
Optimal Set Recommendations based on Regret

Paolo Viappiani
Department of Computer Science

University of Toronto
Toronto, ON, Canada
paolo@cs.toronto.edu

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON, Canada
cebly@cs.toronto.edu

Abstract

Current conversational recommender systems do not of-
fer guarantees on the quality of their recommendations,
either because they do not maintain a model of a user’s
utility function, or do so in anad hocfashion. In this pa-
per, we propose an approach to recommender systems
that incorporates explicit utility models into the rec-
ommendation process in a decision-theoretically sound
fashion. The system maintains explicit constraints on
the user’s utility based on the semantics of the prefer-
ences revealed by the user’s actions. In particular, we
propose and investigate a new decision criterion,set-
wise maximum regret, for constructing optimal recom-
mendation sets. This new criterion extends the mathe-
matical notion ofmaximum regretused in decision the-
ory and preference elicitation to sets. We develop com-
putational procedures for computing setwise max re-
gret. We also show that the criterion suggests choice
sets for queries that are myopically optimal: that is, it
refines knowledge of a user’s utility function in a way
that reduces max regret more quickly than any other
choice set. Thus setwise max regret acts both as guar-
antee on the quality of our recommendations and as a
driver for further utility elicitation.
Our simulation results suggest that this utility-
theoretically sound approach to user modeling allows
much more effective navigation of a product space than
traditional approaches based on, for example, heuristic
utility models and product similarity measures.

Introduction
Recommender systems can help users navigate product
spaces and make decisions involving very large sets of al-
ternatives. Conversationalrecommender systems rely on
mixed-initiative interactions, with both the user and the sys-
tem taking an active role in the decision process. User feed-
back can be entered in many forms, for instance, as direct
answers to queries, orcritique of the options displayed by
the system.

Many recommender systems employ some form ofdiver-
sity to show a set of products that might be appealing to the
user. Intuitively, diversity overcomes a key problem with
presentation of thetop-k items based on some estimate of

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a user’s score: the latter tends to produce results that are
very similar one to each other, and thus not offer much ac-
tual “choice” for a user. This is especially true when we
recognize that estimated scores or preferences are likely to
be very crude. Diversity is also important in practice: we
cannot generally predict howpatienta user will be. They
may terminate the exploration of product space at any time,
hence the recommender system should be able to provide
anytimerecommendations, reflecting the best recommen-
dations given the information provided by the user so far.
This characteristic of conversational recommenders is simi-
lar to the exploration-exploitation dilemma in reinforcement
learning. Since we do not know know how much time the
user is willing to spend in order to improve the recommenda-
tion, we want to show products that are both: (a) expected to
be rated highly given the current information about the user;
and (b) are maximally informative should the user critique
(or otherwise provide feedback on) them.

Many authors have considered the importance of diversity
in the recommendations. For example, researchers in case-
based reasoning have proposed techniques based on greedy
maximization of diversity (McSherry 2002), defined as an
aggregate of a distance metric, or as a weighted tradeoff be-
tween diversity and the recommendation score (Smyth and
McClave 2001). However diversity and dissimilarity mea-
sures does not consider the information that we have about
the user’s preference. While they guarantee that the set con-
tains alternatives that differ in their features, they do not use
at all the information about a user’s preferences available
from previous user actions and feedback. It has been argued
that diversity should be insteadtailored to the system’s be-
lief about the user (Price and Messinger 2005).1

To maximize the information presented to the user in a
recommendation set, and recommend a set ofoptimal rec-
ommendations, it is necessary to maintain an explicit rep-
resentation of the uncertainty in the preference model and
a sound decision-theoretic semantics of the interaction in
the first place. In fact, most practical conversational recom-
mender systems (especially those using critiquing) do not
use an explicit model of a user’s preferences, or only main-

1Indeed, the natural decision theoretic account of set recom-
mendations immediately suggests diversity w.r.t. belief about a
user’s preferences (Boutilieret al. 2003).



tain such a model in an ad hoc, heuristic fashion. In this pa-
per, we develop an approach to set-based recommendations
with an explicit utility model. We represent the uncertainty
w.r.t. the user model with constraints of her utility func-
tion induced by choices or critiques. To construct a suitable
recommendation set, we develop a novel criterion,setwise
maximum regret, that captures the idea of providing a set of
jointly optimal recommendations. Our qualitative model of
uncertainty has two key advantages over probabilistic mod-
els (Price and Messinger 2005): relatively simple prior infor-
mation in the form of bounds or constraints on user prefer-
ences can be exploited (rather than probabilistic priors);and
exact computation is much more tractable (in contrast with
probabilistic models of utility that generally require reason-
ing with densities that have no closed form (Boutilier 2002;
Chajewska and Koller 2000)).

To make this model effective, user actions should be asso-
ciated with a precise, soundsemantics. For instance, a user
critique is assumed to reveal some aspect of the user’s pref-
erences and this is used to update an explicit utility model.
More precisely, in our work, unit critiques and compound
critiques places linear constraints on a user utility function.
The advantage of this approach is that we can use decision-
theoretically sound criteria to:

1. suggest or recommend a product;

2. bound the difference in the quality of a recommended
product and the optimal option for the user;

3. determine which options and critiques carry the most in-
formation to help speed up the navigation process; and

4. suggest to the user when to terminate the process (i.e.,
when further interaction will offer only modest improve-
ment in recommendation quality).

We adopt the notion ofminimax regret(Boutilier et al.
2006a) to make product suggestions in the face of utility
function uncertainty. This robust decision criterion allows
us to bound the loss (difference from optimal) of any rec-
ommendation. We propose and investigate a new decision
criterion,setwise maximum regret, for constructing optimal
recommendation sets. This new criterion extends maximum
regret to sets of products rather than a single product. We de-
fine set maximum regret, argue that minimizing setwise max
regret is the best means for constructing a set of options for
a user, and develop effective computational procedures for
computing optimal recommendation sets for setwise regret.

We presentcritiquing as a possible application domain.
While user-controlled exploration in traditional critiquing
systems does not offer any guarantees (practical, empirical,
or theoretical) of either sufficient or efficient exploration of
the space (A user may cycle through a set of similar products
or converge at a product far from optimal), our regret-based
recommender allows us to provide guarantees on the quality
(utility) of the recommended product vis-à-vis feasible al-
ternatives. We also show with simulations thatregret-based
critiquing can lead to much more efficient exploration of the
product space and lead to better decisions in practice.

In Sec. 2 we introduce our model of regret-based recom-
mendation and describe our strategy for selection of a joint

set of recommended alternatives using setwise minimax re-
gret. In Sec. 3 we discuss computation of setwise max re-
gret and minimax regret, both for configuration problems
modeled as a constraint satisfaction problem (CSP) and for
product databases, while in Sec. 4 we briefly discuss the
performance of elicitation. Finally, in Sec. 5, we perform
simulations of complete critiquing-based recommender sys-
tems, comparing our regret-based approach to state of the art
critiquing algorithms such as dynamic critiquing and incre-
mental critiquing.

Regret-based Recommendation Systems
We begin this section by presenting our formalization of the
decision problem, reviewing minimax regret for robust rec-
ommendation and elicitation, and then defining our key con-
cepts of setwise max regret and setwise minimax regret.

Underlying Decision Problem
We assume a recommendation system is charged with the
task of recommending an option to a user in a multi at-
tribute space (e.g., computers, cars, apartment rental, etc.).
Products are characterized by a finite set of attributesX =
{X1, ...Xn}, each with finite domainsDom(Xi). Let X ⊆
Dom(X ) denote the set offeasible configurations. For in-
stance, attributes may correspond to the features of vari-
ous apartments, such as size, neighborhood, distance from
public transportation, etc., withX defined either by con-
straints on attribute combinations (e.g., constraints on com-
puter components that can be put together), or by an explicit
database of feasible configurations (e.g., a rental database).

The user has autility functionu : Dom(X ) → R. In what
follows we will assume either alinear or additive utility
function depending on the nature of the attributes (Keeney
and Raiffa 1976). In both additive and linear models, we
assume thatu can be decomposed as follows:

u(x) =
∑

i

fi(xi) =
∑

i

λivi(xi)

where each local utility functionfi assigns a value to each
element ofDom(Xi). In classical utility elicitation, these
values can be determined by assessing local value func-
tionsvi overDom(Xi) that are normalized on the interval
[0, 1], and importance weightsλi (

∑
i λi = 1) for each at-

tribute (Keeney and Raiffa 1976; Fishburn 1967). This sets
fi(xi) = λivi(xi) and ensures that global utility is normal-
ized on the interval[0, 1]. A simple additive model in the
rental domain might be:

u(Apt) = f1(Size) + f2(Distance) + f3(Nbrhd)

WhenDom(Xi) is drawn from some real-valued set, we of-
ten assume thatvi (hencefi) is linear inXi.2

Since a user’s utility function is not generally known, we
often writeu(x; w) to emphasize the dependence ofu on

2Our approach relies considerably on the additive assumption,
though can easily be generalized to more general models such
as GAI (Fishburn 1967; Bacchus and Grove 1995; Braziunas and
Boutilier 2007a). The assumption of linearity is simply a conve-
nience; nothing critical depends on it.



user-specific parameters. In the additive case, the values
fi(xi) over∪i{Dom(Xi)} serve as a sufficient parametriza-
tion ofu (for linear attributes, a more succinct representation
is possible). The optimal product for the user with utility pa-
rametersw is thatx ∈ X that maximizesu(x; w). Our goal
is to recommend, or help the user find, an optimal product,
or one whose utility is near optimal.

Regret-based Recommendation

In probabilistic approaches to recommendation, a distribu-
tion over preferences—typically in the form a density over
utility function parameters—is maintained, and the option
with highest expected utility is recommended (Chajewskaet
al. 2000; Boutilier 2002; Boutilieret al. 2003). When a set
of alternatives need to be recommended, the expectimax or
EMAX criterion can be used (Boutilieret al. 2003; Price and
Messinger 2005). One difficulty with probabilistic models is
that one requires probabilistic prior information over utility
models, which can be difficult to formulate and represent.
Another is that exact computation can often be computation-
ally intense; this is especially true since (arguably) natural
density models for utility functions are rarely closed under
the type of evidence provided by user interaction (e.g., be-
havioral observation or answers to queries) (Boutilier 2002;
Chajewska and Koller 2000)); as a result, computationally
demanding fitting of (say) mixture models is required after
every model update.

Instead, we propose the use of minimax regret to generate
recommendation sets. As we will see, this obviates the need
to complex probabilistic reasoning, yet can offer robust rec-
ommendations and provide very effective guidance for the
user. In traditional regret-based approaches, a single recom-
mendation is made using the minimax regret (Savage 1954)
criterion. For multiple joint recommendations, we develop
the notion ofsetwise minimax regret(defined below). We
can summarize the correspondence between the Bayesian
and the regret-based approach with the following table:

Probabilistic approach Regret approach
Expected Utility Minimax Regret

Expected Max (EMAX) Minimax SetwiseRegret

In this paper we propose a framework that maintains a set
W of feasible utility models, and at each step, the system
shows a set of recommendations that arejointly optimal with
respect to minimax regret. At a very high level, our regret-
based recommender works as follows:

1. The setW is initialized given some initial constraints;

2. The current recommendations are determined (using the
setwise minimax regret);

3. After each user action,W is refined to reflect the new
constraints imposed by the user’s feedback;

4. The process repeats (steps 2 and 3) until the user is satis-
fied or minimax regret reaches some target threshold.

This process is appealing for two reasons. First, the current
recommendation (i.e., set of options) is always optimal; in

other words, it minimizes setwise max regret given the cur-
rent information about the user’s utility function, makingit
extremely robust in the presence of utility function uncer-
tainty (in a way to be made precise below). Second, max re-
gret is a well-defined progress metric that lets the user know
the cost and benefit of further exploration of product space.
Finally, the information contained in user selection of some
choice from the recommended set is maximally informative
(in a sense defined below).

Minimax Regret
Minimax regret has been advocated as a means for robust
optimization (Kouvelis and Yu 1997), and has more re-
cently been used for decision making with utility uncer-
tainty (Boutilier et al. 2001; Salo and Hämäläinen 2001;
Boutilier et al. 2006a).

Assume that through some interactions with a user, and
possibly using some prior knowledge, we determine that her
utility function w lies in some setW . Following (Boutilier
et al. 2006a) we define:

Definition 1 Given a set of feasible utility functionsW , we
define thepairwise max regretMR(x,y; W ) of x,y ∈ X;
the themax regretMR(x; W ) ofx ∈ X; theminimax regret
MMR(W ) of W ; and theminimax optimal configuration
x∗

W as follows:

MR(x,y; W ) = max
w∈W

u(y; w) − u(x; w) (1)

MR(x; W ) = max
y∈X

MR(x,y; W ) (2)

MMR(W ) = min
x∈X

MR(x, W ) (3)

x
∗
W = arg min

x∈X
MR(x, W ) (4)

Intuitively,MR(x; W ) is the worst-case loss associated with
recommending configurationx; i.e., by assuming an adver-
sary will choose the user’s utility functionw from W to
maximize the difference in utility between the optimal con-
figuration (underw) andx. The minimax optimal configu-
rationx∗

W minimizes this potential loss.MR(x, W ) bounds
the loss associated withx, and is zero iffx is optimal for all
w ∈ W . Any choice that is not minimax optimal has strictly
greater loss thanx∗

W for somew ∈ W .
Minimax regret has proven to be an effective tool in utility

elicitation in a variety of domains. A decision support or
recommender system can query (or otherwise interact with)
a user providing additional constraints on the utility setW
until minimax regret reaches some acceptable level (possibly
optimality), elicitation costs become too high, or some other
termination criterion is met.

Example Consider the following example, where the op-
tions oi are defined using two features/coordinatesx1 and
x2:

x1 x2

o1 0.35 0.68
o2 0.9 0.2
o3 0 0.75
o4 1 0
o5 0.5 0.3



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utility parameter w1

ut
ili

ty

 

 

o1

o2

o3

o4

o5

Figure 1: Each options is represented by a single line in the
utility space.

We assume linear utility:u(x;w) = w1x1 +w2x2 wherew
is vector of tradeoff weights, withw2 = 1−w1, 0 ≤ w1 ≤ 1;
and the local value functions for each coordinate are identity
functions. (i.e.,vi(xi) = xi). Given these assumptions,
utility is one-dimensional; it can be written asu(x;w) =
(x1 − x2)w1 + x2. So we deal only with the uncertainty on
the single parameterw1.

This simple example is convenient because it is easy to
visualize option utilities as a 1D function ofw1 graphically.
The utility of the different options are shown in Fig. 1 with
respect to the parameterw1. We notice that, for some values
of w1, each of the optionso1, o2, o3 ando4 is optimal, but
not soo5. When considering a particular value ofw1 (a
particular utility function) theactual regret(or real loss) is
the difference between the utility of the best option given
w1 and the utility of our recommendation in that case. For
instance, forw1 = 0.9, the best option iso4 with utility 0.9,
while o1 has utility0.38, so the actual regret ofo1 would be
0.9 − 0.38 = 0.52. Max regret accounts for the uncertainty
overw1 and it is the maximum of the possible actual regret
values (foro1 is 0.65 whenw1 = 1).

When the options are few as in this case, we can compute
the max regret of each choice by explicitly enumerating the
maximum the pairwise regret of that choice against any pos-
sible adversarial choice of option. The table below illustrates
this, where each row corresponds to a recommendation, each
column to an adversarial choice, and we display the pairwise
max regret (allowing the adversary to choose utility) in the
cells. The max regret of an option is shown in the last col-
umn, and corresponds to the maximum value in its row. In
the unconstrained situation (wherew1 can take any value
between0 and1), we have the following values:

MR(oi, oj) o1 o2 o3 o4 o5 MR(oi)
o1 0 0.55 0.07 0.65 0.15 0.65
o2 0.48 0 0.55 0.1 0.1 0.55
o3 0.35 0.9 0 1.00 0.5 1
o4 0.68 0.2 0.75 0 0.3 0.75
o5 0.38 0.4 0.45 0.5 0 0.5

Minimax regret is0.5, and the minimax optimal recom-
mendation is optiono5; its max regret occurs at adversarial
choice of utilityw1 = 1, and choice of optiono4. It can be
easily shown that regret is maximized at one of the vertexes
of the feasible regionW whenW is a bounded, convex poly-
tope (such a polytope induced by the interactions we discuss
later).

Now imagine that, perhaps as the result of interactions
with the user, we learn that0.2 ≤ w1 ≤ 0.6. The new min-
imax regret value for this constrained case is0.138. This
value corresponds to recommendationo1, and adversarial
optiono2 and utility w1 = 0.6. In this case, the constraints
0.2 ≤ w1 andw1 ≤ 0.6 decrease minimax regret signifi-
cantly. However usually constraints are not added directlyas
such, but result from the acquisition of knowledge acquired
through a variety of interaction modalities, such as direct
user preference queries, or passive observation of user be-
havior. For instance, comparison queries ask the user which
of two proposed options is preferred. The impact of the in-
formation acquired depends greatly on the comparison, as
different options can lead to different degrees of regret re-
duction.

A natural meta-heuristic for generating elicitation queries
is the current solution strategy (CSS), first described in
(Boutilier et al. 2006a). This strategy would ask the user
whether she prefers the minimax regret optionx∗

W or the
adversary optionxw = MRAdv(x∗

W , W ).

In our example, starting from the unconstrained spaceW ,
CSS would select{o4, o5} (the minimax regret option and
the adversarial option) and ask the user to compare them.
Now, let’s assume that the user asserts that she preferso4

over o5; then a new constraintu(o4; w1) ≥ u(o5; w1),
equivalent tow1 ≥ 0.375, is added to our model. In the
spaceW o4≻o5 resulting from the incorporation of this con-
straint, the minimax regret is0.1, resulting from recom-
mendationo2 and adversarial optiono4. Option o4, even
if known to be better thano5, has max regret of0.18 (at
w1 = 0.374, with adversarial optiono1). Therefore, option
o2 will be recommended.

Minimax regret offers recommendations that are robust
given the uncertainty of the preference model. In this ex-
ample,o5 is recommended (in the unconstrained setting)
even though it cannot possibly be optimal foranyuser util-
ity function; this is so because it prevents “disastrous” sit-
uations, such as would occur if optionso1 or o2 are recom-
mended whenw1 is very low (despite the fact that for a good
part of utility space, these options are optimal. Note, thatas
knowledge of user utility increases, more accurate recom-
mendations are made; for example, recommendingo2 when
we learn thato4 is preferred too5.



Optimal Recommendation Sets: Setwise Regret
In most cases the value of a set of recommendations is de-
pendent on the elements of the set jointly, not on each in-
dividually. If the user is going to benefit from only one of
the recommendations (example: recommending apartments)
then the utility of the set is then the maximum utility among
the individual options, i.e., the one the user will pick from
the set.

The problem of set recommendations has been addressed
using probabilistic expectation: Price and Messinger (Price
and Messinger 2005) optimize set recommendations using
the EMAX criterion, defined as the expectation of the max-
imum utility among the options in the set.

In order to retrieve optimal set recommendations, we de-
fine the notion ofsetwise max regret. The setwise max re-
gret of a recommendations set can be seen as the equivalent
of EMAX in our non-probabilistic framework. Suppose we
have a slate ofk options to present to the user and want to
quantify the possible loss by restricting the user’s decision
to options in that slate. Intuitively, the user may select any
of the k options as being “optimal.” An adversary want-
ing to maximize regret should do so assuming the any such
choice is possible—unlike max regret, we allow the user to
select from among any of the set ofk options. In this for-
malization, we choose the set ofk options first, but delay
the final choice from the slate onlyafter the adversary has
chosen a utility functionw. The regret of a set is then the
minimum difference between the utility of the best config-
uration underw and the utility of the options in the slate.
Specifically, define thesetwise maximum regretof option set
Z = {x1, . . . ,xj} to be:

SMR(Z; W ) = max
x′∈X

max
w∈W

min
x∈Z

u(x′; w) − u(x; w)

SMR-Adv(Z; W ) = arg max
x′∈X

max
w∈W

min
x∈Z

u(x′; w) − u(x; w)

Setwise max regret has some intuitive properties. First,
adding new items to a set cannot increase setwise max re-
gret: SMR(A ∪ B, W ) ≤ SMR(A, W ). At the same time
incorporating options that are known to be dominated given
W does not change setwise max regret: in other words, if
u(a,w) > u(b,w) for somea ∈ Z and allw ∈ W , then
SMR(Z ∪ {b}, W ) = SMR(Z, W ). Finally, the max regret
associated with recommending the entire product set is zero:
SMR(X, W ) = 0. This is the equivalent to asking the user
to directly choose the best option from the space of available
options—obviously, a task of with extreme cognitive cost,
and one that runs counter to the spirit of recommendation
assistance! But should the user be able to answer correctly,
it guarantees optimality.

Setwise max regret can be equivalently written in as fol-
lows:

SMR(Z, W ) = max
y∈X

max
w∈W

[u(y; w) − max
x∈Z

u(x; w)] (5)

This captures the intuition that, givenw, the option (among
those inZ) that determines setwise max regret is that with
highest utility with respect tow. In fact, it can be useful to
explicitly partition utility space with respect to which option
in Z is maximal. We define the utility subsetWZ→xi as the

set of utilities such thatxi has greater utility than any option
in Z.

W
Z→xi = {w ∈ W : u(xi; w) > u(xj ; w) ∀j 6= i, 1 ≤ j ≤ k}

The set of allWZ→xi for anyxi ∈ Z partitionsW (we
ignore the possibility of ties over full-dimensional subsets of
W , which can easily be dealt with, but complicate the pre-
sentation marginally). An important observation (that will
be used later) is that we can rewrite the setwise max-regret
SMR as the aggregate maximum of the (individual) max-
regret considering a partition of the utility space according
to which option has higher utility.

Observation 1 GivenZ = {x1, . . . ,xk} and, for1 ≤ i ≤
k,

SMR(Z, W ) = max[MR(x1, W
Z→x1), . . . ,MR(xk, W

Z→xk)]
(6)

Example (continued) We now consider setwise max re-
gret for the example introduced above. Let the number of
options in a recommendation set bek = 2. The following
combinations are ranked best according to the setwise regret
criterion.

Set SMR Adversary Adversary W
{o1, o4} 0.07 o3 w1 = 0
{o1, o2} 0.1 o4 w1 = 1
{o3, o2} 0.1 o4 w1 = 1
{o3, o4} 0.11 o1 w1 = 0.42

The set{o1, o4} is the best choice for a joint recommen-
dation of two options, corresponding to a value of regret of
0.07. Other combinations, such as{o1, o2}, {o3, o2} and
{o3, o4}, also have a relative low value of regret.

A set recommendation can often have dramatically lower
regret than the minimax optimalsinglerecommendation (in
this case,o5).

It is interesting the fact that the optimal recommendation
set is composed of two options,o1 ando4 that, when con-
sidered alone, are associated with high regret. Any set in-
cludingo5, the single best recommendation, is ranked poorly
with respect to setwise regret.

We now consider the case of larger sets. If we need to
select a slate of three options (k = 3), the regret will be
0.04 and the recommendation would be{o1, o3, o4}; in this
case the adversary would picko2, and the valuew1 = 0.51
(intersection point ofo1 ando4).

In the case of four options to be selected (k = 4), the set
{o1, o2, o3, o4} would be recommended and it would be as-
sociated to a setwise regret of0: the slate includes all the
options that can ever become optimal (considering Observa-
tion 1, it follows that for anyWZ→oi that partitionsW , the
max regret has to be0).

Now we consider how setwise regret changes when new
information is included. We consider a slate of two options
to be selected (k = 2) and we suppose that the user asserts
the preference ofo4 overo5. The recommendation set is still



Figure 2: Alpha beta pruning can speed up the search, de-
pending on the evaluation order. In this case,x1 has regret
0.5 againstx3, that is worse than the value 0.4 (max regret
of x2), so we do not need to testx1 againstx2.

{o1, o4} but with a much lower value of (setwise) regret:
only 0.04.

We conclude the discussion of the example with some re-
marks on the optimization process. The adversary’s utility
does not necessarily corresponds to one the vertex of the
feasible region, as in the single recommendation case; it
may also lie in any intersection of the hyperplanes associ-
ated with the options. For instance (in the unconstrained
case) the setwise regret of{o3, o4} is maximized for the
valuew1 = 0.42 (the utility that makeso3 ando4 equally
preferred).

Computation of Setwise Minimax Regret
In this section we discuss how to efficiently compute regret-
based recommendations. We first discuss how to compute
minimax regret for single recommendations and then de-
scribe how to modify these procedures to compute setwise
minimax regret for recommendation sets. We distinguish
two settings: configuration problems, where options are
defined by variables and configuration constraints (i.e., as
solutions to a constraint satisfaction problem (CSP)); and
database problems, where options are enumerated in a prod-
uct database.

Computing Minimax Optimal Single
Recommendations
Configuration problems In configuration problems, opti-
mization over product spaceX is formulated as a constraint
optimization problem or MIP. In such domains, minimax re-
gret computation can be formulated as a MIP, and solved
practically for large problems using techniques such as Ben-
der’s decomposition and constraint generation. We refer
to (Boutilier et al. 2006a; 2004; Braziunas and Boutilier
2007a) for more details. Our MIP formulations for setwise
minimax regret below will draw heavily on these techniques,
but necessitate important modifications.

Database problems When options are enumerated in a
product database, minimax regret computation requires to

repeated computation of the pairwise regret between a can-
didate recommendation and an adversarial option in order to
identify the option with minimax regret. For ease of presen-
tation, assume a linear utility function as above, defined by
weightswi overm attributes. Pairwise regretMR(x,y, W )
of recommendationx and adversarial optiony is readily
computed with the following LP:

max
w:wi∈[0,1]

∑

1≤i≤m

wi(yi − xi) (7)

s.t.
∑

i

wi = 1 (8)

w ∈ W (9)

Here we assume the feasible parameter setW is captured
by linear constraints. A similar LP can be formulated for
discrete-valued attributes, without assuming linearity,just
additivity. Hybrid models with continuous and discrete at-
tributes can easily be represented with a combination of
these two representations. Generalized additive utility mod-
els models (Fishburn 1967; Braziunas and Boutilier 2006;
2007b) can also be easily represented in this framework.
This means that pairwise regret can be computed extremely
efficiently (e.g., in a few milliseconds using CPLEX on the
types of problems discussed below).

Minimax regret computation is more complex because
we need to maximize over all possible adversarial choices,
and minimize over all possible recommendations. A naive
approach would consider every pair of options, requiring
O(n2) pairwise regret computations for a database of size
n, where each of these computations requires the solution of
an LP of size proportional to the number of utility parame-
ters.

However, since minimax regret can be seen as a game be-
tween the recommender and an adversary, the computation
can be greatly improved in practice by formulating the op-
timization as a minimax search and using standard pruning
techniques. Unlike typical games, the search tree has very
limited depth: only two ply, one choice of recommendation
by the MIN player (attempting to minimize regret) and one
choice of adversarial option by the MAX player (attempting
to maximize the regret of the recommendation).3 Note that
the game has a large number of actions, once per product in
the database. The MIN player (recommender) moves first,
the MAX player (adversary) second. The leaves of the mini-
max tree are labeled with the pairwise max regret of the two
choices on its path.

A full evaluation of the tree requires the solution of
n(n − 1) pairwise regret LPs (noting that the MIN player’s
choice need not be explicitly evaluated or even represented
as a possible MAX choice, since it must yield pairwise regret
of 0). However, it is generally not necessary to evaluate ev-
ery node of the tree asAlpha-beta pruning(see (Russell and
Norvig 2003) for an introductory description) can be used to
eliminate branches from evaluation.

3The choice of the utility function by the adversary is dictated
by pair of options, so it need not be modeled as a move.



Alpha-beta pruning is simple in such a simple game tree:
during the tree evaluation, we maintain an upper bound
UB (initially +Inf) at the root, representing the max regret
of the best solution found so far (from the perspective of
MIN), and lower boundsLB(n) at each MAX node, one
for each possible MIN choice (or recommendation). Ev-
ery time we evaluate a leaf node, we compute pairwise re-
gretMR(omin, omax, W ) of MIN’s choiceomin and MAX’s
choiceomax on the path. We update the lower bound at
the corresponding MAX node, and prune (α cut 4) when-
everLB(n) ≥ UB. This is becauseMR(omin, omax, W ) ≤
MR(omin, W ). At the same time, whenever we complete
the evaluation of a MAX noden, we update the upper bound
UB to min(UB, v(n)) wherev(n), the value of the node, is
the maximum value among the leafs.

The efficiency of this pruning depends on the order in
which nodes are evaluated (Russell and Norvig 2003); this
is especially true given the very shallow, broad nature of our
tree. Pruning is most effective when, at each node, the best
children (with respect to the relevant node evaluation, MIN
or MAX) are evaluated first. Figure 2 shows, in our simple
example, that in the best case only 5 nodes out of 9 need
to be evaluated (i.e., 5 pairwise regret maximization). To
speed up the search, we consider a heuristic that first evalu-
ates choices at the MIN (recommender) node that are likely
to be good candidates for minimizing max regret; and we
first evaluate at at MAX (adversarial) nodes options that are
likely to induce high regret against the given MIN choice.
These heuristics give us an evaluation order for both MIN
and MAX choices and can lead to considerable pruning. We
discuss each in turn.

For the MIN node, we note that the regret of any option
is maximized at one of the vertices of the feasible region
W . Thus we samplet vertices (for instance, by consider-
ing extreme weights that maximize the importance of one
of the attributes) and refer to the thew so-sampled asrefer-
ence utilities. These are used to initialize the lower bounds
LB(n): we simply compute the actual regret with respect to
these utilities for the option that leads to (MAX node)n. We
then evaluate MIN’s childrenn in increasing order of initial
lower boundLB(n).

To order the children of MAX node, for each MAX node
n, we consider the feasible utility functionw− that mini-
mizes the utility the MIN choice. (This requires a simple
optimization.) The option that maximizes utility atw− (i.e.,
the optimal choice underw−) is likely to give a high value
of for pairwise regret and thus represents a potentially good
adversary. Moreover, once we have generatedw−, we can
use it to update the lower bound by considering the actual
regret for each option. MAX choices are evaluated in order
of decreasing utility underw−.

In practice, these heuristics can significantly speed up the
computation of minimax regret in product databases. Table 1
shows that number of pairwise regret checks (LPs) is almost
linear in the number of options in the database; indeed, with
these orderings, MAX nodes are often pruned immediately
without even considering an adversarial choice. (These are

4beta cuts are not possible given the depth of the tree

size attributes constraints num of pairwise checks
40 4 0 41
200 5 0 207
400 7 10 492
1000 10 0 1003
1000 10 60 1998
1000 15 30 999

Table 1: Number of pairwise regret checks to compute min-
max regret on some sample datasets. We evaluate the search
tree with our heuristics of reference utilities.

experiments run on synthetic data for illustrative purposes.)

Set Recommendations: Setwise Minimax Regret
We now consider the modification of the techniques above
for setwise minimax regret. Naturally, setwise max regret
is more computationally demanding, requiring selection of
a set of options. However, it is still possible to formulate the
computation in a MIP for configuration problems. Database
problems are more challenging: the adversarial search pre-
sented above for single-item recommendation can be ap-
plied directly, with replacement of a single move by the rec-
ommender (MIN player) byk moves, corresponding to the
choice ofk options for the slate. However, performance can
take a dramatic hit as the size of the desired recommenda-
tion set increases. However, we develop a simple heuristic
hill-climbing strategy that seems to provide very good rec-
ommendation sets in practice.

Configuration problems: MIP formulation For config-
uration problems we formulate the problem of setwise min-
imax regret following the general strategy for single-option
minimax regret, formulating as a (MIP) minimization with
exponentially many constraints. We use a constraint gen-
eration procedure to prevent enumeration of the entire con-
straint set (Boutilieret al. 2006a; 2004). However, there
are some critical differences in the formulation, which we
describe here.

Setwise minimax regret for configuration problems can be
formulated as the following MIP.

min
M,I

j
w ,Xj ,V

j
w

M

s.t.M ≥
X

1≤j≤k

V
j
w ∀w ∈ Vert (10)

V
j

w ≥ w · (x∗
w − X

j) + (Ij
w − 1)mbig (11)

∀j ∈ [1, k] ∧ ∀w ∈ Vert (12)
X

1≤j≤k

I
j
w = 1 ∀w ∈ Vert (13)

I
j
w ∈ {0, 1} (14)

V
j
w ≥ 0 ∀j ∈ [1, k], ∀w ∈ Vert (15)

This MIP minimizesM by: (a) choosingk options (or
configurationsxj designated by variablesXj (where each
Xj is a vector ofn attributes) for the recommendation set;



(b) selecting, for each adversaryw, one of those options
(thejth option) as the choice that has minimum max regret
against an adversary, and ensuring thatM is greater than the
true regret of thejth option relative to every possible choice
of adversary utility function and option.

Note however that this constraint need not be applied to
(continuously many) utility functions or exponentially many
adversarial choices. In the MIP, we post these constraints
only for each vertex ofW (i.e., w ∈ Vert(W )) and for
the optimal product choicex∗

w for that vertex. This relies
on the observation that regret maximized at vertices ofW ,
and, for any adversarial choice ofw, the adversarial option
that maximizes the pairwise regret for any user choice is the
optimal option forw.5

However, this MIP still requires (potentially) exponen-
tially many constraints, one for each element ofVert(W ).
We can make computation much more effective by applying
constraint generation, observing that at the optimal solution,
very few of these constraints are likely to be active. Our
procedure works as follows: we solve a relaxed version of
the MIP above—themaster problem—using only the con-
straints corresponding to a small subsetGen ⊂ Vert(W )
of the constraints in the MIP above. We then test whether
any unexpressed constraints are violated at the current so-
lution. This involves computing the true setwise max re-
gret of the slate generated by the master problem. If the
true setwise max regret is of the slate is greater thanδ, we
know that a constraint has been violated. Specifically, the
computation of setwise max regret will produce the element
w ∈ Vert(W ) and optimal productx∗

w that corresponds to
the maximally violated constraint at the current master so-
lution. So if a constraint is violated, we add this maximally
violated constraint toGen, tightening the MIP relaxation,
and repeat; if not, we are assured that the current solution
minimizes setwise max regret.6

In the formulation,mbig is an arbitrary big number, that
we need to encode the fact that, for any givenw, only the
option with the highest utility (among those in the slate) with
respect tow contributes to the actual setwise regret.

TheSMR maximization subproblem can be also encoded
with a MIP, similar to (Boutilieret al. 2006b). The optimiza-
tion makes use of a decision variable to explicitly represent
the setwise regret,M , to be maximized and we constrain
M to be greater than the single max regretMR(xj , W ), for
each option in the slate.

Database Problems: A Hill-climbing Strategy As dis-
cussed above, while minimax search can be applied directly

5V j
w is the actual regret of optionXj of the slate with respect to

the utility w when the correspondingIj
w is activated. For anyw,

one and only oneIj
w is set to1. In order to minimizeM , the op-

timization will activate theIj
w corresponding to thexj with lower

actual regret. The first constraint (10) captures the idea that for a
slate of options, givenw, the regret of the joint slate is the mini-
mum among the individual values of regret (in the summation,all
but one term are zeros).

6Note that the adding a new constraint requires the introduction
of new variables to the master problem. Every time we add a new
w to Gen, k new variablesI andV are necessary.

to the problem of setwise minimax regret for database prob-
lems, scaling is sometimes a concern. We now present a
heuristic hill-climbing strategy that scales much more effec-
tively. We describe it in the context of database problems,
but it can also be used directly for configuration problems.

The central idea is that is possible to modify a given
recommendation setZ in such a way that setwise max re-
gret cannot increase, and usually decreases until a high
quality set is found. We define theMMR-transformation
T to be a mapping that refines a recommendation setZ
by partitioning the current feasible utility spaceW into
{WZ→xi}, ∀xi ∈ Z, as discussed in Observation 1. In each
partition we compute thesingle recommendation that has
minimax regret in that region of utility space, and define the
new set recommendationT (Z) to be the collection of these
(single) minimax-optimal recommendations.

Definition 2 Define theMMR-transformationT : Z → Z′,
whereZ = {x1, . . . ,xk}, to beT (Z) = {x′

1, . . . ,x
′
k} such

that for all 1 ≤ i ≤ k:

x′
i = MMR-Opt(WZ→xi)

We can show thatT cannot increase setwise max regret.

Observation 2 For any set recommendation Z
SMR(T (Z)) ≤ SMR(Z)

We use the MMR-transformation to define our heuristic
search strategy to produce good recommendation sets; in-
tuitively, we repeatedlyT until a fixed point (with respect to
setwise max regret, not the set itself) is found.

Alg 1 Hill-climbing-T algorithm (HCT)
The algorithm considers an initial setZ, and rewritesZ us-
ing T until a fixed-point is found.

• RepeatZ := T(Z)

• Until SMR(T (Z),W ) = SMR(Z, W )

We initialize the slateZ using the current solution strategy
(CSS), empirically, this seems to produce the most promis-
ing recommendation sets. Fork = 2, this means that the
initial set isZ = {x∗

W , xw}, wherex∗ = MMR-Opt(W ),
andxw = MRAdv(W ).

For larger sets (k > 2), there is not a standard definition
of the CSS. We propose to use the following strategy, that
we callchain of adversaries, to generate the initial slate. We
start from{x∗

W , xw} and repeatedly maximize setwise max
regret given the current set, in some sense maximizing the
diversity of choices from perspective of utility space. This
gives the set{x1, . . . ,xk} where:



x1 = x∗
W

xi = Adv({x1, ..,xi−1}, W ) 2 ≤ i ≤ k

The chain of adversaries requires to solve single minimax
regret once, and thenk − 2 setwise regret maximizations.
The chain of adversaries can be seen as a generalization of
CSS to sets of any size, and could also be considered as an
alternative, faster strategy to select recommendations.



1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

steps

m
ax

 r
eg

re
t

 

 

CSS
HCT

Figure 3: The hillclimbing strategy based on setwise regret
outperforms the current solution strategy in this experiment
(20 runs).

Myopic Elicitation
In addition to produce final recommendations, our criterion
can also be used as a driver for further elicitation of the util-
ity function of the user. In fact, whenever we consider a slate
of recommendations, the user may give us some feedback,
perhaps selecting the option that she prefers among those in
the set. This information is very valuable, and as we have
seen in the initial example, can be used to reduce regret. It
is therefore interesting to assess the value of a recommenda-
tion set also with respect to the possible feedback.

An important observation is that in the case of compari-
son queries (the user selects the preferred option in a slate),
the set ofk optimal recommendations that minimize setwise
regret is also the optimal choice set for a comparison query
with respect tomyopic worst case regret(WR), a measure of
the value of information of a query.

TheWorst-case Regret(WR) of a comparison query based
on a choice setZ = {x1, ..,xk} is defined as

WR({x1, .., xk}) = max[MMR(W Z→x1), .., MMR(W Z→xk)]
(16)

WR considers the “single” max regret in each possible
scenario. It is possible to verify thatWR(Z) ≤ SMR(Z);
the worst case regret is always lower (or equal) than the set-
wise max regret.

The optimality of minimax setwise recommendations (we
omit the full proof for reasons of space) with respect toWR
is based on the consideration (an extension of Observation 2)
that the transformationT introduced in the previous section
is also such thatSMR(T (Z)) ≤ WR(Z) (the proof requires
considering the different partitions imposed by Observa-
tions 1 and compare the two expression componentwise).
We call Z∗ the optimal recommendation set according to
setwise regret. A setZ′ such thatWR(Z′) < WR(Z∗) but
SMR(Z′) > SMR(Z∗) leads to contradiction.7

7If we apply the transformationT to Z′ we obtain a set̄Z such

We performed some preliminary experiments in order to
evaluate our recommendation strategy from the prospective
of elicitation. We are interested in quantifying the reduc-
tion of regret in practice. In Figure 3 we compare the ef-
ficiency of an elicitation based on ourSMR criterion and
the current solution strategy (CSS), considering a syhnthetic
dataset with5000 options and10 attributes. We plot max
regret in function of the number of queries (steps).SMR is
optimized using the hill-climbing strategy (HCT).

Example Critiquing
As an evaluation setting, we apply our regret-based recom-
mender to example-critiquing. This domain is interesting
because current systems usually rely on heuristics and we
expect that an utility-based approach can be greatly benefi-
cial.

Critiquing is a setting where the user expresses feedback
on options that the system shows to her. In particular we
consider a particular version of critiquing, often called the
dynamic critiquingmodel (Reillyet al. 2005), where acur-
rentproduct or recommendation is displayed, and the user is
invited to move to a different product by choosing particu-
lar actions (laid out in the interface) that change the product.
They can includeunit critiques, which request modification
of a particular product attribute; e.g., “give me a laptop that
is lighter than the current one.”

Often alternativesuggestionsor compound critiquesare
used in which multiple attributes (“lighter and faster pro-
cessor, but more expensive”) are tweaked, or in which a se-
lection is made from a system-suggested set of alternative
products (“let me see laptop 3 instead of the current one”).

The set of possible critiques is generated by the system,
and the user chooses one of the possible actions. At each in-
teraction, the user may choose to critique the current product
if she is not completely satisfied with it, or simply because
she wishes to explore the product space in more depth.

In general those systems use heuristics to generate the set
of possible critiques. However, we expect that better perfor-
mance can be obtained if critiquing suggestions are selected
according to a decision-theoretically sound criterion as our
setwise minimax regret.

In order to implement our approach, it is necessary to
give a precise semantics to each of the critiquing actions.
We identify two main reasons a user will critique an option.
First, she may want to explore the product space in an effort
to better understand either the space of feasible options or
her own preferences. This latter desire makes sense espe-
cially when one adopts the view commonly held in behav-
ioral economics that decision support systems should help
peopleconstructtheir preferences (not just articulate them)
(Slovic 1995). Second, she may wish to improve the current
product, making tradeoffs among her preferences for differ-
ent attributes. It is this latterexploitiveor improvement mode
that critiquing systems fail to account for adequately when
deciding on appropriate product suggestions. In this evalua-

that SMR(Z̄) ≤ WR(Z′) < WR(Z∗) ≤ SMR(Z∗) but this
means thatSMR(Z̄) < SMR(Z∗), contradicting the optimality of
Z∗ with respect toSMR.



tion we use critiques of the latter type to constrain the set of
possible user utility functions.

In the following, we describe our simulation setting and
present our results.

Experiments

To validate our regret-based approach to critiquing we de-
signed a framework that simulates a full interaction of a user
with a user interface. As in a real system, each simulation
comprises a number of cycles of interaction, each showing a
current product which the user can critique using either unit
or the selection of one of the suggested recommendations.

The simulated user continues the critiquing process until
the perceived increase in utility is lower than some thresh-
old. We assume that among all possible critiquing actions,
the one with highest perceived improvement will be chosen
by the user.

In our experiment, at each interaction the system displays:

• thecurrent product,
• a choice ofunit critiquesof the current product (they re-

quest the modification of a particular product attribute),
• a set ofsuggestions, alternative options that can change

focus for the search, presented as such or labeled ascom-
poundcritiques (“lighter and faster processor, but more
expensive”)

At each step, the user can choose to either select the cur-
rent product (and finish the interaction) or to tweak it in or-
der to improve it and get better recommendations in the next
cycle.

We compare our regret-based approach to three other ap-
proaches that use compound critiques. In our case, we use
the generation of a set of recommendations (based on set-
wise regret) to display as alternatives. One is selected as
current productand the others are displayed assuggestions.

We briefly review the different critiquing approaches and
then we present the experimental results.

Dynamic Critiquing

The dynamic critiquingmodel (Reillyet al. 2004) makes
use of a particular similarity metric to retrieve the current
product and uses the APriori datamining algorithm to pro-
pose alternative compound critiques. The algorithm dynam-
ically generates compound critiques by discovering com-
mon feature patterns among the set of products. Essentially,
each compound critique describes a set of products in terms
of the features they have in common. For example in the PC
domain, a typical compound critique might be “Faster CPU
and a Larger Hard Drive.” Whenever a product is shown to
the user as the current product, the APriori datamining algo-
rithm is used to quickly discover these patterns and convert
them into a set of suggested compound critiques. Each com-
pound critique corresponds to a product that is, among all
products satisfying the pattern most similar to the current
one.

The generation of suggestions consists of two steps. First,
each product is matched against the current product to pro-
duce lists ofcritique patterns, each comprising an attributes

and a comparison operators from the set:<,>,¬,=. An ex-
ample pattern might be:{[Price>], [ProcessorSpeed>]}.
Second, the algorithm uses APriori to find recurrent cri-
tiquing patterns; a compound critique based on a pattern
is then presented to the user it has sufficient support in the
product database. In our experiments, the support threshold
is set to 0.3 and selection of compound critiques corresponds
to thelow-supportstrategy in (Reillyet al. 2004).

Incremental Critiquing

Incremental critiquing (Reillyet al. 2005) (IC) improves
the basic dynamic critiquing model by incorporating a user
model. While suggestions are still based on the APriori al-
gorithm (as above), the retrieval of the next product associ-
ated with a critiquing action is based on aquality metricthat
values both thescore given to the product by the preference
model and its similarity to the current product.

In the implementation we developed for our experiments,
we take advantage of the fact that the preference ordering
over attributes is known: the score is dictated by a linear
utility function that gives equal weight to all attributes.The
initial product is the option with maximum utility. When
retrieving the next example from the set of products that sat-
isfy the user-chosen critique, we select the productx that
maximizesscore(x) ·Similarity(x,y), wherey is the prod-
uct recommended at the previous cycle, andscore is the
heuristic utility function.

Incremental Critiquing: MAUT

Another implementation of incremental critiquing (Reillyet
al. 2007) uses a simple multi attribute utility (MAUT) model
to make recommendations and generate compound critiques
(rather than similarity). In this approach, a simple additive
utility modelu is generated, initially giving equal weight to
all attributes; each time an attribute is critiqued, its weight
is multiplied by a constant (and all weights renormalized).
The original design of this algorithm makes use of param-
eterized value functions for each attribute, where the value
taken by the current option is considered preferred. Since
our experimental set up assumes that the local preference
ordering over attribute values is known, we instead assume
a linear utility model.

Suggestions are generated using optimization with respect
to the estimated utility model, and thek best products are
presented as alternative cases. A limitation of this approach
is its reliance on a fixed utility model (as opposed to rea-
soning with the space of possible user utilities). Moreover,
options thatall have high value in a single utility sample
are unlikely to be diverse or informative enough to generate
useful distinctions.

Regret-based critiquing

Our version of dynamic critiquing exploits setwise minimax
regret using the ideas above. Specifically, at any point in
the interaction cycle, we generate the current optimal rec-
ommendation set (with respect to minimax setwise regret),
and propose one of these options a current product. The re-
mainder of the set is used to display suggestions.



2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

m
ax

 r
eg

re
t

 

 

Regret−based
IC: wsim
IC: maut
DC

Figure 4: Maximum regret of the recommended op-
tion at each step for four algorithms: regret-based cri-
tiquing (regret), dynamic critiquing with compound cri-
tiques generated with APriori (DC), incremental critiquing
with weighted similarity and APriori (IC) and incremental
critiquing with a multiattribute utility model (IC maut).

Empirical Results
In the experiments we compare the four different versions of
dynamic critiquing discussed above: the original dynamic
critiquing algorithm (similarity plus APriori), incremental
critiquing, incremental critiquing with MAUT, and regret-
based critiquing. We used a C implementation of the APri-
ori algorithm (Bodon 2003). All systems make available
unit critiques of any attribute (and user’s adopt an expected
improvement semantics). We evaluate the performance of
all algorithms with respect to recommendation efficiency
and offer some speculative examination of regret-based cri-
tiquing in terms the tradeoff between cognitive cost and
number of compound critique options presented at each in-
teraction.

We evaluate the different critiquing methods by compar-
ing the quality of the recommendations with respect to max
regret. We tested the methods on a real database of 200
apartments, using randomly drawn utility functions (as de-
scribed above), andk = 3 suggested products at each in-
teraction cycle. All results are averaged over 20 simulated
users. Fig. 4 shows the maximum regret of the recom-
mended product at each stage of the interaction. We note
that regret-based critiquing outperforms the other methods
of generating compound critiques by a wide margin. This
is true when considering both the “anytime” profile of the
method (i.e., the degree to which minimax drops) and its fi-
nal convergence: our technique converges on a product who
max regret is about 3% on average, while the MAUT incre-
mental critiquing settles at about 10% (and the others worse,
with dynamic critiquing unable to reduce max regret to less
than 18%).

More interesting is the fact that regret-based critiquing of-
fers better “actual” recommendations, as measured by true
regret (difference from the true optimal recommendation).
Regret-based critiquing is designed to attackboundson re-

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

steps

re
al

 lo
ss

 

 

Regret−based
IC: wsim
IC: maut
DC

Figure 5: True regret (real loss) of the recommended op-
tion at each step for four algorithms: regret-based cri-
tiquing (regret), dynamic critiquing with compound cri-
tiques generated with APriori (DC), incremental critiquing
with weighted similarity and APriori (IC) and incremental
critiquing with a multiattribute utility model (IC maut).

gret (i.e., worst-case loss); so one might wonder whether
other techniques find better products despite being unable to
“prove” that they are good. Fig. 5 shows this not to be the
case. While other critiquing techniques recommend prod-
ucts that are much better than their regret-bounds suggest,
regret-based critiquing is able to consistently find the opti-
mal product (and find a near-optimal product in as few as
five or six interaction cycles). By contrast, the other three
methods are unable to identify the optimal option at conver-
gence.

Conclusions
In this paper we presented a novel formalization of recom-
mendations of a joint set of alternatives based on the notion
of regret. The criterion that we propose, setwise max regret,
represents an intuitive extension of the traditional regret cri-
terion for single recommendations.

We show how optimal recommendation sets (with re-
spect to our criterion) can be computed with mixed integer
programming (MIP) methods and the constraint generation
technique when options are constructed from a set of config-
uration constraints. Alternatively, set recommendationscan
be obtained using a hill-climbing strategy interleaved with
adversarial search in discrete settings.

We discuss the problem of utility elicitation, showing
that our recommendation strategy reduces max regret more
quickly than any other possible choice. Finally we present
an application of these principles for critiquing systems.

Our reliance on explicit utility modeling and minimax
regret provides a powerful new means of generating good
critiques and making good product recommendations. Our
regret-based critiquing recommender can often lead to opti-
mal recommendations using very few, say, compound cri-
tiquing interactions, and outperforms other dynamic cri-
tiquing techniques both in speed of convergence and the
quality of the final recommendations.

The incorporation of noisy feedback is an important next



step; we are currently considering the possibility of a clar-
ification dialogue. The idea is to verify information that is
sensitive with respect to regret.

Largely unaddressed in our critiquing model is the need
for users to explore the product space, one of the main ad-
vantages of critiquing. We are currently developing hybrid
models in which the system and/or user explicitly distin-
guishes exploratory actions from improving actions. Even
with such a distinction, there is still the interesting question
of modeling usersearch processesin a way that would allow
insight into preferences to be drawn during exploration as
well. Finally, the development of models of cognitive costs
using techniques from behavioral economics, decision the-
ory and psychology remains an important avenue of future
research.

References
Fahiem Bacchus and Adam Grove. Graphical models for prefer-
ence and utility. InProceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence (UAI-95), pages 3–10, Mon-
treal, 1995.

Ferenc Bodon. A fast apriori implementation. In Bart Goethals
and Mohammed J. Zaki, editors,Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations
(FIMI’03) , volume 90 ofCEUR Workshop Proceedings, Mel-
bourne, Florida, USA, 19. November 2003.

Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-
Networks: A directed graphical representation of conditional util-
ities. In Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence (UAI-01), pages 56–64, Seattle,
2001.

Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active
collaborative filtering. In Christopher Meek and Uffe Kjærulff,
editors,UAI, pages 98–106. Morgan Kaufmann, 2003.

Craig Boutilier, Tuomas Sandholm, and Rob Shields. Eliciting
bid taker non-price preferences in (combinatorial) auctions. In
Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI-04), pages 204–211, San Jose, CA, 2004.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schu-
urmans. Constraint-based optimization and utility elicitation us-
ing the minimax decision criterion.Artifical Intelligence, 170(8–
9):686–713, 2006.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuur-
mans. Constraint-based optimization and utility elicitation using
the minimax decision criterion.Artif. Intell., 170(8-9):686–713,
2006.

Craig Boutilier. A POMDP formulation of preference elicitation
problems. InProceedings of the Eighteenth National Conference
on Artificial Intelligence (AAAI-02), pages 239–246, Edmonton,
2002.

Darius Braziunas and Craig Boutilier. Preference elicitation and
generalized additive utility. InAAAI, 2006.

Darius Braziunas and Craig Boutilier. Minimax regret-based elic-
itation of generalized additive utilities. InProceedings of the
Twenty-third Conference on Uncertainty in Artificial Intelligence
(UAI-07), pages 25–32, Vancouver, 2007.

Darius Braziunas and Craig Boutilier. Minimax regret basedelic-
itation of generalized additive utilities. InProceedings of the
Twenty-third Conference on Uncertainty in Artificial Intelligence
(UAI-07), pages 25–32, Vancouver, 2007.

Urszula Chajewska and Daphne Koller. Utilities as random vari-
ables: Density estimation and structure discovery. InProceedings
of the Sixteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI-00), pages 63–71, Stanford, 2000.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making ra-
tional decisions using adaptive utility elicitation. InProceedings
of the Seventeenth National Conference on Artificial Intelligence
(AAAI-00), pages 363–369, Austin, TX, 2000.

Peter C. Fishburn. Interdependence and additivity in multivariate,
unidimensional expected utility theory.International Economic
Review, 8:335–342, 1967.

Ralph L. Keeney and Howard Raiffa.Decisions with Multiple
Objectives: Preferences and Value Trade-offs. Wiley, New York,
1976.

Panos Kouvelis and Gang Yu.Robust Discrete Optimization and
Its Applications. Kluwer, Dordrecht, 1997.

David McSherry. Diversity-conscious retrieval. InECCBR
’02: Proceedings of the 6th European Conference on Advances
in Case-Based Reasoning, pages 219–233, London, UK, 2002.
Springer-Verlag.

Robert Price and Paul R. Messinger. Optimal recommendation
sets: Covering uncertainty over user preferences. InProceedings
of the Twentieth National Conference on Artificial Intelligence
(AAAI’05), pages 541–548, 2005.

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry
Smyth. Dynamic critiquing. In Peter Funk and Pedro A.
González-Calero, editors,ECCBR, volume 3155 ofLecture Notes
in Computer Science, pages 763–777. Springer, 2004.

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry
Smyth. Incremental critiquing.Knowl.-Based Syst., 18(4-5):143–
151, 2005.

James Reilly, Jiyong Zhang, Lorraine McGinty, Pearl Pu, and
Barry Smyth. Evaluating compound critiquing recommenders:
a real-user study. In Jeffrey K. MacKie-Mason, David C. Parkes,
and Paul Resnick, editors,ACM Conference on Electronic Com-
merce, pages 114–123. ACM, 2007.

Stuart Russell and Peter Norvig.Artificial Intelligence: A Mod-
ern Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition
edition, 2003.

Ahti Salo and Raimo P. Hämäläinen. Preference ratios in multi-
attribute evaluation (PRIME)–elicitation and decision procedures
under incomplete information.IEEE Trans. on Systems, Man and
Cybernetics, 31(6):533–545, 2001.

Leonard J. Savage.The Foundations of Statistics. Wiley, New
York, 1954.

Paul Slovic. The construction of preference.American Psychol-
ogist, 50(5):364–371, 1995.

Barry Smyth and Paul McClave. Similarity vs. diversity. In
David W. Aha and Ian Watson, editors,ICCBR, volume 2080
of Lecture Notes in Computer Science, pages 347–361. Springer,
2001.


