Burkell J. 2001. Believe it or not:
Factors influencing credibility on the Web. Journal of the
American Society for Information Science and Technology,
53(2):134-144: John Wiley & Sons.

White R. W. and Drucker S. M. 2007. Investigating
behavioral variability in web search. In Proceedings of the
16th international conference on World Wide Web, 21-30,
Banff, Alberta, Canada: ACM.

 - 74 -

Exploiting Semantic Web Technologies for Recommender Systems

A Multi View Recommendation Engine

Houda OUFAIDA, Omar NOUALI

DTISI Laboratory, CERIST Research Center
03, Rue frères Aissou - Ben Aknoun – Algiers, Algeria

{houfaida, onouali}@mail.cerist.dz

Abstract
Collaborative filtering systems are probably the most known
recommendation techniques in the recommender systems
field. They have been deployed in many commercial and
academic applications. However, these systems still have
some limitations such as cold start and sparsty problems.
Recently, exploiting semantic web technologies such as
social recommendations and semantic resources have been
investigated. We propose a multi view recommendation
engine integrating, in addition of the collaborative
recommendations, social and semantic recommendations.
Three different hybridization strategies to combine different
types of recommendations are also proposed. Finally, an
empirical study was conducted to verify our proposition.

 Introduction

Dealing with information overload is one of the most
challenging problems in the information access field; the
Web is a perfect example. Unlike retrieval systems
(Google, AltaVista, Yahoo, ….) which succeed in selecting
suitable items according to a specific user query, these
items are the same for every user in every situation,
recommender systems aim to make personalized
recommendation to users according to their preferences,
tastes and interests expressed by users themselves or
learned by the recommender system over the time.
 There has been much work in this research area, from
the early 1990 and still remains up to now. Foltz and
Dumais experiences (Foltz and Dumais 1992) on four
recommendation techniques have shown ambitious results,
Resnick and collaborators proposed one of the first and
probably the most known recommender system in the
literature; Grouplens (Resnick et al. 1994) which
recommends films to users according to their previous
ratings.
 Since, several models were proposed in the literature
and much more applications were developed in the
industry. Examples of such applications include e-
commerce websites like Amazon.com for recommending

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

books, CDs and different other items. MovieLens and
Netflix for recommending movies and DVDs…
 Recently, a new generation called semantic and social
recommender systems have emerged taking advantage of
the advancements in the semantic web technologies and
features such as ontologies, taxonomies, social networks,
tagging.
 In this paper, we introduce a multi view recommender
system that includes collaborative, social and semantic
views of the user’s profile. Each view recommends a set of
items. Hence, three hybridization strategies are proposed
for recommendations re-ranking. Finally, results from our
experimentations are presented.
 The rest of the paper is organized as follows: First we
present the introduction of new Web 2.0 aspects in
recommender systems. Then we expose our multi view
recommender system, we present user’s multi view
representation and then present three recommendation
modules: collaborative, social and semantic matching,
hybridization strategies are also exposed. Finally, we
discuss our experimental results and conclude with a
summary of conclusions and outlooks.

Related Work

The key for an efficient recommender system is better
understanding of both users and items. However,
traditional recommender systems consider limited data
(ratings, keywords) to compute predictions and do not take
into account different factors necessary to understand
reasons behind a user’s judgment; is it the item’s content,
quality, is it because a friend recommended it?…
Consequently, the users’ classic communities’ reflects only
a global similarity usually insufficient to describe relations
connecting users and even more items.

With the emergence of the Web 2.0, advancements
allowed the apparition of a new generation of
recommender systems: semantic and social recommender
systems.
 The availability of large product taxonomies on the Web
(UNSPSC, Amazon.com, ODP for example) has
encouraged the use of a taxonomy based user’s/item’s
description in recommender systems. Quickstep
(Middleton, Shadbolt, and De Roure 2004) used a paper

 - 75 -

topic ontology, AKT-ontology, to extract weighted
ontology topics as user’s profile. (Lops, Degemmis, and
Semeraro 2007) implemented k-means clustering
algorithm for neighborhood generation based on semantic
similarities between users. Each user’s profile contains two
semantic vectors; positive and negative weighted concepts
extracted from Wordnet lexical database.

Mobasher and collaborators (Mobasher, Jin and Zhou
2004) propose an enhanced similarity measure which
combine two measures; a semantic items’ similarity and
the classical rating similarity in a linear combination to
perform recommendations. Moreover, (Wang and Kong
2007) calculate three similarity measures: collaborative,
semantic and demographic similarities. An offline
clustering algorithm is applied to reduce computation
complexity.

Another promising aspect of the semantic Web is the
items’ tagging (Flickr, del.icio.us). Karen and collaborators
(Karen, Marinho, and Schmidt-Thieme 2008) proposed to
extend User × Item rating matrix with user tags as items
and item tags as users. Szomszor and al. (Szomszor et al.
2007) proposed the use of collaborative tagging, also
known as folksomies, to enrich users’ profiles. Thus, each
user has a tag cloud, as well as items. User’s predicted
interest on each tagged item can be made based on the
semantic similarity between items’ tags and user’s tag-
clouds.

The huge popularity of online social communities, such
as Facebook (175 million registration), MySpace (110
million registration) has encouraged the use of user’s social
and personal data in recommendation process, especially in
taste related domains (movies, music,).

The first idea about the way to introduce social networks
in recommender system was to replace the similarity based
neighborhood formation by social neighborhood (friends
and friends of friends). (Sinha and Swiringen 2001)
compared collaborative recommendations made by user’s
friends and those predicted by the system. The results
showed that users prefer friends’ recommendations. This
can be explained by the fact that users trust their friends’
choices.

(Groh and Ehmig 2007) conducted an empirical study to
compare collaborative and social recommendations. The
experiments have shown that social recommenders perform
as good as the best collaborative filtering systems when
data is sparse. Similarly, (Golbeck and Ziegler 2006)
developed a social network website, FilmTrust, where
users manage their FOAF (Friend Of A Friend
Vocabulary) based profiles and used TidalTrust algorithm
(Golbeck 2005) to infer trust values over the social
network. The experimental results have shown that there is
a strong correlation between trust relationships and profile
similarities.

(Massa and Avessani 2004) presented a trust-aware
recommender system named «Web of Trust» where users
define a number of users they trust. This model uses the

User × Item rating matrix and the User × User trust matrix
and produces as an output a predicted User × Item rating
matrix less sparse from the original one. Such method is
particularly beneficial in new user recommendations

Proposed Approach

Seeking on greater understanding of user’s choices and
judgments, we propose a novel approach which introduces
social and semantic levels into the recommendation
process beyond the collaborative level. Hence combining
collaborative recommendations with social and semantic
ones is the key idea of our proposal.

Figure 1: Multi view recommendation engine

 User’s Representation
Among the user’s needs, user’s profile is represented by
three dimensions or views.
 The collaborative view contains user’s explicit or
implicit ratings.
 The socio-demographic view contains user’s social data
like age, gender, profession, location, personal and
professional home pages, and friends’ contact lists.
 The semantic view represents user’s interests in terms of
a weighted concepts vector based on a hierarchical items’
classification

Neighborhoods Generation
Each of the three views, proposed above, will be used by a
recommendation engine to affiliate the user into a specific
neighborhood and thus generate recommendations.

Profile

Acquisition

User

Social

View

Semantic

View

Concept

Matching

Social

Matching

User’s Profile

Recommendations

Re-Ranking

Profile

Updating

Feedback

Registration

Vote

Matching

Recommendations Recommendation

Semantic Resources

Ontologies, Taxonomies.

Concepts’

Extraction

Collaborative

View

 - 76 -

Collaborative Neighborhood. The collaborative view
contains user’s explicit or implicit ratings. Pearson
Correlation can be used to compute users’ similarities and
k nearest neighbors’ algorithm to determine such
neighborhood in a classic way.

Social Neighborhood. Social recommendations are based
on user’s social community. It contains user’s friends with
trust values expressing how much the active user trusts his
friends. The user annotates his relationships with such
information. Trust can be binary (trust or don’t trust) or on
some scale, 1-5 scale where 1 is low trust and 5 is high
trust. Based on these trust values, user’s social
neighborhood can be inferred over the social network. For
example, Tidal Trust algorithm can be used (Golbeck
2006).

Semantic Neighborhood. Semantic view represents user’s
interests about items’ content. For this, items’ semantic
content representation is needed.
 Our choice was pointed on the use of a hierarchic
semantic items’ classification combined with user’s
evaluations to generate such view. The motivation behind
this choice is the availability of such meta-information,
like those of internet and e-commerce portals (Yahoo,
Open Directory, LookSmart, Amazon, etc), where items
are gathered into topics, which are themselves organized
into a hierarchy going from the most general to the most
specific.
 We assume the existence of such classification H, where
every item d is represented by a weighted concept vector
Cd :

 The semantic view is a key element in our proposal; it is
represented by weighted concepts vector Cu. These
concepts are extracted from items’ description Cd which
the user has already rated.

Concept’s weight represents its interest score for the
user. We propose the use of the weighted average to
compute the concept’s average rating expressing how
much the user is interested in this concept; the result is
divided by the maximum rating value Maxv (5 for example)
to have a value between [0,1]

User’s vector Cu is updated when the active user rates
a new item d. Hence, for each concept c contained in the
new item’s vector, there are four possible situations:
1. c already exists in Cu;
2. c is a super class concept of a concept in Cu;
3. c is a sub class concept of a concept in Cu;

4. c is a new concept, and is neither a super class nor a sub
class concept of a concept in Cu;
 We propose the following algorithm (Algorithm 1.) for
semantic user’s profile updating. It is executed for each
new rating r:

 In order to generate recommendations based on semantic
view of the user’s profile, users with similar interests must
be found to build semantic neighborhood.
 Hierarchical concepts organization allows us to reach
users with similar concepts and those having more specific
concepts in their semantic views. For example, in a
hierarchic film classification, if we know that a user u likes
"comedy" films in general, he should have concept
"comedy" with a high interest weight, "0.9" for example, in
his semantic view and there are other users which like
more specific comedy kind films such as "dark comedy" or
"fantasy comedy", these users should belong to the active
user’s neighborhood with a certain membership degree.
(Algorithm 2.) builds such neighborhood ;

Algorithm1: Profile Updating
Begin

 Input /* item’s d vector */

 /* User’s u vector */

 /* user u rating on item d */

 Foreach Do

 Switch :

 : /*
d

i
c already exists in

u
C */

 /* weight’s updating*/

 /* super class concept of a concept in Cu*/

 Foreach Do

 End

 : /* a sub class concept of a concept c’ in Cu*/

 /* adding to Cu */

 Else : /* is a new concept */

 /* adding to Cu */

 End

 End

 End.

{ }),),...(2,2(),1,1(d
nwd

ncdwdcdwdcdC =

rMax
j jw

j jurjw
cw

∑

∑
= ,

)(

{ }),),...(2,2(),1,1(u
mwu

mcuwucuwucuC =

r
du

v =
,

wd

d

id

d

i
wCc min≥∈

d

i
c

u

d

i
Cc ∈

)(u
j

d
i

u
j cScuCc ∈∈∃

{ })'(& '' cScuCccC u
j ∈∈=

Cc ∈'

{ }),),...(2,2(),1,1(u
mwu

mcuwucuwucuC =

{ }),),...(2,2(),1,1(d
nwd

ncdwdcdwdcdC =

d

i
c

d

i
c

v

j

d
i

d
ij

j

d
i

d
iujj

c Max
ccsimww

rccsimwvw

w
∑

∑

∗+

∗∗+
=

),'(

),'(

'

v

j

d
ij

j

d
iujj

ui Max
ww

rwvw

w
∑

∑

+

∗+
=

)('' d
iu cScCc ∈∈∃

d

i
c

v

j

d
i

d
ij

j

d
i

d
iujj

c Max
ccsimww

rccsimwvw

w
∑

∑

∗+

∗∗+
=

),'(

),'(

'











 ∗∪=),(

v

d
id

iuu Max

rw
cCC











 ∗∪=),(

v

d
id

iuu Max

rw
cCC

d

i
c

d

i
c

d

i
c

 - 77 -

 The membership degree formula is proportional to the
similarity between the two users’ concepts and inversely
proportional to the difference between their interest scores.
 Thus for each concept with a significant weight
(>=minwu), we look for users having the same concept in
their semantic views (Vinit) and users with more specific
concepts, Subconcepts(c) function looks for such users
(Algorithm 3.).

 Once semantic neighborhood built, remains rating
predictions on items (Algorithm 4.).

 Recommendations’ Re-Ranking
Since each collaborative, social and semantic
recommendation engines produce their own list of
recommendations, recommendations’ re-raking is required.
The question here is “which hybridization strategy to
adopt?” Burke (Burke 2005) experimented five
hybridization strategies: weighted, switching, cascade,
feature combination and feature augmentation hybrids. In
this paper, we propose three possible hybridization
strategies: mixed, weighted and switched.

 For this we introduce a confidence value per concept
and per recommendation engine. This value represents how
much a user likes items from a specific recommendation
engine which are classified under this concept. The
intuition behind this proposition is that a specific user u
may like friends’ recommendation for “comedy” films and
semantic recommendations for “documentary” films for
example.
 Hence, for each concept in semantic view, we introduce
three confidence values denoted as: Fcoll, Fsoc and Fsem for
collaborative, social and semantic concept confidence. We
compute the percentage of returned items that are relevant
for each recommendation engine classified under a concept
c:

 R is the minimum user’s rating to be considered as
relevant, 4 for example, and W is the minimum concept’s
weight in item d to be considered as significant, 0.7 for
example.
 For each concept in the semantic view, the three
confidence values are maintained. Thus, the concept vector
Cu is completed as follows:

For new concepts, the three confidence values are
initialized as Fcoll= Fsoc =Fsem=1/3.

Mixed Hybridization. Perhaps, the first idea that comes to
mind is to simply mix recommendations from the three
recommendation engines. If an item is recommended from
more than one engine, the final rating is calculated as the
average between each engine’s rating. The following linear
combination computes such average:

With: n1=== δβα if d is recommended by n

recommendation engines (n<=3). If a recommendation
engine doesn’t recommend d, its corresponding rating r
will be 0.

Weighted Hybridization. Unlike the first hybridization
strategy,α, β and δ values are proportional to the
confidence values of recommended item’s concepts.
Hence, α parameter is computed as the weighted average
of item’s collaborative confidence values, as well as β and

Algorithm2 : User Concept Matching

Begin

Input /* User’s u vector */

 Foreach Do

Foreach Do

 Priority_List_cui .add(uj,degree(uj))

 End

 End

End.

Algorithm3 : SubConcepts (c)

Begin

 If (depth(c)=depth(H)) then /*c is a leaf concept*/

 Else

 If (depth(c)=depth(H)-1) then /*c is a super class concept of a

 leaf concept*/

 Else

 While () Do

 End

 End

 End

End.

Algorithm4 : Prediction

Begin

 Foreach Do

 While Priority_List_cu
i .count > 0 Do

 with

and

 End

 End

End.





















>=∈

>=∈>=
=

Wcw
d

Ccd

Wcw
d

CcR
du

rd
F

,

,,
,

{ }),,,,),...(1,1,,1,1(
1 semmpsocmpcollmpu

mwu
mcsempsocppuwucuC

coll
=

semrsocrcollrdur ..., δβα ++=

init
V

j
u ∈

wu
u
iu

u
i wCc min≥∈

{ } { })(& u
isujsjuj

u
ijinit cssubconceptcCcuCcuV ∈∈∪∈=

{ }),),...(2,2(),1,1(u
mwu

mcuwucuwucuC =

1

),(
)(deg

+−
=

uj
u
i

uj
u
i

j
ww

ccsim
uree

{ }U mi cListiporityuV u
i..1 __Pr==

{ }uCcuccssubconcept ∈∃= '& cA -IS c'')(

φ=)(cssubconcept

{ }uCcuccssubconcept ∈∃= '& cA -IS c'')(

{ } cA -IS c' & c'A -IS 'c'''cC =

φ=)(cssubconcept









=
∈
U

Cc
cssubconceptcssubconcept

'
)'()(

{ } Cc' & c'A -IS 'c''' ∈= cC

u
u
i Cc ∈

∑
=

=
n

i
jiviuusimkjup

1
,),(,

∑
=

= n

i iuusim
k

1
),(

1

∑
∑ <=
<=

=
mi

ii
u
i

mi

u
i

i uureew
w

uusim),(deg
1

),(

 - 78 -

δ. We propose the following algorithm to be applied to
each resulting item (Algorithm 5.).

 Switched Hybridization. In this strategy, if an item is
recommended from more than one recommendation
engine, we chose the rating provided by the engine
corresponding to the maximum value of item’s global
confidence values α, β or δ .

Experimental Evaluation

In order to experiment our multi view recommender
system, we use BookCrossing dataset1. This dataset
contains 42643 implicit ratings provided by 10000 users on
21944 books, which gives an average of 4.26 rating per
user. These ratings were collected from All Consuming2
website where people can share their interests about books,
movies, food and other items. However, user’s friends’ list
is not available, only user’s age and location are available.
 Amazon uses a hierarchy of nodes, called Browse
Nodes, to organize its items for sale. Each node represents
a collection of items, such as “Harry Potter books”, not the
items themselves. Browse nodes are related in a
hierarchical structure.
 Hence, for all rated books in the dataset, we crawled the
Amazon web service for 15 days to get each book’s nodes,
the result was 309205 nodes including 6176 distinct node
which gives an average of 14 nodes per book.
 However, Amazon does not provide nodes’ weights, for
this and in order to favor most specific nodes and at the
same time to diminish the weight of nodes that occur very
frequently, we have estimated node’s i weight as follows:

1 http://www.informatik.uni-freiburg.de/%18cziegler
2 http://www.allconsuming.net/

With depthi is node’s i depth in Amazon’s classification,
Maxdepth is the depth of the most specific node of the
current item, N is number of items classified under the root
node “books” , ni is number of items classified under node i
and finally, Maxdepth is used to normalize all resulting
weights values for the current item. We also used Lin
semantic similarity for this evaluation.

Our evaluation methodology was as follows. User’s
collaborative, social and semantic views are built.
Collaborative view contains user’s ratings. Since, user’s
friends’ list data is not available; we have simulated such
neighborhood by considering users living in the same
location and having similar ages. For the semantic views,
we have generated different user’s semantic views
depending on ratings number considered; seven
collaborative and semantic views are constructed for each
user for 1, 5, 10, 20, 30, 40, 50 ratings considered. The
social view remains the same since it does not depend on
user’s ratings.

We have varied the number of ratings considered for the
recommendation generation and then measured
recommendation accuracy using MAE measure and
coverage using RECALL measure, applied on each
recommendation engine separately and also with mixed
hybridization strategy .

For each recommendation list, we have calculated the
average of MAE and Recall values for Top5, Top10,
Top20, Top30, Top40 and Top50 items. Figure 2 displays
our results.

Preliminary results show that in term of precision,
semantic recommendation engine produce more accurate
recommendations comparing it to collaborative engine,
especially with small nucmber of ratings (<10) however in
terms of recall, collaborative engine recommends more
relevant items. Semantic engine bad recall may in part be
explained by the fact that SubConcept function was limited
at one level, i.e. we have only considered direct subclasses
in user’s neighborhood generation.

Mixed hybridization strategy appears to compromise
between semantic recommendations good precision and
collaborative recommendations good recall. It outperforms
collaborative engine in terms of recall and keeps in the
same time a good accuracy comparable to the semantic
recommendation engine (Figure 3.).

Figure 3: Comparison between collaborative, social,
semantic and mixed recommendation engines

Algorithm5: Weighted Hybridization

Begin

 Input /* item’s d vector*/

 /* user’s u vector*/

/* 31=== semjpsocjpcolljp if uCd
jc ∉ */

/* Normalization*/

δβα

α
α

++
= ;

δβα

β
β

++
= ;

δβα

δ
δ

++
=

End.

weightMax

in

N

depthMax
idepth

iWeight

))log(*(

)(=

{ }),,,,),...(1,1,,1,1(
1 semmpsocmpcollmpu

mwu
mcsempsocppuwucuC

coll
=

{ }),),...(2,2(),1,1(d
nwd

ncdwdcdwdcdC =

∑

∑

=

j

d
j

collj
j

d
j

w

pw

α
∑

∑

=

j

d
j

socj
j

d
j

w

pw

β
∑

∑

=

j

d
j

semj
j

d
j

w

pw

δ

 - 79 -

Conclusion

In this paper, we have proposed a multi view
recommendation engine which exploits semantic web
technologies such as semantic items’ description and social
networks beyond the classic ratings data. The results of our
experimentations were very promising and improved the
recommendation process in many ways:
1. Exploiting semantic background knowledge enriches
description of different system elements (users, items);
2. Enhanced semantic description improves items’
classification and users’ clustering, it helps the system to
produce more accurate predictions;

We believe that the introduction of a semantic level in
recommender systems explains users’ judgments in a
semantic way and should lead to a greater understanding of
the target users.

Social elements are particularly benefit in taste related
domains. Our multi view recommendation system could
make semantic enhanced predictions for an item’s category
(scientific papers for example) and social enhanced
recommendations for another item’s category (music,
movies) if the user prefers that. Thus, experimenting this
proposition in an online study will be interesting; it
constitutes one possible outlook to investigate.

The use of interesting Web services which provide
social data about users based on unified user’s models
(FOAF, APML for example) is also another interesting
issue to investigate. Social communities may increase trust
over recommender systems and encourage users to
communicate with like-minded people. Thus, this
consistent users’ participation provides more information
about their interests and preferences;

References

Burke, R. 2005. Hybrid Systems for Personalized
Recommendations. Book chapter: Intelligent Techniques
for Web Personalization. 133-152, Springer.

Foltz, P.W. , and Dumais S.T.1992. Personalized
Information Delivery : An Analysis of Information
Filtering Methods. Communications of the ACM 35 (12),
51-60.

Golbeck, J. 2005. Computing and Applying Trust in Web-
based Social Networks. Ph.D. thesis. University of
Maryland. College Park, MD USA..

Golbeck, J., Ziegler, C.N. 2006. Generating Predictive
Movie Recommendations from Trust in Social Networks, In
Proc. of the fourth international conference on trust
management.

Groh, G., and Ehmig, C. 2007. Recommendations in taste
related domains: Collaborative Filtering vs. Social
Filtering, ACM GROUP’07.

Karen, H.L.; Marinho, L.B.; and Schmidt-Thieme L. 2008.
Tagaware Recommender Systems by Fusion of
Collaborative Filtering Algorithms, ACM SAC’08.

Lops, P.; Degemmis M. ; and Semeraro, G. 2007.
Improving social filtering techniques through WordNet-
Based user profiles. UM 2007.

Massa, P., and Avesani P. 2004. Trust-aware
Collaborative Filtering for Recommender System. In “On
the Move to Meaningful Internet Systems: CoopIS, DOA,
and ODBASE”. Berlin, Heidelberg: Springer, pp. 3-17.

Middleton, S.E.; Shadbolt, N.R.; and De Roure, D.C. 2004.
Ontological User Profiling in Recommender Systems.
ACM Trans. Information Systems, vol. 22, no. 1, pp. 54-
88.

Mobasher, B.; Jin, X.; and Zhou, Y. 2004. Semantically
enhanced collaborative filtering on the Web. Book chapter.
Web Mining: FromWeb to SemanticWeb.

Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom; P.; and
Riedl, J. 1994. GroupLens: An open architecture for
collaborative filtering of netnews. In Proc. of the 1994
Conference on Computer Supported Collaborative Work,
Eds. ACM Press, New York. 175-186.

Sinha, R., and Swearingen, K. 2001. Comparing
recommendations made by online systems and friends.
DELOS-NSF Workshop on Personalization and
Recommender Systems in Digital Libraries.
Szomszor, M.; Cattuto, C.; Alani, H.; O’Hara, K.;
Baldassarri, A.; Loreto, V.; and Servedio, V.D.P. 2007.
Folksonomies, the Semantic Web, and Movie
Recommendation, In Proc. Of the ESWC’07.

Wang, R.Q., and Kong F.S. 2007. Semantic-Enhanced
Personalized Recommender System. In Proc. of the
international conference on machine learning and
cybernetics.

Figure 2: TopN MAE and Recall for collaborative, semantic and multi view recommendation engines

 - 80 -

Intelligent Web Navigation Using Virtual Assistants

Eduardo M. Eisman, Vı́ctor López, Juan Luis Castro
Department of Computer Science and Artificial Intelligence

University of Granada (Spain)
{eisman,victor,castro}@decsai.ugr.es

Abstract
Some time ago, companies and organizations did
not store very much information about themselves
on the Internet. However, the Web has evolved a
lot over the last years and websites contain more
and more information. In many cases, that in-
formation is not well organized and users have to
waste their time looking for what they want to know
using the traditional menu-driven navigation and
keyword search that websites provide. This de-
creases users’ interest in surfing websites and hence
in finding out about companies. One way to resolve
this problem is to change the structure of websites.
However, if a company has just spent a lot of money
on redesigning its website or it simply likes its cur-
rent design, it will refuse to change the way con-
tents are organized. For this reason, we propose
a real time Virtual Assistant, which can work to-
gether with any existing website, to help users find
the information that they look for. Preliminary ex-
periments have shown that Virtual Assistants can
outperform traditional navigation.

1 Introduction
With the arrival of the digital era and the development of the
Internet over the last years, there are more and more com-
panies that store all the information they own in a digital
medium and publish it on the Internet, so that everybody can
have access to it. However, due to the big amount of informa-
tion, it is very difficult for them to structure their contents in a
logical way so that they can be accessed using only one or two
mouse clicks. Nowadays, this objective is usually a utopia
because users have to waste their time looking for what they
want to know using the traditional menu-driven navigation
and keyword search that websites provide. If the information
to handle is small, this problem can be resolved changing the
structure of the contents. However, as the information grows,
it is more and more difficult to provide users with an easy
and fast access to all that data. The necessity of new ways of
accessing that information becomes evident.

One of the reasons that make users spend a lot of time wan-
dering through websites to get some useful information arises
from the diverse nature of the Internet. Nowadays, there are

millions and millions of websites about different topics, and
each website is different from the others. For this reason,
there is a learning curve when you visit a website for the first
time, and the steepness of the slope depends on how well or-
ganized the contents are and how skillful the user is. Peo-
ple who are used to working with new technologies can find
the information that they are looking for in a website very
quickly, even though they have never visited it before. How-
ever, other users find it very difficult to navigate through a
website using menus to discover new information, and they
need somebody to support them.

All these problems make it evident the necessity of an ef-
ficient and effective mechanism for organizing and accessing
the information of a company when it becomes very big. The
new system must be real time. Users’ time is highly valuable,
so if they had to wait every time they wanted to get some
information, the system would be useless. It must be effec-
tive, that is, it must achieve the goals and objectives that users
want. In this sense, the quality of the results must be high.
Moreover, the communication between the system and users
must be natural, allowing complete natural language ques-
tions rather than simple keywords. Finally, the interface must
keep as simple as possible so that everybody can use it, re-
gardless of their computer skills. To sum up, the system must
make the access to information easier for everybody.

The rest of this paper is organized as follows. We begin
with presenting some related work. We then describe the
main features and advantages of our Virtual Assistant. We ex-
plain the architecture and the different modules of our system
in detail. Then, we describe the user interface and its func-
tionality. Afterwards, we carry out a comparative analysis in
order to evaluate the performance of our system in compari-
son to traditional navigation. Finally, we conclude the paper
and provide some directions for future work.

2 Related Work
As far back as the mid-nineties, people became seriously con-
cerned about the recent explosive growth of the Web. Lieber-
man [1995] pointed out the necessity for some sort of intel-
ligent assistance to a user browsing for interesting informa-
tion. He introduced a behavior-based interface agent, Letizia,
which tracked the user’s browsing behavior and attempted
to anticipate items of interest. Thus, the system suggested
links to other documents, determining an ordering of interest

 - 81 -

among them and providing a reason for making those choices,
which decayed over time. However, it did not have natural
language understanding capabilities.

Wexelblat and Maes [1999] proposed a set of tools, called
Footprints. They said that buying a book is not the same
as borrowing it. It is the same book (same words, pictures,
and organization), but the borrowed book has additional in-
formation (notes in the margin, highlights, underlines, do-
geared pages, and so on) and reflects its history because it
opens more easily to certain places. These traces should be
accessible to future users who could take advantage of the
work done in the past. With this aim, Footprints showed the
traffic through a website using a graph in which nodes were
documents and links were transitions between them.

Cassell et al. [2000] created a very complete example of
Embodied Conversational Agent (ECA) called REA (Real
Estate Agent) which played the role of a real estate salesper-
son. However, it needed a lot of sensors and computational
resources so it was not portable.

Abbattista et al. [2004] presented SAMIR (Sceno-
graphic Agents Mimic Intelligent Reasoning), which con-
sisted of a 3D face, a custom version of the ALICE
(Artificial Linguistic Internet Computer Entity) chatterbot
[http://www.alicebot.org/], and a classifier system to keep
conversation and face expressions coherent with each other.

Kim et al. [2005] proposed an information retrieval as-
sistant, CHATTIE, which used natural language and could
be integrated with outer information provision systems such
as conventional information retrieval and relational database
management systems in order to fill some slots in the answer.

AIML (Artificial Intelligence Markup Language) is an
XML dialect for describing conversational scenarios for
ECAs [Wallace, 2004], which specifies pairs of patterns and
templates, so the agent answers the template associated to
the pattern that best matches the question. Traditionally, pro-
grammers use AIML to create conversational rules by hand,
considering the contents of web pages. However, every time a
page is updated, related conversational rules have to be mod-
ified, and this is a problem when many pages are frequently
modified. In order to avoid this problem, Kimura and Kita-
mura [2006] used RDF (Resource Description Framework)
to represent the semantic contents of web pages.

Pilato et al. [2008] proposed an intelligent tutoring system
for the Java programming language. When a student asked a
question, the system looked for the concept that best matched
that question and then created a backward path from that con-
cept to the student’s current knowledge state. The concepts
and their relations were stored in a hierarchical ontology. Re-
lations could be strong (prerequisites) or weak (something re-
lated). Most of the subjects were mandatory, although some
of them were optional. Each document had a list with the
most frequent non-stopwords, used to cluster documents and
evaluate if a student knew the concept referred by a docu-
ment. The learning path was the list of all the unknown nodes.

In conclussion, many of the existing systems, especially
those from the earlier years, lack a virtual character which
can engage in conversation with users, making the interaction
process friendlier. In addition, some systems do not allow
users to ask natural language questions. They should also take

into account the context during the dialog, so that users could
omit the implicit words in the conversation. Moreover, some
others systems focus on the navigation history, only trying to
organize the pages that have been already visited, instead of
recommending related web pages to continue the navigation.
These and other problems make the navigation process much
more difficult. For this reason, we propose a natural language
Virtual Assistant which covers all those features.

3 The Virtual Assistant

The Virtual Assistant is an intelligent system for supporting
users when they look for some information in a website. It is
a real time system because we must not keep users waiting for
getting the information they want. Users engage the system in
conversation using natural language queries, as if it was a real
assistant, so it is really easy for users without computer skills,
and much better than the one offered by traditional websites,
where users can only click on static menus and do searches
specifying some keywords. In addition, the aim is not only
to answer users’ questions but also offer recommendations
that lead users and keep the conversation going. Context is
another important feature. It allows users to omit some words
if they are implicit in the conversation.

Next, we explain the architecture of the system and each
module in detail, and discuss the features of the user interface.

3.1 The Architecture

Making the access to information easier for any kind of user
should be the main objective of our system. For this reason,
the Virtual Assistant has been designed using a client-server
architecture, as can be seen in Figure 1. In this way, all the
computation is done on the server side, so users only need a
web browser. This picture also gives us an overview of how
the system generates an answer for a specific query. First
of all, the user’s query is taken from the client to the server
using the AJAX (Asynchronous JavaScript And XML) tech-
nology. There, it is processed by the Natural Language Un-
derstander (NLU) in order to identify the Information Units
(IUs) to which it refers (in the next section we explain the
concept of Information Unit in detail). Then, the Dialog Man-
ager (DM) receives a list with the identified IUs, including the
matching degree between each unit and the query. The DM
uses a filter to include some of the IUs from that list in the
backpack, which is the structure employed to store all the IUs
about which it can talk in the future. Afterwards, the DM
chooses the most suitable IU for that moment taking into ac-
count the previous dialog, and updates the backpack with the
recommendations associated to that IU. Once it has been de-
cided about which IU the Virtual Assistant is going to talk,
the DM decides what to say about it. So, it creates a new ac-
tion for that IU. There are different types of actions: inform,
inform and suggest, ask for clarification (if the query is am-
biguous), and ignore. Next, the Communication Generator
(CG) retrieves and adapts a specific answer which fulfills the
selected action. Finally, the generated answer is sent back to
the user at the client side using AJAX.

 - 82 -

Figure 1: The Architecture

3.2 The Ontology
All the knowledge about the domain is stored by the system
using an ontology. Essentially, an ontology is a formal rep-
resentation of a set of concepts within a particular domain
and some relationships established between those concepts.
Our ontology is based on entities called Information Units
(IUs). An IU is a piece of information about a specific con-
cept which has a meaning by itself. It includes the defini-
tion of the concept and also some meta information like its
name, different ways that people can use to ask about it, a
URL where more information about it can be found, and so
forth. We can distinguish between two different types of IUs,
objects and properties. The main different between them is
that objects may have properties, but properties must not have
either objects or properties. The reason for such a distinction
is double. First, we can define templates for the objects of
our domain, specifying the names of their properties, so that
we do not have to define the properties every time we create
a new IU of this kind of object. Second, as we distinguish be-
tween objects and properties, when a user asks a question we
can identify both of them individually. Therefore, if the ques-
tion is ambiguous and only the name of the property can be
identified, the system can urge the user to concrete the object.

As we can see in Figure 2, IUs are connected with each
other. Consequently, we can see our ontology as a kind of
graph in which the IUs are the nodes and the connections be-
tween them are the edges of the graph. This special graph has
some particular features. First, there is a hierarchy defined
over it. Thus, IUs can be organized according to different cri-
teria, such as objects included inside other objects, special-
ization, or any other kind of relationship between them (what
we call recommendations).

Figure 2: A simplified overview of the ontology

Figure 3: The IU identification process

3.3 The Natural Language Understander
When a user asks a question, the first thing that the system has
to do is to identify the IUs that are referred by the question,
in order to be able to generate an appropriate answer later on.
This is the role of the Natural Language Understander (NLU).
Its input is a natural language query, and its output is a list
with the IUs that are referred or might be being referred by
the query, and which are used by the Dialog Manager (DM)
to determine about what to talk, when and how.

The first objective of the NLU is to recognize the keywords
of the query that are going to be useful in the next phase. This
process is not limited to the textual selection of keywords but
it goes further, allowing the use of synonyms, derived words,
and so on. The aim is to reduce the language to a specific
vocabulary so that it can be easily managed by the system.
Remember that our system must be real time. Figure 3 shows
an example of IU identification process for a Virtual Assistant
for the Alhambra monument. When the user asks the ques-
tion ’Tell me a story about the Alhambra’, the NLU replaces
the word ’story’ by ’legend’, and the word ’Alhambra’ re-
mains constant. These two keywords are used to identify the
properties and objects related to the query.

Each property has a set of keywords that represents differ-
ent ways that people can use to talk about it. In this way, the
system moves through all the property names, that are placed
at the same level, checking whether they match the keywords
or not (each matching word adds one vote to the property).

The process of generating the list of identified objects is
different. Since there are much more objects than property
names in the ontology, the system must avoid having to move

 - 83 -

through all of them in order to be time and memory efficient.
For example, if we consider the object ’Legends of the Al-
hambra’, a user could refer to it saying ’Tell me a tale about
the Alhambra’, ’I would like to know a story about the Al-
hambra’, ’Do you know any legend about the Alhambra?’,
and so on. Therefore, we could link the following keyword
set to that object: ’tale + Alhambra’, ’story + Alhambra’, and
’legend + Alhambra’. To avoid redundant information, the
system makes good use of the hierarchical structure that ob-
jects have in the ontology. In this way, each object has a spe-
cific keyword set associated to it, and also an additional key-
word set that all its descendants must match. In Figure 3, the
specific keywords are linked to the IUs whereas the common
keywords are linked to the connections between them. Hence,
the system uses these two different sets to move through the
hierarchy. If we go on with the example, the NLU starts from
the first level, where both the specific keywords of the level
(none in this case) and the keywords that all its descendants
have in common (’Alhambra’), appear in the query. There-
fore, the NLU marks this IU about the Alhambra as a candi-
date to be referred by the query, and descends to the second
level through that branch. In this point, the two keywords
sets of the IU also match the query, so the NLU adds a new
candidate object and descends to the third level, where no
keywords match. Consequently, at the end of the process, the
NLU has identified two candidate objects which match the
user’s query (’Alhambra’ and ’Legends of the Alhambra’).

Once the NLU has identified a list of property names and
a list of candidate objects, it joins them, creating new IUs
and putting them on the final list of identified IUs. If the
NLU cannot identify any logical connection between them,
it puts all that objects on the final list and passes the buck to
the Dialog Manager (DM). The same applies when the NLU
cannot identify any object but only some property names.

Context is another thing to take into account. If our system
did not support it and the user wanted to know the price of the
tickets for the museum, the question would be ’How much do
the tickets for the museum of the Alhambra cost?’ instead of
being ’How much do the tickets cost?’, which is much more
natural. In order to resolve this problem, the NLU does not
start the search from the top IU in the hierarchy but from the
last IU that has been transmitted to the user. In this way, the
NLU explores the graph below the last IU. After that, it moves
to the parent IU and repeats the process but without exploring
the last branch again. The searching process continues until
the NLU reaches the top IU in the hierarchy.

3.4 The Dialog Manager
The Dialog Manager (DM) makes decisions about what the
Virtual Assistant must do, when, and how. Its input is the list
of IUs that match the user’s query and its output is an abstract
action which is later transformed into a specific answer by the
Communication Generator (CG).

An action is made of an IU (the concept about which we
want to talk) and an action type (the kind of information to
provide about that concept). For example, we might want to
talk about a particular concept, ask the user for clarification
about a set of identified objects or properties, or deny answer-
ing about a concept because we have already talked about it.

So, we can define different types of actions and specify the
behavior of the Virtual Assistant for each one.

Two structures are used during this process. The memory, a
chronological list with the actions that have been performed,
lets us know if an action has been performed recently or not,
how many times we have talked about an IU, and what we
have said about it. The backpack stores the IUs about which
we have planned to talk in the future, so we can lead the con-
versation instead of simply answering the user’s queries. As
we have already mentioned, the DM filters the IUs identified
by the NLU so that only the most specific ones are included
into the backpack. Next, in order to generate the new ac-
tion, the DM chooses the next IU from the backpack. After-
wards, some IUs related to the selected one are included into
the backpack in case we want to continue talking about re-
lated items in the future. Finally, the DM chooses what to say
about that IU, that is, it selects the type of action to generate.
This new action is added to the memory and sent to the Com-
munication Generator, which generates a specific answer.

3.5 The Communication Generator
The Communication Generator (CG) transforms the abstract
action provided by the Dialog Manager (DM) into a specific
answer. In other words, it looks for the specific words that are
going to be used to carry out that action. Whereas the action
is language independent, the answer is language dependent,
and it can be expressed in different languages. So, the Virtual
Assistant is multilingual.

The answers of the system are templates that can contain
up to three different information categories, depending on
their updating frequency. Information can be static, imme-
diate, or dynamic. Static information always appears in the
answer. It can be fixed (e.g. the history of the Alhambra will
always be the same, although each time the specific words of
the answer might vary) or variable (e.g. the schedule of the
Alhambra is different from November to March than from
March to November, so, depending on when the user poses
the query, the answer will be either the former or the latter).
Immediate information may change quite often, so it should
be stored in a database to make updating tasks easier (e.g. the
price of the tickets for the Alhambra). Finally, dynamic in-
formation is automatically included in runtime (e.g. the time
of the system at the moment of generating the answer).

3.6 The User Interface
There is a famous quotation from Albert Einstein which says
’make things as simple as possible, but no simpler’. Fol-
lowing this line, Figure 4 displays a web page which can
be divided into two different areas. Paying special attention
to the top of the page, we can identify three areas. On the
left side, we can see the Virtual Assistant. She can move
the head, blink, and also speak. The text associated to the
answer is transformed into speech using the Loquendo pro-
gram [http://www.loquendo.com/]. This makes the conversa-
tion much more natural and similar to a real dialog. In the
middle, there are two icons that allow the Virtual Assistant to
lead the conversation instead of having to wait until the user
asks any question. In addition, there is an input field for ask-
ing questions. Finally, on the right side, there are three main

 - 84 -

Figure 4: The user interface

Figure 5: The user interface in action

topics about the application domain. Besides, once the user
has asked a question, we can see in Figure 5 how the sys-
tem modifies the interface in order to show the transcription
of the generated answer as well as a list with some different
topics related to it, on which the user might click. Finally, the
bottom area is used to show web pages related to the query.

4 Comparative Analysis
In order to prove the reliability, effectiveness and efficiency
of our system, we present an analysis that compares the
Virtual Assistant to the traditional menu-driven navigation
and keyword search that websites provide. In particular, we
consider the website of the Alhambra (http://www.alhambra-
patronato.es/) for this purpose. In testing a system which
is designed to support users with an imprecise task such as
browsing, it is difficult to find useful measures. We have
considered three different tests, and we have employed fif-
teen IUs about the Alhambra that form a representative sub-
set of all the IUs contained in the ontology of our system:
the Alhambra (01), the Generalife (02), the history (03), the
schedule (04), the telephone number (05), the types of visits
(06), the places to visit (07), the Court of the Lions (08), the
Palace of Charles V (09), the Hall of the Abencerrages (10),
the prices of the tickets (11), the purchase of tickets (12), the
accesses (13), the exhibitions (14), and the museum (15).

All these tests have been carried out on an Intel Pentium
IV at 2.40 GHz, with 1.00 GB of RAM, Microsoft Windows
XP, and Apache Tomcat.

Test One: The Menu-Driven Navigation
The first test compares the navigation using the recommen-
dations proposed by the Virtual Assistant to the navigation
using the menus of the website of the Alhambra.

Table 1 shows the minimum number of clicks that a user
has to make in order to have access to the IU associated to the

identifier of the corresponding column of the table. As we
can see, the difference between both systems is very small.
This is a menu-driven navigation and, in general, you can
go wherever you want with two or three mouse clicks at the
most. In the case of the telephone number of the Alhambra
(IU05), the number of clicks is 0 because it appears at the
bottom of all the web pages. Actually, through the sitemap
of the website of the Alhambra, we can have access to any of
those IUs with only two mouse clicks. However, users with-
out an advanced knowledge about computers do not usually
know what a sitemap is and therefore it is highly improba-
ble that they will use this feature of the website. So, if we
consider the averages that appear in Table 1, the Virtual As-
sistant performs slightly better (20%) than the website of the
Alhambra. The main reason is that the website contains more
information about the Alhambra than our system and for this
cause it uses more levels to organize the data. However, this
makes the usual information more difficult to be found and
users might easily get lost along the way. In other words, two
mouse clicks on the Virtual Assistant take less time than two
clicks on the website of the Alhambra, because in the second
case you have to find out to which category the information
that you are looking for belongs.

The problem of identifying the category of the informa-
tion that we are looking for deserves special attention. We
are considering the best possible situation, that is, users know
perfectly where all the information is placed in the website,
even though it is the first time they visit it. However, this is
an ideal situation because they often wander through websites
to get some useful information, and this problem becomes
more apparent as the user’s computer skills decrease. For the
users who have a high skill level (experts), the improvement
achieved by the use of virtual assistants is really low because
they are used to navigating with traditional menus. What is
more, they could prefer traditional navigation because they
can find the information faster. However, as the skill level de-
creases, users find it more difficult to move through websites,
and here the Virtual Assistant can be really useful.

Using an analogy, the Virtual Assistant is like a Global Po-
sitioning System (GPS). When people are used to driving in
a specific city, and they always go to the same places, they do
not need a GPS. What is more, they could find it very stressful
if they wanted to go to a place taking a short cut, and the GPS
recommended another alternative path because it thought that
it is the best. However, nobody can throw doubt on the fact
that GPSs are really useful for people visiting a city which is
completely unknown for them, because they can guide them
through such an amount of streets.

Test Two: The Searching Process
The second test analyzes the searching power of both sys-
tems, considering the amount of time that searches take.

In order to measure the speed of the search engines, we
have queried both systems about the fifteen IUs proposed.
The results have shown that the Virtual Assistant outperforms
in time the search engine of the website of the Alhambra in
340%. The main reason of such a strange huge difference is
that the website probably performs a bad sequential search,
reading all the documents once. On the contrary, our system

 - 85 -

Table 1: Number of clicks needed to reach some IUs
INFORMATION UNIT (IU)

SYSTEM 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Average
VIRTUAL ASSISTANT 1 3 2 2 2 1 1 2 2 2 2 2 2 2 3 1.9

ALHAMBRA’S WEBSITE 1 2 2 3 0 3 2 3 3 3 3 3 2 3 3 2.4

Table 2: Number of results per query found in the website
ID QUERY1 #DOCS2 #DOCS3 %4

IU01 Alhambra 0 20853 -
IU02 Generalife 81620 8320 89.8
IU03 history 19768 1583 92.0
IU04 schedule 1118 395 64.7
IU05 telephone number 183 9 95.1
IU06 types visits 5 3 40.0
IU07 places 1036 9 99.1
IU08 Court Lions 20803 1063 94.9
IU09 Palace Charles V 58953 5169 91.2
IU10 Hall Abencerrages 2245 32 98.6
IU11 prices tickets 97 3 96.9
IU12 purchase tickets 1 1 0.0
IU13 accesses 24388 6464 73.5
IU14 exhibitions 13975 17 99.9
IU15 museum 105898 11252 89.4

TOTAL 330090 55173 83.3

1 Translation of the query from Spanish
2 Results found in all the website
3 Results found in the specific category to which the IU belongs
4 Reduction in the number of results

takes advantage of the hierarchical structure of the ontology
to index the search. However, these results must be handled
carefully because the website stores more information than
our system, so the comparison is not completely fair.

Another point that deserves special attention is that the Vir-
tual Assistant allows contextual natural language questions
rather than simple keywords, as it happens with the website.

Test Three: The Quality and Reachability of the
Information
The aim of this test is to evaluate the quality of the informa-
tion provided by both systems, that is, if it is relevant to the
query and users do not have to waste their time looking for
what they want to know among all that information.

With regard to the amount of information retrieved, Table
2 shows the number of results found by the website of the
Alhambra for each query. Note that the results for the query
’Alhambra’ in the first search are really 0 (perhaps too many
documents for that search string). In general, if we limit the
search space, the reduction in the number of documents is
over 80%. Even so, there are too many results. However,
what is really important is not the amount of documents re-
trieved, but the fact that some times the results do not contain
the requested information. In the case of the Virtual Assistant,
the answer is always immediate.

5 Conclusion & Future Work
In this work we have studied the problem of the reachability
of the information on websites. When the information grows,
it is difficult to organize it in an appropriate way so that users
can easily find it. For this reason, we have presented an in-

telligent natural language Virtual Assistant which makes the
access to information easier specially for inexperienced users.

Regarding the future work, we must make the Virtual As-
sistant much more dynamic and with different personalities,
so that it could behave in different ways and choose between
several paths for generating the answer. Another point to
take into account is the adaptation of the recommendations to
the particular user of the system, according to his/her prefer-
ences. Finally, it would be a good idea to assist the navigation
all over the website, not only when the user interacts with the
system in a direct way.

Acknowledgments
This work has been supported by the Spanish Ministry of
Science and Technology under Research Project TIN2007-
67984-C02-01, the Andalusian Government under Research
Project TIC-P06-01424, and a FPU scholarship from the
Spanish Ministry of Science and Innovation.

References
[Abbattista et al., 2004] F. Abbattista, G. Catucci, G. Semer-

aro, and F. Zambetta. Samir: A smart 3d assistant on the
web. PsychNology Journal, 2(1):43–60, 2004.

[Cassell et al., 2000] J. Cassell, J. Sullivan, S. Prevost, and
E. Churchill. Embodied conversational agents. MIT Press,
Cambridge, MA, USA, 2000.

[Kim et al., 2005] H. Kim, C. N. Seon, and J. Seo. A
dialogue-based information retrieval assistant using shal-
low nlp techniques in online sales domains. IEICE - Trans.
Inf. Syst., E88-D(5):801–808, 2005.

[Kimura and Kitamura, 2006] M. Kimura and Y. Kitamura.
Embodied conversational agent based on semantic web. In
PRIMA, pages 734–741, 2006.

[Lieberman, 1995] Henry Lieberman. Letizia: An agent that
assists web browsing. In Chris S. Mellish, editor, Proceed-
ings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95), pages 924–929, Mon-
treal, Quebec, Canada, 1995. Morgan Kaufmann publish-
ers Inc.: San Mateo, CA, USA.

[Pilato et al., 2008] G. Pilato, R. Pirrone, and R. Rizzo. A
kst-based system for student tutoring. Applied Artificial
Intelligence, 22(4):283–308, 2008.

[Wallace, 2004] R. Wallace. The elements of aiml style. alice
ai foundation, 2004.

[Wexelblat and Maes, 1999] A. Wexelblat and P. Maes.
Footprints: history-rich tools for information foraging. In
CHI ’99: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 270–277, New
York, NY, USA, 1999. ACM.

 - 86 -

Collaborative Filtering With Adaptive Information Sources

Neal Lathia
Department of Computer Science

University College London
Gower Street, WC1 E6BT, UK

n.lathia@cs.ucl.ac.uk

Xavier Amatriain, Josep M. Pujol
Telefonica Research

Via Augusta 177
Barcelona 081290, Spain

xar, jmps@tid.es

Abstract

Collaborative filtering (CF) algorithms, which gen-
erate recommendations for web users by predict-
ing user-item ratings, are often evaluated according
to their predictions; in this context the problem of
generating recommendations can be formulated as
one of fitting a community of users to the best set
of predictors. However, the data used to perform
CF is sparse, and accuracy is limited by both the
quantity and quality of information available. Min-
ing the web has the potential to address these is-
sues: the quality and quantity of ratings can be in-
cremented by collecting external sources of rating
information. In this work we introduce a method
to perform CF with external data sources; further-
more, we show that a community of users can be
partitioned according to what external source acts
as a better predictor of each user’s preferences. In
particular, we find that a single kNN predictor can
achieve remarkably high prediction accuracy if the
data sources are selected optimally: designing a
recommender system can thus be approached with
the focus on data quality rather than algorithmic
method.

1 Introduction
Recommender systems, based on collaborative filtering (CF),
are displaying an evermore important and pervasive presence
on the web. The problem of generating recommendations has
been described as a prediction problem: based on a profile of
user ratings, the system needs to predict future user ratings
for other content in the future. The approaches adopted to
perform CF can be broadly divided into two categories. The
first are statistical approaches; these draw on the assumption
of like-mindedness between users and therefore focus on a
variety of classifiers that operate on the user-rating data; the
most prominent candidates being based on matrix factorisa-
tion and neighbourhood methods [Koren, 2008][Herlocker et
al., 2004]. The second approach is based on user modeling;
these methods augment statistical approaches by reasoning
on the context and behaviours that emerge when people use
recommender systems; recent examples include the rising in-

terest in trust modeling for collaborative contexts, including
[O’Donovan and Smyth, 2005].

Traditional CF suffers from the problem of data sparsity;
the ability that a system has to make predictions for a user
or item is limited by the lack of rating information. The data
also has very high dimensionality; for example, the Netflix
dataset1 includes about half a million users and about twenty
thousand movies. The mere size of the data implies that gen-
erating recommendations is a very expensive process that is
difficult to scale to large communities. The current focus of
much CF research is on improving the accuracy of the algo-
rithms applied to generate recommendations. In particular, a
number of successful statistical methods [Koren, 2008] com-
bine an ensemble of predictors to produce higher accuracy.
However, improving the classification method does nothing
to improve the data that is being used when predicting user’s
preferences, and a fundamental limitating factor of any learn-
ing algorithm applied to the CF domain is the sparsity and
potential inaccuracy of the data being used.

Similarly, algorithm-centric research also deters from fully
modeling the implicit ways in which people form their opin-
ions. While sociologists often model preference formation
according to the principles of homophily (like-mindedness)
and social influence (adopting the same preferences as in-
fluential members) [Axelrod, 1997][McPherson et al., 2001],
CF research has mainly centred its assumptions on the former
theory. Although the task of identifying the source of influ-
ence in a set of user ratings seems daunting, this theory car-
ries with it the assumption that there are a range of sources
where users may form their opinions; in particular, not all
users form their opinions by eliciting information from sim-
ilar neighbours. The problem is thus how to model the way
people form their opinions.

Mining the web for publicly available ratings has the po-
tential to address the sparsity problem by drawing on the as-
sumptions of social influence: there are a great number of
online resources that contain a vast amount of ratings that
may be accessed by users as they form their opinions. In this
work we therefore propose to explore four different source
datasets and evaluate the predictive power they have on a
test set of user-movie ratings. Two of these source datasets
were collected from the web, while the second two are de-

1http://www.netflixprize.com

 - 87 -

Dataset Users Ratings Sparsity (%)
Flixster 77 585,293 79.02/0.01
Rotten Tomatoes 1,651 151,949 98.87
Netflix Training 9,980 1,432,259 99.19
Netflix Test 8,877 19,476 N/A

Table 1: Dataset Information

rived from the a set of training data, based on neighbours and
power users; Section 2 describes these datasets, and Section
3 highlights the statistical features that emerge between the
sets. In Section 4 we introduce the method we implement to
perform cross-dataset predictions, and Section 5 reports and
analyses the results when each source dataset is used to make
predictions on a common test set.

Our main result is that the accuracy of a CF prediction al-
gorithms heavily depends on the quality of the information
used to generate predictions, and the most appropriate source
is user-dependent. In particular, matching users to the cor-
rect source of rating information has the potential to produce
highly accurate recommendations when using a simple user-
based

�
NN algorithm. We evaluate a number of benchmark

methods that attempt to achieve this goal in Section 6; we thus
introduce a novel perspective to CF, where the focus should
not be so much on the method applied, but on the data that is
used.

2 Information Sources
In this work we ran experiments using a subset of the Net-
flix prize data. Our subset consists of ����������� randomly se-
lected Netflix users from the training set, and each of these
user’s probe ratings as a test set. To compliment this dataset
we crawled two different sources of rating profiles: Rotten
Tomatoes2 and Flixster3. Based on how ratings are input into
each of these systems, we call these sources experts and en-
thusiasts respectively:

Experts: The Rotten Tomatoes portal aggregates a number
of cinema critic reviews from a wide range of web sources,
including newspapers, specialized websites, and magazines.
The critics use different rating scales; some range from 1-10
stars, others 1-5, and some use a 100-point scale. However,
all of these ratings can be normalised. For example, a 	 out
of �
� star rating is the same as �
� � out of � ; we adopt a sim-
ple linear transpose to re-intepret ratings from one scale to
another.

Enthusiasts: Flixster is one of the largest movie-oriented
social networks, and therefore contains ratings given by the
site’s movie-enthusiast subscribers. We collected the profiles
of the top- �
��� users from Flixster. However, not all users set
their profiles to public: this reduced our collected dataset to���

users. The Flixster users rate movies on a 1-5 star scale,
but also have a further two options available: “want to see”
(WS), and “not interested” (NI). In fact, the majority of rat-
ings in the data fall into one of these two latter categories.

2http://www.rottentomatoes.com
3http://www.flixster.com/

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Number of ratings

Number of ratings per user

Netflix
Flixster

Rotten T.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Standard Deviation

C
D

F

Flixster
Netflix
Rotten T.

Figure 1: CDF of Ratings and Standard Deviation Per User

0 100 200 300 400 500

0
10

00
20

00
30

00
40

00
50

00

Dataset Users

Number of Ratings

N
um

be
r o

f U
se

rs

xx x x x x x x x

xFlixter
Rotten
Netflix

0 100 200 300 400 500

0.
80

0.
85

0.
90

0.
95

Dataset Sparsity

Number of Ratings

S
pa

rs
ity Netflix

Rotten Tomatoes

Flixster

Figure 2: Number of users (left) and dataset sparsity (right)
with rating threshold

Due to string-matching inconsistencies between the movie
titles in Netflix and the crawled datasets, our datasets contain
��������� out of the � � � ��� � available in Netflix; furthermore, to
accomodate for this, we also cut any Netflix users who had
no training ratings within this set of movies. A summary of
the size of each dataset is given in Table 1. The analysis in
Section 3 is based on this number of movies, which could
be identified in all three datasets. We also compare the pre-
dictive performance of the external data sources to two other
sets, each derived the the Netflix training subset we use:

Neighbours: The benchmark performance that we com-
pare the above sources to is the approach adopted by tradi-
tional user-based

�
NN; there is no distinction made between

users, who all come from the same community.
Power Users: This group is a subset of the “neighbours”

group, the user profiles that, based a simple measure of pro-
file size, are deemed to carry a significant amount of reliable
information, and represent a sub sample of the community
that may offer powerful predictions for the rest of the users.
The idea of power users has been explored in the past [Cho
et al., 2007], and usually relies on identifying users based on
a number of pre-defined heuristics. In this work we focus
on profile size; that is, we assume that users who are proac-
tively rating more items are following different behaviours to
the casual rater [Herlocker et al., 2004]. Note that all of the
above groups strongly differ to results that would be obtained
from clustering algorithms: users are grouped either based
on profile attributes (rather than the value of their ratings), or
based on where their ratings were crawled from. It is thus
not guaranteed that users in the same group will agree with
each other, whereas clustering algorithms tend to group users
based on a notion of similarity.

 - 88 -

3 Comparing Information Sources
In this section, we compare the three datasets. As introduced
above, they can already be differentiated from one another
according to a broad characterisation of the end-users of each
system; however, in this section we examine the extent that
ratings from different sources will differ in terms of summary
statistics: the number and distribution of ratings, the sparsity,
and rating deviation between per user.

Number of Ratings: With less than ����������� of the users,
the Flixster data contains over � times the number of ratings
than the Rotten Tomatoes data. The same feature can be ob-
served in Figure 1, which shows the cumulative distribution
(CDF) of the number of ratings in each dataset. As the plot
shows, 60% of the Rotten Tomatoes experts have about ��� or
less ratings, 60% of the Netflix set users have �
��� ratings or
less, but the same proportion of Flixster reaches up to ���������
ratings.

Sparsity: Table 1 reports the sparsity values for each
dataset; once again, Rotten Tomatoes and Netflix share simi-
lar sparsity values, while the Flixster dataset is a much denser
set of ratings. The table also reports two separate sparsity
values for the Flixster dataset. The first value, though ex-
cluding both WS and NI ratings, shows that the dataset is� 	
� ����� sparse. Including all these extra ratings reduces the
sparsity to ��� ����� : in both cases, the user-rating matrix con-
tains a much larger amount of ratings than Netflix alone. We
also measured how the sparsity fluctuates as different sub
samples of users are selected, reflecting the evaluation of
power users we report in the Section 5. If we only select
users who have rated more than � movies, both the number
of users and resulting dataset sparsity will change. Figure 2
shows how these changes are affected by the rating thresh-
old. The plots show that there is an uneven distribution of
ratings amongst the users themselves, reinforcing the notion
that users will behave differently as they interact with the sys-
tem. The plots also confirm what was observed in Figure 1:
the Netflix dataset, while having the highest number of users,
also is also the sparsest of the three datasets.

Standard Deviation: Looking at this aspect aims to see
the extent that each group of users agrees with each other by
capturing the spread of ratings around each movie mean. As
Figure 1 shows, the distribution of standard deviation values
is very different from one community to the next. There are
also a very small proportion of Flixster profiles that appear
to be outliers: their profiles are full of the same rating for
nearly all content. This causes the standard deviation over
their ratings to be less than ��� ��� . These Flixster outliers will
not be able to contribute useful information to any prediction,
and can therefore be safely ignored.

4 Collaborative Filtering With External Data
There are a number of methods that can be implemented in or-
der to use the ratings of the above datasets to predict the test
set. In particular, one may simply combine all of the datasets
into a single, larger training set that can be fed into any learn-
ing algorithm. However, in this work we aim to evaluate the
potential that disparate sources have to predict a common test
set: how well do experts predict the crowds? Do enthusiasts

do better? In this light, and due to the semantics of cross-
dataset prediction, we focus on a single method: the

�
NN

algorithm.
The

�
NN can be built according to either the item-based

or user-based paradigm. Both methods operate in very simi-
lar ways, and differ only in how they assume the underlying
data is structured. Here we only consider the user-based ap-
proach. Once again, this makes our cross-dataset prediction
highly explainable and transparent, which is a key aspect in
building recommender systems that users trust [Herlocker et
al., 2004].

Implementing a
�

NN CF algorithm can be decomposed
into three steps: (a) neighbourhood formation, where the top
neighbours are computed for each user, (b) rating aggrega-
tion, where ratings for an item are collected and used to make
a predicted rating, and finally (c) recommendation and feed-
back, where users update their profiles by responding to the
recommendations they are given. When using external data
sources, neighbours for a user in the training dataset are found
from the source set; similarly, ratings for items in the test
set will be predicted using the ratings in the selected source
set. We identify neighbours using a weighted Cosine Sim-
ilarity: the similarity ��� �"!$#%��&(' between two users # and &
is scaled according to how many items)+*-,/. their profiles
share in common. We base neighbour selection on a simi-
larity threshold: any neighbour with similarity greater than
zero is included. A predicted rating is then computed as a
weighted average of deviations from each neighbour’s mean
[Herlocker et al., 2004]. The only limitation we impose is
a measure of prediction confidence: if less than ��� neigh-
bour ratings have been found for a prediction, the prediction
is set to the user mean. Setting the similarity threshold at
zero and the confidence at ��� may not be optimal values for
each dataset; in this work we focus on evaluating the abil-
ity to use adaptive information sources when generating pre-
dictions, rather than simply tweaking the algorithm itself for
optimal performance.

We also noted that the Flixster dataset contains two addi-
tional ratings, NI and WS. It is not immediately transparent
how these ratings should be transposed onto the scale in the
target dataset, since they are difficult to place on an ordinal
scale of ratings; however, a relationship between the NI rat-
ing and the movie average emerges in a few select cases. For
example, consider two different movies that each have �������
ratings. The first has a very high average, �0� �1��� , and only
��� NI ratings. The second has a very low average, ���2�3��� ,
and ����� NI ratings: it seems possible to assume that NI is
roughly equivalent to a form of negative feedback provided
by the user. However, we decided to ignore these ratings in
the neighbourhood formation part of our algorithm.

We did test methods to include these ratings in the predic-
tion step. Drawing from the assumption that NI may act as a
form of negative feedback and WS represents a potential pos-
itive opinion, a Flixster neighbour 4 ’s NI and WS ratings for
item � being predicted for user 5 (who has mean rating 67�8 and
standard deviation 9 8) would map to:

);:(<1= 8 = >@?A!B67
8DC 9 8 ' (1)
EGF <1= 8 = >H?A!B67�8JI 9 8 ' (2)

 - 89 -

Threshold (�) K Users RMSE Proportion
0 9980 0.9700 22.82

50 5746 0.9709 9.09
100 3936 0.9722 9.26
200 2249 0.9748 8.81
300 1420 0.9778 9.33
400 928 0.9810 12.62
500 602 0.9854 28.08

Table 2: Power User Group RMSE Results

Results when both using and ignoring these kind or ratings
are reported in the following section.

5 Evaluation: Transparency of The RMSE
We measure the accuracy of predictions using the Root Mean
Squared Error (RMSE) [Herlocker et al., 2004]. We divide
our experiments into two parts; in the first, we report the
results when using different power user groups from within
the Netflix dataset as sources. We then compare performance
across the three source datasets.

Predicting With Power Users: Table 2 shows the rela-
tionship the rating threshold � used to define power users,
the number of power users found who match this criteria, and
the RMSE achieved when each group is used as the source set
for predictions. The table shows that as the rating-threshold is
increased, accuracy worsens. However, there are two points
to note here: (a) as above, the algorithm has not been fully
tuned for optimal performance (which is a dataset-dependent
problem, subject to both the similarity metric and rating ag-
gregation method implemented), and (b) relying on an ag-
gregate error measure like the RMSE does not highlight the
performance that is being achieved on a per-user basis. In
other words, a single RMSE value does not show whether
some users are better suited to certain information sources
than others.

Based on the Table 2 alone, it seems that removing non-
power users from the dataset results in a loss of prediction
accuracy. To explore the veracity of this impression, we built
a second matrix; in this case, each row corresponded to a user,
and each column represented a source set of power users (ac-
cording to a rating threshold). Each entry (�B�ML) in the matrix
is the RMSE achieved on user � ’s test ratings with column
L ’s source set. From this matrix, we were able to compute
the proportion of users who best “affiliated” with each subset
of power users. In other words, we could determine which
source dataset was the most appropriate per user. Table 2 also
shows the proportions of the ���N� ���

test users dataset who af-
filiated best with each subgroup of power users. As the plot
shows, there is in fact a very large proportion of users whose
best source of predictions is the set of power users who have
rated more than ����� movies. An algorithm which could man-
age to select the best power set group for each user would
improve the aggregate accuracy from ��� 	 � to �
� 	
�-� : users,
therefore, associate differently with different sets of power
users, and simply targetting a global optimal does not achieve
the best possible accuracy. Conversely, it is also possible

Source RMSE Proportions
Rotten Tomatoes 1.070 26.62
Flixster-WI/NS 1.207 25.25

Netflix 0.970 48.13
Flixster 1.259 N/A

User-Matched 0.856 N/A
Item-Matched 0.936 N/A

User-Item Matched 0.776 N/A

Table 3: RMSE When Predicting With External Sources &
RMSE if users, items, and user-items were matched to the
best source

to infer from these experiments that the traditional nearest-
neighbour model, based on selecting the best

�
neighbours

for each user, is not optimal: improved accuracy is obtained
when user groups are made apriori, and users then find their
neighbours within those groups.

Predicting With External Data: The accuracy results
when using all the external datasets are reported in Table 3.
As the table shows, the overall accuracy when making pre-
dictions with an external sources is worse than simply us-
ing neighbours; from these values it would appear that exclu-
sively using external data sources is not a viable option when
designing a CF algorithm. The only point worth noting is that
including the NI/WS ratings when making predictions using
Flixster as a source provided an improvement. However, once
again we constructed the user-data source RMSE matrix, and
were able to extract the performance that a user-based

�
NN

predictor would achieve if it were able to perfectly match
users, items, or user-item pairs to the correct source data set.
This time, each column of the error-matrix represented a dif-
ferent source set. The improvement is remarkable: assigning
users to the correct data source provides (with this subsam-
ple of the data) an accuracy below the target of the Netflix
prize. Repeating the above analysis across the three datasets
also shows that there is no absolutely dominant source, the
right column of Table 3 shows. The semantic interpretation
of these results is that the Netflix dataset optimally predicts
only half of the sampled population; movie critics and enthu-
siasts are more accurate for the others.

6 Benchmark Methods
Based on the above work it becomes apparent that classifiers
like user-based

�
NN can achieve very high accuracy in the

context of recommender systems if users are paired with the
correct source of data; the main problem is thus how to in-
fer, given a user profile, the correct source. Our first attempt
considered various qualities of each user’s profile, such as
profile size, mean rating, rating standard deviation, and av-
erage agreement of the user’s profile items with the movies’
mean ratings. However, none of the individual components
correlated strongly with each user’s selection of optimal data
source.

Our current work therefore focuses on how to infer what
the best data source is for each user. In this work we pro-
pose and evaluate benchmark results derived from two meth-
ods. The first is based on linear combinations of the dataset

 - 90 -

Type Method RMSE
Weight Equal (1/3) 1.0215
Weight Avg Similarity 0.9851
Weight Group-Mean RMSE 1.0253
Weight Training Set RMSE 1.013
Select Max Avg. Similarity 0.9829
Select Min Group-Mean RMSE 1.1243
Select Best Training RMSE 1.208
Select Most Training Confidence 0.9701

Table 4: Benchmark Method Performance

predictions, where a prediction of item � for user 5 is gener-
ated by each source, and the final prediction is computed as
a weighted average of each score. The second method pre-
classifies each user to a particular dataset, and only computes
one prediction per user-item pair using the selected dataset.
This way, we can evaluate the method both in terms of the ag-
gregate RMSE and the precision/recall metric related to how
well the method paired each user with the appropriate dataset.
The results we report here can be broadly categorised into
two groups. The first are structural properties: We weight
(or select) datasets based on emergent structural properties of
the

�
NN algorithm; in particular, we measure the role that the

similarity function plays when correlating a user to each set,
by looking at the average positive similarity the users share
with each source set. The second, user-fit RMSE, includes
methods that weight (or select) the best source set according
to how well each user fits the three sources, or how well each
source predicts the user’s training profile. This process en-
tails a two-fold use of each user’s training set of ratings; it
is first used to compute similarity weights with members of
each source set, and a second time to measure how well each
source predicts the user’s profile. The motivation for the latter
group is as follows. Any given user 5 will have three poten-
tial neighbourhoods: Netflix (N), Rotten Tomatoes (RT), and
Flixster (F). Each of these neighbourhoods will contain vary-
ing proportions of co-rated items with 5 ’s training set ratings,
and the RMSE between these co-rated movies can be col-
lected (OBP , OBQSR , OBT). Assuming that a relationship exists be-
tween each source’s RMSE on the user’s training profile and
the predictive performance on the same user’s test ratings, we
can either select the source that provides the lowest RMSE,
or weight the contribution of each source

F
proportionally to

its accuracy on the training items:

UWV ? !MXY>MO�>M' C O V
X > O > (3)

Weighted Combinations We first tried a variety of linear
combinations of each sources’ predictions for each user’s test
items. As shown in Table 6, these ranged from weighting
each source equally, to weighting each source according to
the average shared similarity with the target user, weighting
according to how well the target’s profile fits the movie means
generated from each source, and weighting according to how
well each target fits the neighbourhood in each source. All
the linear combinations of each sources’ predictions failed to
produce more accurate results on the test set than using the

Group Precision Recall
Min Avg Similarity

Netflix 0.457 0.867
Rotten Tomatoes 0.269 0.114

Flixster 0.277 0.018
Min Group-Mean RMSE

Netflix 0.410 0.024
Rotten Tomatoes 0.261 0.546

Flixster 0.255 0.381
Min Training Set RMSE

Netflix 0.307 0.002
Rotten Tomatoes 0.247 0.121

Flixster 0.263 0.834
Training Set Confidence

Netflix 0.457 0.999
Rotten Tomatoes 0.0 0.0

Flixster 0.2 8.2e Z0[
Table 5: User-Dataset Classification Performance

Netflix source alone. One of the primary reasons for this was
that, in many cases, each source produced diverging predic-
tions from the next: linear combinations of polarising predic-
tions therefore hurt the overall results.

User-Source Classification The second set of experiments
were performed in two steps. The first step assigns each user
to a source by generating a mapping from each user to the
the categorical set of sources, while the second step uses the
mapping to generate predictions for each user’s test set with
the assigned source. As above, we tried classifying users ac-
cording to how well they fit the source’s mean ratings, their
neighbourhood in each source, or by selecting the group that
the user shares the highest amount of similarity with. We
complimented these with a classifier that operated on how
much confidence, or number of ratings, each source has about
the target user’s profile; the idea being that a user’s behaviour
mimics that of a particular source if both consistently rate
the same items. Based on this methodology, we can measure
two results: (a) the RMSE achieved on the test set after pre-
classifying each user, and (b) how well the pre-classification
step works. We evaluated the latter based on the precision
and recall metrics.

In this case, we find that the RMSE results are more en-
couraging: they differ from when only using the Netflix
dataset by less than ��� ���3� using the average-similarity clas-
sification, and by �
� ����� when the confidence-based classifier
is implemented. However, exploring the precision and recall
metrics in Table 6 highlights why these results were obtained:
in the latter case, nearly all the users have been mapped to the
Netflix source, thus producing the same results. Majority of
the recall values are low, indicating a high proportion of mis-
classifications. Examining the results highlighted the fragility
of the pre-classification step, and the dependence it had on the
sources. In other words, users who were wrongly assigned to
the Netflix source did not contribute as much error as those
who were wrongly mapped to the smaller Flixster and Rotten
Tomatoes datasets.

 - 91 -

7 Related Work
The idea of using experts has been used before in CF research.
The work by [Su et al., 2007] defines experts as the algo-
rithms that can be used to produce predictions; the authors
construct a hybrid CF algorithm that outputs a weighted av-
erage of multiple CF algorithms. This significantly departs
from the definition we apply here, where expertise is a quality
of the data and not of the method applied to generate predic-
tions using it. On the other hand, [Cho et al., 2007] define
experts as a subset of the users of a community based on a
number of heuristics. In particular, expertise in an a domain
is based on how many items a user has rated in that domain.
This definition is closer to the way we identify power users,
based on rating frequency, although we do not differentiate
between domains within the items that can be rated.

Previous work [Aciar et al., 2007] has also considered the
problem of source selection; however, Aciar et al address
the problems of identifying, selecting, and retrieving unstruc-
tured information from the web in order to produce recom-
mendations. Sources are selected based on quantifiable rele-
vance and considering how complete, diverse, and timely the
data the sources contain is. The authors therefore propose
a trust model to effectively select data sources. However,
they adopt the broader goal of producing recommendations,
while the work above centres on improving the accuracy of
recommender system algorithms with a basic model of so-
cial influence. Examining how the quality of data relates to
performance has also been discussed in the context of com-
putational trust. In particular, [O’Donovan and Smyth, 2005]
considers that users are more trustworthy sources of informa-
tion if they tend to provide ratings that are good predictors
of neighbour preferences. In our case we seek to identify the
most trustworthy source of data per user in the Netflix com-
munity. Measuring trust based on a history of accurate pre-
dictions is similar to the baseline experiment in Section 6 that
focused on how well users fits each source.

8 Conclusion
The primary motivation of this work was to highlight the de-
pendence of CF algorithm’s performance on the quality of the
data that is being used to predict user preferences. We there-
fore explored the potential that a variety of datasets from the
web have to predict a sample set of Netflix users. In doing
so, we proposed a framework for cross dataset prediction, in-
cluding methods to normalise data and interpret non-numeric
ratings ();: and

EGF
) on an ordinal scale. First, we examined

the effect of learning to classify items based on a dense sub-
set of the available training data, by extracting power users
from the Netflix training set. We then analysed the predic-
tive potential of external data sources, based on a collabora-
tive method that generates a neighbourhood for a Netflix user
composed of Flixster or Rotten Tomatoes profiles. We identi-
fied that the predictive power of both the power-user subsets
and external sources is user-dependent; there are some users
who are best predicted by power users, others by experts, en-
thusiasts, or neighbours. The two experiments, however, are
not mutually exclusive. In fact, power users can also be iden-
tified and exploited within the Rotten Tomatoes dataset, and

performing a further crawl of Flixster would supply the
�

NN
algorithm with a richer set of enthusiast movie raters. The
main focus of our future work will be combining the above
results, in order to match to the best subset of a source dataset.

The potential of mining the web for rating information thus
shifts the focus of building an accurate CF algorithm away
from the algorithm and toward matching users to the appro-
priate information sources. The problem can thus be formu-
lated as follows: given a user profile 5 , what profile features
and emergent-structural properties of the

�
NN algorithm can

be used to match the user to the best dataset? The prelimi-
nary experiments we report in Section 6 are promising, but
still lack in the desired performance. In fact, alternative clas-
sification methods, with varying levels of dependence on the
quality of the rating data, may perform better. We found that
the strongest improvement was measured when data sets were
adaptively selected for each user: the main result we observed
is that classification accuracy is strongly related to the data
source that is used, and improvement to the aggregate, global
RMSE is proportional to how well users and data sources are
linked. A viable option for building a CF system, therefore,
need not rely on a combination of predictors [Koren, 2008],
but rather on an optimal combination of data sources.

References
[Aciar et al., 2007] S. Aciar, J. L. de la Rosa i Esteva, and

J. L. Herrera. Information Sources Selection Methodol-
ogy for Recommender Systems Based on Intrinsic Char-
acteristics and Trust Measure . In Proceedings of The 5th
Workshop on Intelligent Techniques for Web Personaliza-
tion, Vancouver, Canada, 2007.

[Axelrod, 1997] R. Axelrod. The dissemination of culture:
A model with local convergence and global polarization.
Journal of Conflict Resolution, (41):203–226, 1997.

[Cho et al., 2007] Jinhyung Cho, Kwiseok Kwon, and Yong-
tae Park. Collaborative filtering using dual information
sources. IEEE Intelligent Systems, 22(3):30–38, 2007.

[Herlocker et al., 2004] J. Herlocker, J. Konstan, L. Terveen,
and J. Riedl. Evaluating collaborative filtering recom-
mender systems. In ACM TOIS, volume 22, pages 5–53.
ACM Press, 2004.

[Koren, 2008] Y. Koren. Factorization meets the neighbor-
hood: A multifaceted collaborative filtering model. In
ACM SIG KDD Conference, 2008.

[McPherson et al., 2001] M. McPherson, L. Smith-Lovin,
and J.M. Cook. Homophily in social networks. Annual
Review of Sociology, (27):415–444, 2001.

[O’Donovan and Smyth, 2005] J. O’Donovan and B. Smyth.
Trust in recommender systems. In IUI ’05: Proceedings
of ACM IUI, pages 167–174. ACM Press, 2005.

[Su et al., 2007] Xiaoyuan Su, Russell Greiner, Taghi M.
Khoshgoftaar, and Xingquan Zhu. Hybrid collaborative
filtering algorithms using a mixture of experts. In Web In-
telligence, pages 645–649, 2007.

 - 92 -

