Optimal Set Recommendations based on Regret

Paolo Viappiani
Department of Computer Science
University of Toronto
Toronto, ON, Canada
paolo@cs.toronto.edu

Abstract

Current conversational recommender systems do not of-
fer guarantees on the quality of their recommendations,
either because they do not maintain a model of a user’s
utility function, or do so in aad hocfashion. In this pa-
per, we propose an approach to recommender systems
that incorporates explicit utility models into the rec-
ommendation process in a decision-theoretically sound
fashion. The system maintains explicit constraints on
the user’s utility based on the semantics of the prefer-
ences revealed by the user’s actions. In particular, we
propose and investigate a new decision criteriest;
wise maximum regrefor constructing optimal recom-
mendation sets. This new criterion extends the mathe-
matical notion ofmaximum regretised in decision the-
ory and preference elicitation to sets. We develop com-
putational procedures for computing setwise max re-
gret. We also show that the criterion suggests choice
sets for queries that are myopically optimal: that is, it
refines knowledge of a user’s utility function in a way
that reduces max regret more quickly than any other
choice set. Thus setwise max regret acts both as guar-
antee on the quality of our recommendations and as a
driver for further utility elicitation.

Our simulation results suggest that this utility-
theoretically sound approach to user modeling allows
much more effective navigation of a product space than
traditional approaches based on, for example, heuristic
utility models and product similarity measures.

Introduction

Craig Boutilier
Department of Computer Science
University of Toronto
Toronto, ON, Canada
cebly@cs.toronto.edu

a user's score: the latter tends to produce results that are
very similar one to each other, and thus not offer much ac-
tual “choice” for a user. This is especially true when we
recognize that estimated scores or preferences are likely t
be very crude. Diversity is also important in practice: we
cannot generally predict hopatienta user will be. They
may terminate the exploration of product space at any time,
hence the recommender system should be able to provide
anytimerecommendations, reflecting the best recommen-
dations given the information provided by the user so far.
This characteristic of conversational recommenders i§ sim
lar to the exploration-exploitation dilemma in reinforcemnt
learning. Since we do not know know how much time the
user is willing to spend in order to improve the recommenda-
tion, we want to show products that are both: (a) expected to
be rated highly given the current information about the user
and (b) are maximally informative should the user critique
(or otherwise provide feedback on) them.

Many authors have considered the importance of diversity
in the recommendations. For example, researchers in case-
based reasoning have proposed techniques based on greedy
maximization of diversity (McSherry 2002), defined as an
aggregate of a distance metric, or as a weighted tradeoff be-
tween diversity and the recommendation score (Smyth and
McClave 2001). However diversity and dissimilarity mea-
sures does not consider the information that we have about
the user’s preference. While they guarantee that the set con
tains alternatives that differ in their features, they douse
at all the information about a user’s preferences available
from previous user actions and feedback. It has been argued

Recommender systems can help users navigate productihat diversity should be instedilored to the system’s be-
spaces and make decisions involving very large sets of al- |ief about the user (Price and Messinger 2005).

ternatives. C_on_/ersauo_nalrecqmmender systems rely on To maximize the information presented to the user in a
mixed-initiative interactions, with both the user and ts-s recommendation set, and recommend a setptimal rec-

tem taking an active role in the decision process. User feed- . nendations, it is necessary to maintain an explicit rep-
back can be ent_ered In many ;‘o;ms, f(_)r lnsctjf_:mcle, acsj gwect resentation of the uncertainty in the preference model and
a;]nswers to queries, aritique of the options displayed by 5 goynd decision-theoretic semantics of the interaction in
the system. the first place. In fact, most practical conversational neco

_Many recommender systems employ Some forrd_mér— mender systems (especially those using critiquing) do not
Sityto shov_v_a set o_f pro_ducts that might be appealing to_the use an explicit model of a user’s preferences, or only main-
user. Intuitively, diversity overcomes a key problem with

presentation of théop-k items based on some estimate of ——— o)
Indeed, the natural decision theoretic account of set recom

mendations immediately suggests diversity w.r.t. beliegbud a
user’s preferences (Boutiliet al. 2003).

Copyright(© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tain such a model in an ad hoc, heuristic fashion. In this pa- set of recommended alternatives using setwise minimax re-
per, we develop an approach to set-based recommendationgyret. In Sec. 3 we discuss computation of setwise max re-
with an explicit utility model. We represent the uncertgint gret and minimax regret, both for configuration problems
w.r.t. the user model with constraints of her utility func- modeled as a constraint satisfaction problem (CSP) and for
tion induced by choices or critiques. To construct a suabl product databases, while in Sec. 4 we briefly discuss the
recommendation set, we develop a novel critergetwise performance of elicitation. Finally, in Sec. 5, we perform
maximum regretthat captures the idea of providing a set of simulations of complete critiquing-based recommender sys
jointly optimal recommendations. Our qualitative model of tems, comparing our regret-based approach to state oftthe ar
uncertainty has two key advantages over probabilistic mod- critiquing algorithms such as dynamic critiquing and incre
els (Price and Messinger 2005): relatively simple priooiaf mental critiquing.

mation in the form of bounds or constraints on user prefer-

ences can be exploited (rather than probabilistic pri@ns); Regret-based Recommendation Systems
exact computation is much more tractable (in contrast with \We begin this section by presenting our formalization of the
probabilistic models of utility that generally require sea- decision problem, reviewing minimax regret for robust rec-
ing with densities that have no closed form (Boutilier 2002; ommendation and elicitation, and then defining our key con-
Chajewska and Koller 2000)). cepts of setwise max regret and setwise minimax regret.

To make this model effective, user actions should be asso- . -
ciated with a precise, soursgmantics For instance, a user Underlying Decision Problem
critique is assumed to reveal some aspect of the user’s pref- We assume a recommendation system is charged with the
erences and this is used to update an explicit utility model. task of recommending an option to a user in a multi at-
More precisely, in our work, unit critiques and compound tribute space (e.g., computers, cars, apartment renta), et

critiques places linear constraints on a user utility figrct Products are characterized by a finite set of attribites
The advantage of this approach is that we can use decision-{ X}, ...X, }, each with finite domain®om (X;). Let X C
theoretically sound criteria to: Dom/(X) denote the set deasible configurationsFor in-

stance, attributes may correspond to the features of vari-

ous apartments, such as size, neighborhood, distance from

2. bound the difference in the quality of a recommended public transportation, etc., witl defined either by con-
product and the optimal option for the user; straints on attribute combinations (e.g., constraintsan-c

3. determine which options and critiques carry the most in- Puter components that can be put together), or by an explicit

formation to help speed up the navigation process; and database of feasible configurations (e.qg., a rental daggbas
. . The user hasatility functionu : Dom(X) — R. In what
4. suggest to the user when to terminate the process (i.e., follows we will assume either &near or additive utility

when further interaction will offer only modest improve- nction depending on the nature of the attributes (Keeney

1. suggest or recommend a product;

ment in recommendation quality). and Raiffa 1976). In both additive and linear models, we
We adopt the notion ominimax regret(Boutilier et al. assume that can be decomposed as follows:

2006a) to make product suggestions in the face of utility

function uncertainty. This robust decision criterion alo u(x) = filz:) =>_ Avi(x:)

us to bound the loss (difference from optimal) of any rec- i i

ommendation. We propose and investigate a new decision \yhere each local utility functiorf; assigns a value to each
criterion, setwise maximum regrefor constructing optimal - glement ofDom(X;). In classical utility elicitation, these
recommendation sets. This new criterion extends maximum ,41,es can be determined by assessing local value func-
regret to sets of products rather than a single product. We de jons ., over Dom(X;) that are normalized on the interval
fine set maximum regret, argue that minimizing setwise max (o'1], and importance weights; (3°. ; — 1) for each at-
regret is the best means for constructing a set of options for i te (Keeney and Raiffa 1976; Fishburn 1967). This sets
a user, .and de;velop effective cor_nputanonal proc_edures for fi(zi) = M\wi(z;) and ensures that global utility is normal-
computing optimal recommendation sets for setwise regret. jzeq on the intervalo, 1. A simple additive model in the
We presentritiquing as a possible application domain. (ental domain might be:

While user-controlled exploration in traditional critiigpg

systems does not offer any guarantees (practical, emlpirica u(Apt) = f1(Size) + fo(Distance) + f3(Nbrhd)
or theoretical) of either sufficient or efficient exploratiof

the space (A user may cycle through a set of similar products
or converge at a product far from optimal), our regret-based
recommender allows us to provide guarantees on the quality
(utility) of the recommended product vis-a-vis feasible a
terrjatlyes. We also show with S|mu!a.t|ons tmgret-_based 20ur approach relies considerably on the additive assumptio
critiquing can lead to much more efficient exploration of the though can easily be generalized to more general models such

product space and lead to better decisions in practice. as GAI (Fishburn 1967; Bacchus and Grove 1995; Braziunas and
In Sec. 2 we introduce our model of regret-based recom- Boutilier 2007a). The assumption of linearity is simply arce-

mendation and describe our strategy for selection of a joint nience; nothing critical depends on it.

WhenDom(X;) is drawn from some real-valued set, we of-
ten assume thag (hencef;) is linear inX;.?

Since a user’s utility function is not generally known, we
often write u(x; w) to emphasize the dependencewbn

user-specific parameters. In the additive case, the valuesother words, it minimizes setwise max regret given the cur-

fi(z;) overu,{ Dom(X;)} serve as a sufficient parametriza-
tion of u (for linear attributes, a more succinct representation
is possible). The optimal product for the user with utilig-p
rametersy is thatx € X that maximizes.(x;w). Our goal

is to recommend, or help the user find, an optimal product,
or one whose utility is near optimal.

Regret-based Recommendation

In probabilistic approaches to recommendation, a distribu
tion over preferences—typically in the form a density over
utility function parameters—is maintained, and the option
with highest expected utility is recommended (Chajevestka
al. 2000; Boutilier 2002; Boutilieet al. 2003). When a set

rent information about the user’s utility function, makiitg
extremely robust in the presence of utility function uncer-
tainty (in a way to be made precise below). Second, max re-
gretis a well-defined progress metric that lets the user know
the cost and benefit of further exploration of product space.
Finally, the information contained in user selection of som
choice from the recommended set is maximally informative
(in a sense defined below).

Minimax Regret

Minimax regret has been advocated as a means for robust
optimization (Kouvelis and Yu 1997), and has more re-
cently been used for decision making with utility uncer-

of alternatives need to be recommended, the expectimax or tainty (Boutilier et al. 2001; Salo and Hamalainen 2001;

EMAX criterion can be used (Boutilieat al. 2003; Price and
Messinger 2005). One difficulty with probabilistic modeds i
that one requires probabilistic prior information ovetlityti
models, which can be difficult to formulate and represent.
Another is that exact computation can often be computation-
ally intense; this is especially true since (arguably) redtu
density models for utility functions are rarely closed unde
the type of evidence provided by user interaction (e.g., be-
havioral observation or answers to queries) (Boutilier200
Chajewska and Koller 2000)); as a result, computationally
demanding fitting of (say) mixture models is required after
every model update.

Instead, we propose the use of minimax regret to generate

recommendation seté&\s we will see, this obviates the need
to complex probabilistic reasoning, yet can offer robust re
ommendations and provide very effective guidance for the
user. In traditional regret-based approaches, a singtarec

mendation is made using the minimax regret (Savage 1954)

criterion. For multiple joint recommendations, we develop
the notion ofsetwise minimax regrgdefined below). We
can summarize the correspondence between the Bayesia
and the regret-based approach with the following table:

| Probabilistic approach]|

Expected Utility
Expected Max (EMAX)

Regret approach |

Minimax Regret
Minimax SetwiseRegret

In this paper we propose a framework that maintains a set
W of feasible utility models, and at each step, the system
shows a set of recommendations thatjanetly optimal with
respect to minimax regret. At a very high level, our regret-
based recommender works as follows:

Boutilier et al. 2006a).

Assume that through some interactions with a user, and
possibly using some prior knowledge, we determine that her
utility function w lies in some setV. Following (Boutilier
et al. 2006a) we define:

Definition 1 Given a set of feasible utility function®’, we
define thepairwise max regred/R(x,y; W) of x,y € X,
the themax regretV/R(x; W) of x € X; theminimax regret
MMR(W) of W; and theminimax optimal configuration
xjy as follows:

MR(x,y; W) = max u(y; w) — u(x; w) 1)
MR(x; W) = max MR(x,y; W) 2
yvex
MMR(W) = min MR(x, W) @3)
Xy = arg }13'151)12 MR(x,W) 4)

Intuitively, MR (x; W) is the worst-case loss associated with

nrecommending configuratiat i.e., by assuming an adver-

sary will choose the user’s utility functiom from W to
maximize the difference in utility between the optimal con-
figuration (undemw) andx. The minimax optimal configu-
rationx;;, minimizes this potential lossW/R(x, W) bounds
the loss associated with and is zero iffx is optimal for all

w € W. Any choice that is not minimax optimal has strictly
greater loss thary;, for somew € W.

Minimax regret has proven to be an effective tool in utility
elicitation in a variety of domains. A decision support or
recommender system can query (or otherwise interact with)
a user providing additional constraints on the utility Bét
until minimax regret reaches some acceptable level (plyssib
optimality), elicitation costs become too high, or someeoth

1. The set¥ is initialized given some initial constraints; termination criterion is met.
2. The current recommendations are determined (using the Example Consider the following example, where the op-
setwise minimax regret); tions o* are defined using two features/coordinatesand
3. After each user actiord} is refined to reflect the new 22:
constraints imposed by the user's feedback; z1 | 22
4. The process repeats (steps 2 and 3) until the user is satis- 0; 0.35 | 0.68
fied or minimax regret reaches some target threshold. o 069 8-725
o .
This process is appealing for two reasons. First, the ctirren o 1 0
recommendation (i.e., set of options) is always optimal; in | 051 03

1

0.9r

0.8

0.7

0.6

0.5r

utility

0.4+

0.3

0.2

o1t | —+ 05 ~

0.‘3 . O‘.4 0.‘5 O‘.G 0.7 0.8
utility parameter wl

0 I I
0 0.1 0.2

Figure 1: Each options is represented by a single line in the
utility space.

We assume linear utilityu(x; w) = wiz1 + waz2 Wherew

is vector of tradeoff weights, witlv, = 1—w1,0 < wy < 1;
and the local value functions for each coordinate are itenti
functions. (i.e.,v;(x;) = z;). Given these assumptions,
utility is one-dimensional; it can be written agx; w)
(1 — x2)wy1 + x2. So we deal only with the uncertainty on
the single paramete; .

This simple example is convenient because it is easy to
visualize option utilities as a 1D function af; graphically.
The utility of the different options are shown in Fig. 1 with
respect to the parametei. We notice that, for some values
of w1, each of the options;, 02, 03 ando, is optimal, but
not soo;. When considering a particular value of (a
particular utility function) theactual regret(or real loss) is
the difference between the utility of the best option given
wi and the utility of our recommendation in that case. For
instance, forw; = 0.9, the best option is, with utility 0.9,
while o, has utility0.38, so the actual regret @f would be
0.9 — 0.38 = 0.52. Max regret accounts for the uncertainty
overw; and it is the maximum of the possible actual regret
values (foro; is 0.65 whenw; = 1).

When the options are few as in this case, we can compute

the max regret of each choice by explicitly enumerating the
maximum the pairwise regret of that choice against any pos-
sible adversarial choice of option. The table below illatts

MR(o",0%) | o' o’ o’ o* o’ MR(0;)
o' 0 | 055|0.07| 0.65| 0.15 0.65
0? 0.48 0 055| 0.1 | 01 0.55
0’ 035 09| 0 |100| 05 1
o? 0.68| 0.2 | 0.75 0 0.3 0.75
o° 0.38| 04 | 045| 05 0 0.5

Minimax regret is0.5, and the minimax optimal recom-
mendation is optioms; its max regret occurs at adversarial
choice of utilityw; = 1, and choice of option,. It can be
easily shown that regret is maximized at one of the vertexes
of the feasible regiobl” whenW is a bounded, convex poly-
tope (such a polytope induced by the interactions we discuss
later).

Now imagine that, perhaps as the result of interactions
with the user, we learn thét2 < w; < 0.6. The new min-
imax regret value for this constrained casd)is38. This
value corresponds to recommendatign and adversarial
optiono, and utility w; = 0.6. In this case, the constraints
0.2 < w; andw; < 0.6 decrease minimax regret signifi-
cantly. However usually constraints are not added dirextly
such, but result from the acquisition of knowledge acquired
through a variety of interaction modalities, such as direct
user preference queries, or passive observation of user be-
havior. For instance, comparison queries ask the user which
of two proposed options is preferred. The impact of the in-
formation acquired depends greatly on the comparison, as
different options can lead to different degrees of regret re
duction.

A natural meta-heuristic for generating elicitation qeeri
is the current solution strategy (CSSjirst described in
(Boutilier et al. 2006a). This strategy would ask the user
whether she prefers the minimax regret optigp or the
adversary option” = MRAdv(z,, W).

In our example, starting from the unconstrained sgéce
CSS would selecfoy, 05} (the minimax regret option and
the adversarial option) and ask the user to compare them.
Now, let's assume that the user asserts that she prefers
over os; then a new constraint(og;wy) > wu(os;wy),
equivalent tow; > 0.375, is added to our model. In the
spacel 4+~ s resulting from the incorporation of this con-
straint, the minimax regret i8.1, resulting from recom-
mendationo, and adversarial optiony. Option oy, even
if known to be better thams, has max regret of.18 (at
wy = 0.374, with adversarial option,). Therefore, option
02 Will be recommended.

Minimax regret offers recommendations that are robust
given the uncertainty of the preference model. In this ex-
ample, o5 is recommended (in the unconstrained setting)
even though it cannot possibly be optimal oty user util-

this, where each row corresponds to a recommendation, eachity function; this is so because it prevents “disastrous” si

column to an adversarial choice, and we display the pairwise
max regret (allowing the adversary to choose utility) in the
cells. The max regret of an option is shown in the last col-
umn, and corresponds to the maximum value in its row. In
the unconstrained situation (whetg can take any value
betweer() and1), we have the following values:

uations, such as would occur if optionsor o, are recom-
mended whem is very low (despite the fact that for a good
part of utility space, these options are optimal. Note, #sat
knowledge of user utility increases, more accurate recom-
mendations are made; for example, recommendinghen

we learn thab, is preferred tws.

Optimal Recommendation Sets: Setwise Regret

In most cases the value of a set of recommendations is de-
pendent on the elements of the set jointly, not on each in-
dividually. If the user is going to benefit from only one of

the recommendations (example: recommending apartments)

then the utility of the set is then the maximum utility among
the individual options, i.e., the one the user will pick from
the set.

set of utilities such that; has greater utility than any option
inZ.

W25 = {we W :u(x;w) > u(xs;w) Vi #4,1 < j <k}

The set of allW%—*: for anyx; € Z partitionsW (we
ignore the possibility of ties over full-dimensional sutssef

The problem of set recommendations has been addressed?, which can easily be dealt with, but complicate the pre-

using probabilistic expectation: Price and MessingercgPri
and Messinger 2005) optimize set recommendations using
the EMAX criterion, defined as the expectation of the max-
imum utility among the options in the set.

In order to retrieve optimal set recommendations, we de-
fine the notion ofsetwise max regretThe setwise max re-

gret of a recommendations set can be seen as the equivalen

of EMAX in our non-probabilistic framework. Suppose we
have a slate ok options to present to the user and want to
guantify the possible loss by restricting the user’s deaisi
to options in that slate. Intuitively, the user may selegt an
of the k& options as being “optimal.” An adversary want-
ing to maximize regret should do so assuming the any such
choice is possible—unlike max regret, we allow the user to
select from among any of the set bfoptions. In this for-
malization, we choose the set bfoptions first, but delay
the final choice from the slate onbfter the adversary has
chosen a utility functionv. The regret of a set is then the
minimum difference between the utility of the best config-
uration underv and the utility of the options in the slate.
Specifically, define theetwise maximum regref option set

Z = {x'...,x7} to be:

SMR(Z; W) = max max min u(x; w) — u(x; w)
x'eX weW x€Z

SMR-Adv(Z; W) = arg max max min u(x’; w) — u(x; w)
x'eX weW x€Z

Setwise max regret has some intuitive properties. First,
adding new items to a set cannot increase setwise max re-
gret: SMR(AUB, W) < SMR(A,W). At the same time
incorporating options that are known to be dominated given
W does not change setwise max regret: in other words, if
u(a,w) > u(b,w) for somea € Z and allw € W, then
SMR(Z U {b},W) = SMR(Z,W). Finally, the max regret
associated with recommending the entire product set is zero
SMR(X,W) = 0. This is the equivalent to asking the user
to directly choose the best option from the space of availabl
options—obviously, a task of with extreme cognitive cost,
and one that runs counter to the spirit of recommendation
assistance! But should the user be able to answer correctly,
it guarantees optimality.

Setwise max regret can be equivalently written in as fol-
lows:

SMR(Z, W) = Jw) — ;
(Z, W) glea;ggleav);[uw,w) max u(x; w)]

(®)

This captures the intuition that, givern the option (among
those inZ) that determines setwise max regret is that with
highest utility with respect taw. In fact, it can be useful to
explicitly partition utility space with respect to which tgn

in Z is maximal. We define the utility subsBtZ—: as the

sentation marginally). An important observation (thatl wil
be used later) is that we can rewrite the setwise max-regret
SMR as the aggregate maximum of the (individual) max-
regret considering a partition of the utility space accogdi

to which option has higher utility.

bbservation 1 GivenZ — {x1,...,xx} and, forl <i <

SMR(Z, W) = maz[MR(x1, WZ7>1) ... MR(x, W? k)]

(6)

Example (continued) We now consider setwise max re-
gret for the example introduced above. Let the number of
options in a recommendation set be= 2. The following
combinations are ranked best according to the setwisetregre
criterion.

Set SMR | Adversary| Adversary W
{01, 04} 0.07 03 w1 = 0
{01,02} 0.1 04 wy = 1
{03,002} | 0.1 04 wy =1
{03, 04} 0.11 01 w1 = 0.42

The set{o1, 04} is the best choice for a joint recommen-
dation of two options, corresponding to a value of regret of
0.07. Other combinations, such g%, 02}, {03,02} and
{03, 04}, also have a relative low value of regret.

A set recommendation can often have dramatically lower
regret than the minimax optimainglerecommendation (in
this casegs).

It is interesting the fact that the optimal recommendation
set is composed of two options, andoy, that, when con-
sidered alone, are associated with high regret. Any set in-
cludingos, the single best recommendation, is ranked poorly
with respect to setwise regret.

We now consider the case of larger sets. If we need to
select a slate of three options & 3), the regret will be
0.04 and the recommendation would e, , o3, 04}; in this
case the adversary would piek, and the valuev; = 0.51
(intersection point 0b; andoy).

In the case of four options to be selectéd 4), the set
{01, 02, 03,04} would be recommended and it would be as-
sociated to a setwise regret @f the slate includes all the
options that can ever become optimal (considering Observa-
tion 1, it follows that for anyi’%—°: that partitions¥’, the
max regret has to b@).

Now we consider how setwise regret changes when new
information is included. We consider a slate of two options
to be selectedi(= 2) and we suppose that the user asserts
the preference af; overos. The recommendation set is still

Min choice

Figure 2: Alpha beta pruning can speed up the search, de-

pending on the evaluation order. In this casehas regret
0.5 againstz3, that is worse than the value 0.4 (max regret
of 22), so we do not need to test against:?.

{01, 04} but with a much lower value of (setwise) regret:
only 0.04.

We conclude the discussion of the example with some re-
marks on the optimization process. The adversary’s utility

repeated computation of the pairwise regret between a can-
didate recommendation and an adversarial option in order to
identify the option with minimax regret. For ease of presen-
tation, assume a linear utility function as above, defined by
weightsw; overm attributes. Pairwise regrétR(x,y, W)

of recommendatiorx and adversarial optioy is readily
computed with the following LP:

max wi(ys — 5 (7

w:iw; €[0,1] 1<;m ()
sty wi=1 (8)
welWW (9)

Here we assume the feasible parametefigas captured
by linear constraints. A similar LP can be formulated for
discrete-valued attributes, without assuming linealijitgt
additivity. Hybrid models with continuous and discrete at-
tributes can easily be represented with a combination of
these two representations. Generalized additive utilibgm
els models (Fishburn 1967; Braziunas and Boutilier 2006;
2007b) can also be easily represented in this framework.
This means that pairwise regret can be computed extremely

does not necessarily corresponds to one the vertex of the efficiently (e.g., in a few milliseconds using CPLEX on the

feasible region, as in the single recommendation case; it
may also lie in any intersection of the hyperplanes associ-
ated with the options. For instance (in the unconstrained
case) the setwise regret §bs, 04} is maximized for the
valuew; = 0.42 (the utility that makess andos equally
preferred).

Computation of Setwise Minimax Regret
In this section we discuss how to efficiently compute regret-

based recommendations. We first discuss how to compute

minimax regret for single recommendations and then de-

types of problems discussed below).

Minimax regret computation is more complex because
we need to maximize over all possible adversarial choices,
and minimize over all possible recommendations. A naive
approach would consider every pair of options, requiring
O(n?) pairwise regret computations for a database of size
n, where each of these computations requires the solution of
an LP of size proportional to the number of utility parame-
ters.

However, since minimax regret can be seen as a game be-
tween the recommender and an adversary, the computation

scribe how to modify these procedures to compute setwise ¢an be greatly improved in practice by formulating the op-

minimax regret for recommendation sets. We distinguish
two settings: configuration problemswhere options are
defined by variables and configuration constraints (i.e., as
solutions to a constraint satisfaction problem (CSP)); and
database problemsvhere options are enumerated in a prod-
uct database.

Computing Minimax Optimal Single
Recommendations

Configuration problems In configuration problems, opti-
mization over product spacg is formulated as a constraint
optimization problem or MIP. In such domains, minimax re-
gret computation can be formulated as a MIP, and solved
practically for large problems using techniques such as Ben
der’'s decomposition and constraint generation. We refer
to (Boutilier et al. 2006a; 2004; Braziunas and Boutilier
2007a) for more details. Our MIP formulations for setwise
minimax regret below will draw heavily on these techniques,
but necessitate important modifications.

Database problems When options are enumerated in a

timization as a minimax search and using standard pruning
techniques. Unlike typical games, the search tree has very
limited depth: only two ply, one choice of recommendation
by the MIN player (attempting to minimize regret) and one
choice of adversarial option by the MAX player (attempting
to maximize the regret of the recommendatidiyote that

the game has a large number of actions, once per product in
the database. The MIN player (recommender) moves first,
the MAX player (adversary) second. The leaves of the mini-
max tree are labeled with the pairwise max regret of the two
choices on its path.

A full evaluation of the tree requires the solution of
n(n — 1) pairwise regret LPs (noting that the MIN player’s
choice need not be explicitly evaluated or even represented
as a possible MAX choice, since it must yield pairwise regret
of 0). However, it is generally not necessary to evaluate ev-
ery node of the tree aslpha-beta pruningsee (Russell and
Norvig 2003) for an introductory description) can be used to
eliminate branches from evaluation.

The choice of the utility function by the adversary is dietht

product database, minimax regret computation requires to by pair of options, so it need not be modeled as a move.

Alpha-beta pruning is simple in such a simple game tree:
during the tree evaluation, we maintain an upper bound
UB (initially +Inf) at the root, representing the max regret
of the best solution found so far (from the perspective of
MIN), and lower bounds.B(n) at each MAX node, one
for each possible MIN choice (or recommendation). Ev-
ery time we evaluate a leaf node, we compute pairwise re-
gret MR(0min, Omax, W) of MIN's choice o,,;, and MAX's
choice oy, On the path. We update the lower bound at
the corresponding MAX node, and prune ¢ut *) when-
everLB(n) > UB. This is becaus®/R(omin, Omax, W) <
MR(omin, W). At the same time, whenever we complete
the evaluation of a MAX node, we update the upper bound
UB to min(U B, v(n)) wherev(n), the value of the node, is
the maximum value among the leafs.

The efficiency of this pruning depends on the order in
which nodes are evaluated (Russell and Norvig 2003); this
is especially true given the very shallow, broad nature of ou
tree. Pruning is most effective when, at each node, the best
children (with respect to the relevant node evaluation, MIN
or MAX) are evaluated first. Figure 2 shows, in our simple
example, that in the best case only 5 nodes out of 9 need
to be evaluated (i.e., 5 pairwise regret maximization). To
speed up the search, we consider a heuristic that first evalu-
ates choices at the MIN (recommender) node that are likely
to be good candidates for minimizing max regret; and we
first evaluate at at MAX (adversarial) nodes options that are
likely to induce high regret against the given MIN choice.
These heuristics give us an evaluation order for both MIN
and MAX choices and can lead to considerable pruning. We
discuss each in turn.

For the MIN node, we note that the regret of any option
is maximized at one of the vertices of the feasible region
W. Thus we sample vertices (for instance, by consider-
ing extreme weights that maximize the importance of one
of the attributes) and refer to the theso-sampled aefer-
ence utilities These are used to initialize the lower bounds
LB(n): we simply compute the actual regret with respect to
these utilities for the option that leads to (MAX node)We
then evaluate MIN’s children in increasing order of initial
lower boundLB(n).

To order the children of MAX node, for each MAX node
n, we consider the feasible utility functiow— that mini-
mizes the utility the MIN choice. (This requires a simple
optimization.) The option that maximizes utility st (i.e.,
the optimal choice undex ™) is likely to give a high value
of for pairwise regret and thus represents a potentiallydgoo
adversary. Moreover, once we have generated we can
use it to update the lower bound by considering the actual
regret for each option. MAX choices are evaluated in order
of decreasing utility undew —.

In practice, these heuristics can significantly speed up the
computation of minimax regretin product databases. Table 1
shows that number of pairwise regret checks (LPs) is almost
linear in the number of options in the database; indeed, with
these orderings, MAX nodes are often pruned immediately
without even considering an adversarial choice. (These are

“beta cuts are not possible given the depth of the tree

size | attributes| constraints| num of pairwise checks$
40 4 0 41

200 5 0 207

400 7 10 492

1000 10 0 1003

1000 10 60 1998

1000 15 30 999

Table 1: Number of pairwise regret checks to compute min-
max regret on some sample datasets. We evaluate the search
tree with our heuristics of reference utilities.

experiments run on synthetic data for illustrative purpgodse
Set Recommendations: Setwise Minimax Regret

We now consider the modification of the techniques above
for setwise minimax regret. Naturally, setwise max regret
is more computationally demanding, requiring selection of
a set of options. However, it is still possible to formuldte t
computation in a MIP for configuration problems. Database
problems are more challenging: the adversarial search pre-
sented above for single-item recommendation can be ap-
plied directly, with replacement of a single move by the rec-
ommender (MIN player) by: moves, corresponding to the
choice ofk options for the slate. However, performance can
take a dramatic hit as the size of the desired recommenda-
tion set increases. However, we develop a simple heuristic
hill-climbing strategy that seems to provide very good rec-
ommendation sets in practice.

Configuration problems: MIP formulation For config-
uration problems we formulate the problem of setwise min-
imax regret following the general strategy for single-opti
minimax regret, formulating as a (MIP) minimization with
exponentially many constraints. We use a constraint gen-
eration procedure to prevent enumeration of the entire con-
straint set (Boutilieret al. 2006a; 2004). However, there
are some critical differences in the formulation, which we
describe here.

Setwise minimax regret for configuration problems can be
formulated as the following MIP.

M

min
M, 1}, X3,V

stM> > Vi Vwe Vert (10)
1<j<k

Vi>w-(xh — X))+ (I, — D)myiy (A1)

Vi€ [l,k]A Vw e Vert (12)

> IL=1 VYwe Vert (13)
1<j<k

I, €{0,1} (14)

Vi >0 Vjellk],vywe Vert (15)

This MIP minimizesM by: (a) choosing: options (or
configurationsx; designated by variableX’ (where each
X7 is a vector ofn attributes) for the recommendation set;

(b) selecting, for each adversany, one of those options
(the jth option) as the choice that has minimum max regret
against an adversary, and ensuring thats greater than the
true regret of thgth option relative to every possible choice
of adversary utility function and option.

Note however that this constraint need not be applied to
(continuously many) utility functions or exponentially ma
adversarial choices. In the MIP, we post these constraints
only for each vertex ofV (i.e., w € Vert(W)) and for
the optimal product choices, for that vertex. This relies
on the observation that regret maximized at verticeB/of
and, for any adversarial choice @f, the adversarial option
that maximizes the pairwise regret for any user choice is the
optimal option forw.>

However, this MIP still requires (potentially) exponen-
tially many constraints, one for each elementl@tt ().

We can make computation much more effective by applying
constraint generation, observing that at the optimal gmiut
very few of these constraints are likely to be active. Our
procedure works as follows: we solve a relaxed version of
the MIP above—thenaster problem-using only the con-
straints corresponding to a small subsétn C Vert(W)

of the constraints in the MIP above. We then test whether
any unexpressed constraints are violated at the current so-
lution. This involves computing the true setwise max re-
gret of the slate generated by the master problem. If the
true setwise max regret is of the slate is greater thame
know that a constraint has been violated. Specifically, the
computation of setwise max regret will produce the element
w € Vert(W) and optimal producks, that corresponds to
the maximally violated constraint at the current master so-
lution. So if a constraint is violated, we add this maximally
violated constraint toGen, tightening the MIP relaxation,
and repeat; if not, we are assured that the current solution
minimizes setwise max regrét.

In the formulation,my;, is an arbitrary big number, that
we need to encode the fact that, for any givenonly the
option with the highest utility (among those in the slatethwi
respect tav contributes to the actual setwise regret.

The SMR maximization subproblem can be also encoded
with a MIP, similar to (Boutilieret al. 2006b). The optimiza-
tion makes use of a decision variable to explicitly représen
the setwise regret)/, to be maximized and we constrain
M to be greater than the single max regvéR(x;, W), for
each option in the slate.

Database Problems: A Hill-climbing Strategy As dis-
cussed above, while minimax search can be applied directly

5V is the actual regret of optiaK? of the slate with respect to
the utility w when the corresponding, is activated. For anyv,
one and only ondy, is set tol. In order to minimizeM, the op-
timization will activate thel, corresponding to th&’ with lower
actual regret. The first constraint (10) captures the idetftr a
slate of options, giverv, the regret of the joint slate is the mini-
mum among the individual values of regret (in the summatédin,
but one term are zeros).

®Note that the adding a new constraint requires the intréotct
of new variables to the master problem. Every time we add a new
w to Gen, k new variabled andV are necessary.

to the problem of setwise minimax regret for database prob-
lems, scaling is sometimes a concern. We now present a
heuristic hill-climbing strategy that scales much moreeff
tively. We describe it in the context of database problems,
but it can also be used directly for configuration problems.
The central idea is that is possible to modify a given
recommendation séf in such a way that setwise max re-
gret cannot increase, and usually decreases until a high
quality set is found. We define thdMR-transformation
T to be a mapping that refines a recommendationZset
by partitioning the current feasible utility spad& into
{W2Z—xi} vx; € Z, as discussed in Observation 1. In each
partition we compute thsingle recommendation that has
minimax regret in that region of utility space, and define the
new set recommendatidi(Z) to be the collection of these
(single) minimax-optimal recommendations.

Definition 2 Define theMMR-transformatioril” : Z — Z/,
whereZ = {x,...,xx}, tobeT(Z) = {x},...,x}} such
thatforalll < < k:

x, = MMR-Opt(W2%—%i)

We can show thdl’ cannot increase setwise max regret.

Observation2 For any set recommendation Z

SMR(T(Z)) < SMR(Z)

We use the MMR-transformation to define our heuristic
search strategy to produce good recommendation sets; in-
tuitively, we repeatedI{” until a fixed point (with respect to
setwise max regret, not the set itself) is found.

Alg 1 Hill-climbing-T algorithm (HCT)
The algorithm considers an initial s&t, and rewritesZ us-
ing T" until a fixed-pointis found.

e RepeatZ :=T(2)
e Until SMR(T(Z),W)= SMR(Z,W)

We initialize the slat&. using the current solution strategy
(CSS), empirically, this seems to produce the most promis-
ing recommendation sets. Fbr= 2, this means that the
initial setisZ = {z}, 2"}, wherex* = MMR-Opt(W),
andz® = MRAdv(W).

For larger setsi{ > 2), there is not a standard definition
of the CSS. We propose to use the following strategy, that
we callchain of adversariego generate the initial slate. We
start from{z;,, " } and repeatedly maximize setwise max
regret given the current set, in some sense maximizing the
diversity of choices from perspective of utility space. ghi
gives the sefx!, ..., x"} where:

{

The chain of adversaries requires to solve single minimax
regret once, and theh — 2 setwise regret maximizations.
The chain of adversaries can be seen as a generalization of
CSS to sets of any size, and could also be considered as an
alternative, faster strategy to select recommendations.

x! =
x' =

Xy
Adv({x*, ., x'7L W) 2<i<k

=CSS

06

PHCT

05

o
=
T

max regret
°
w

o
N
T

01f

4 5
steps

Figure 3: The hillclimbing strategy based on setwise regret
outperforms the current solution strategy in this expenine
(20 runs).

Myopic Elicitation

In addition to produce final recommendations, our criterion
can also be used as a driver for further elicitation of thie uti
ity function of the user. In fact, whenever we consider aeslat

We performed some preliminary experiments in order to
evaluate our recommendation strategy from the prospective
of elicitation. We are interested in quantifying the reduc-
tion of regret in practice. In Figure 3 we compare the ef-
ficiency of an elicitation based on oWiMR criterion and
the current solution strategy (CSS), considering a syhiathe
dataset withb000 options andl0 attributes. We plot max
regret in function of the number of queries (step&)/R is
optimized using the hill-climbing strategy (HCT).

Example Critiquing

As an evaluation setting, we apply our regret-based recom-
mender to example-critiquing. This domain is interesting
because current systems usually rely on heuristics and we
expect that an utility-based approach can be greatly benefi-
cial.

Critiquing is a setting where the user expresses feedback
on options that the system shows to her. In particular we
consider a particular version of critiquing, often callée t
dynamic critiquingmodel (Reillyet al. 2005), where &ur-
rent product or recommendation is displayed, and the user is
invited to move to a different product by choosing particu-
lar actions (laid out in the interface) that change the pobdu
They can includenit critiques which request modification
of a particular product attribute; e.g., “give me a laptogtth

of recommendations, the user may give us some feedback, jg lighter than the current one.”
perhaps selecting the option that she prefers among those in e alternativesuggestionsr compound critiquesire

the set. This information is very valuable, and as we have

used in which multiple attributes (“lighter and faster pro-

seen in the initial example, can be used to reduce regret. It -assor. but more expensive”) are tweaked, or in which a se-
is therefore interesting to assess the value of a recommenda Iection’is made from a system-suggested’ set of alternative

tion set also with respect to the possible feedback.

An important observation is that in the case of compari-
son queries (the user selects the preferred option in g slate
the set oft optimal recommendations that minimize setwise
regret is also the optimal choice set for a comparison query
with respect tanyopic worst case regrétVR), a measure of
the value of information of a query.

TheWorst-case Regré¥VR) of a comparison query based
on a choice seZ. = {xy, .., x } is defined as

WR({x1,..,x}) = max[MMR(WZ7>1), . MMR(W?#~**)]
(16)

WR considers the “single” max regret in each possible
scenario. It is possible to verify thaVR(Z) < SMR(Z);
the worst case regret is always lower (or equal) than the set-
wise max regret.

The optimality of minimax setwise recommendations (we
omit the full proof for reasons of space) with respeciita?
is based on the consideration (an extension of Observafion 2
that the transformatioi introduced in the previous section
is also such tha¥ MR (T(Z)) < WR(Z) (the proof requires
considering the different partitions imposed by Observa-
tions 1 and compare the two expression componentwise).
We call Z* the optimal recommendation set according to
setwise regret. A sét’ such thatV R(Z') < W R(Z*) but
SMR(Z') > SMR(Z*) leads to contradictioh.

’If we apply the transformatioff” to Z’ we obtain a seZ such

products (“let me see laptop 3 instead of the current one”).

The set of possible critiques is generated by the system,
and the user chooses one of the possible actions. At each in-
teraction, the user may choose to critique the current grtodu
if she is not completely satisfied with it, or simply because
she wishes to explore the product space in more depth.

In general those systems use heuristics to generate the set
of possible critiques. However, we expect that better perfo
mance can be obtained if critiquing suggestions are selecte
according to a decision-theoretically sound criterion as o
setwise minimax regret.

In order to implement our approach, it is necessary to
give a precise semantics to each of the critiquing actions.
We identify two main reasons a user will critique an option.
First, she may want to explore the product space in an effort
to better understand either the space of feasible options or
her own preferences. This latter desire makes sense espe-
cially when one adopts the view commonly held in behav-
ioral economics that decision support systems should help
peopleconstructtheir preferences (not just articulate them)
(Slovic 1995). Second, she may wish to improve the current
product, making tradeoffs among her preferences for differ
ent attributes. Itis this lattexploitiveorimprovement mode
that critiquing systems fail to account for adequately when
deciding on appropriate product suggestions. In this evalu

that SMR(Z) < WR(Z') < WR(Z*) < SMR(Z") but this

means thabMR(Z) < SMR(Z"), contradicting the optimality of
Z* with respect taSMR.

tion we use critiques of the latter type to constrain the et 0 and a comparison operators from the set>,—,=. An ex-

possible user utility functions. ample pattern might be{[Price >], [ProcessorSpeed]}.
In the following, we describe our simulation setting and Second, the algorithm uses APriori to find recurrent cri-
present our results. tiquing patterns; a compound critique based on a pattern

. is then presented to the user it has sufficient support in the
Experiments product database. In our experiments, the support thréshol

To validate our regret-based approach to critiquing we de- is setto 0.3 and selection of compound critiques correspond

signed a framework that simulates a full interaction of ause o thelow-supportstrategy in (Reillyet al. 2004).

with a user interface. As in a real system, each simulation T
comprises a number of cycles of interaction, each showing a Incremental Critiquing

current product which the user can critique using either uni |ncremental critiquing (Reillyet al. 2005) (IC) improves

or the selection of one of the suggested recommendations. the basic dynamic critiquing model by incorporating a user

The simulated user continues the critiquing process until model. While suggestions are still based on the APriori al-
the perceived increase in utility is lower than some thresh- gorithm (as above), the retrieval of the next product associ
old. We assume that among all possible critiquing actions, ated with a critiquing action is based oqaality metricthat
the one with highest perceived improvement will be chosen values both thecore given to the product by the preference
by the user. model and its similarity to the current product.

In our experiment, at each interaction the system displays: |n the implementation we developed for our experiments,
we take advantage of the fact that the preference ordering
. L over attributes is known: the score is dictated by a linear
» a choice ofunit critiquesof the current product (they re- ity function that gives equal weight to all attributeEne

quest the modification of a particular product attribute), jnitial product is the option with maximum utility. When

¢ a set ofsuggestionsalternative options that can change retrieving the next example from the set of products that sat

e thecurrent product

focus for the search, presented as such or labeledras isfy the user-chosen critique, we select the produthat
poundc_rmques (“lighter and faster processor, but more maximizesscore(x) - Similarity(x, y), wherey is the prod-
expensive”) uct recommended at the previous cycle, amdre is the

At each step, the user can choose to either select the cur-heurIStIC utility function.

rent product (and finish the interaction) or to tweak it in or- |ncremental Critiquing: MAUT
der to improve it and get better recommendations in the next
cycle. Another implementation of incremental critiquing (Reidy

We compare our regret-based approach to three other ap_al. 2007) uses asmplg multi attribute utility (MAUT) mo.d_el
proaches that use compound critiques. In our case, we uset0 make recommendations and generate compound critiques
the generation of a set of recommendations (based on set-(rather than similarity). In this approach, a simple additi
wise regret) to display as alternatives. One is selected as Utility modelw is generated, initially giving equal weight to

current producand the others are disp|ayed$@gestion3 a” attri_bu_tes; each time an attribute iS.Critiqued, its gVH!I
We briefly review the different critiquing approaches and 1S multiplied by a constant (and all weights renormalized).
then we present the experimental resullts. The original design of this algorithm makes use of param-
_ o eterized value functions for each attribute, where theevalu
Dynamic Critiquing taken by the current option is considered preferred. Since

our experimental set up assumes that the local preference
use of a particular similarity metric to retrieve the cutren ordering over attribute values is known, we instead assume

product and uses the APriori datamining algorithm to pro- & linear utility model. _ S
pose alternative compound critiques. The algorithm dynam- Suggestions are generated using optimization with respect
ically generates compound critiques by discovering com- t0 the estimated utility model, and thiebest products are
mon feature patterns among the set of products. Essentially Presented as alternative cases. A limitation of this apgroa
each compound critique describes a set of products in terms IS its reliance on a fixed utility model (as opposed to rea-
of the features they have in common. For example in the PC Soning with the space of possible user utilities). Morepver
domain, a typical compound critique might be “Faster CPU Options thatall have high value in a single utility sample
and a Larger Hard Drive.” Whenever a product is shown to are unlikely to be diverse or informative enough to generate
the user as the current product, the APriori datamining-algo useful distinctions.
rithm is used to quickly discover these patterns and convert Regret-based critiquing
them into a set of suggested compound critiques. Each com-
pound critique corresponds to a product that is, among all Our version of dynamic critiquing exploits setwise minimax
products satisfying the pattern most similar to the current regret using the ideas above. Specifically, at any point in
one. the interaction cycle, we generate the current optimal rec-
The generation of suggestions consists of two steps. First, ommendation set (with respect to minimax setwise regret),
each product is matched against the current product to pro- and propose one of these options a current product. The re-
duce lists ofcritique patternseach comprising an attributes mainder of the set is used to display suggestions.

The dynamic critiquingmodel (Reillyet al. 2004) makes

1 T T
—=—Regret-based
oo ——I|C: wsim
——IC: maut
0.8
0.7+
D 06
>
9 0.5
x
@©
£ o4
0.3g
0.2
01p
L : . s m 1 m
steps
Figure 4. Maximum regret of the recommended op-

tion at each step for four algorithms: regret-based cri-
tiquing (regret), dynamic critiquing with compound cri-
tiques generated with APriori (DC), incremental critiqgiin
with weighted similarity and APriori (IC) and incremental
critiquing with a multiattribute utility model (IC maut).

Empirical Results

In the experiments we compare the four different versions of
dynamic critiquing discussed above: the original dynamic
critiquing algorithm (similarity plus APriori), incremésl
critiquing, incremental critiquing with MAUT, and regret-
based critiquing. We used a C implementation of the APri-
ori algorithm (Bodon 2003). All systems make available
unit critiques of any attribute (and user’s adopt an expkcte

improvement semantics). We evaluate the performance of

all algorithms with respect to recommendation efficiency

03 —=—Regret-based|
——|C: wsim
——IC: maut
——DC

0.251

real loss

Figure 5: True regret (real loss) of the recommended op-
tion at each step for four algorithms: regret-based cri-
tiquing (regret), dynamic critiquing with compound cri-
tiques generated with APriori (DC), incremental critiqgin
with weighted similarity and APriori (IC) and incremental
critiquing with a multiattribute utility model (IC maut).

gret (i.e., worst-case loss); so one might wonder whether
other techniques find better products despite being unable t
“prove” that they are good. Fig. 5 shows this not to be the
case. While other critiquing techniqgues recommend prod-
ucts that are much better than their regret-bounds suggest,
regret-based critiquing is able to consistently find tha-opt
mal product (and find a near-optimal product in as few as
five or six interaction cycles). By contrast, the other three
methods are unable to identify the optimal option at conver-
gence.

Conclusions

and offer some speculative examination of regret-based cri In this paper we presented a novel formalization of recom-
tiquing in terms the tradeoff between cognitive cost and mendations of a joint set of alternatives based on the notion
number of compound critique options presented at each in- of regret. The criterion that we propose, setwise max regret
teraction. represents an intuitive extension of the traditional regrie

We evaluate the different critiquing methods by compar- terion for single recommendations.
ing the quality of the recommendations with respectto max We show how optimal recommendation sets (with re-
regret. We tested the methods on a real database of 200spect to our criterion) can be computed with mixed integer
apartments, using randomly drawn utility functions (as de- programming (MIP) methods and the constraint generation
scribed above), antl = 3 suggested products at each in- technique when options are constructed from a set of config-
teraction cycle. All results are averaged over 20 simulated uration constraints. Alternatively, set recommendaticars
users. Fig. 4 shows the maximum regret of the recom- be obtained using a hill-climbing strategy interleavedhwit
mended product at each stage of the interaction. We note adversarial search in discrete settings.
that regret-based critiquing outperforms the other method We discuss the problem of utility elicitation, showing
of generating compound critiques by a wide margin. This that our recommendation strategy reduces max regret more
is true when considering both the “anytime” profile of the quickly than any other possible choice. Finally we present
method (i.e., the degree to which minimax drops) and its fi- an application of these principles for critiquing systems.
nal convergence: our technique converges on a productwho Our reliance on explicit utility modeling and minimax

max regret is about 3% on average, while the MAUT incre-
mental critiquing settles at about 10% (and the others worse
with dynamic critiquing unable to reduce max regret to less

regret provides a powerful new means of generating good
critiques and making good product recommendations. Our
regret-based critiquing recommender can often lead te opti

than 18%). mal recommendations using very few, say, compound cri-
More interesting is the fact that regret-based critiquifig o tiquing interactions, and outperforms other dynamic cri-

fers better “actual” recommendations, as measured by true tiquing techniques both in speed of convergence and the

regret (difference from the true optimal recommendation). quality of the final recommendations.

Regret-based critiquing is designed to attackindson re- The incorporation of noisy feedback is an important next

step; we are currently considering the possibility of a-clar
ification dialogue. The idea is to verify information that is
sensitive with respect to regret.

Largely unaddressed in our critiquing model is the need
for users to explore the product space, one of the main ad-
vantages of critiquing. We are currently developing hybrid
models in which the system and/or user explicitly distin-
guishes exploratory actions from improving actions. Even
with such a distinction, there is still the interesting digs
of modeling usesearch processes a way that would allow
insight into preferences to be drawn during exploration as
well. Finally, the development of models of cognitive costs
using techniques from behavioral economics, decision the-
ory and psychology remains an important avenue of future
research.

References

Fahiem Bacchus and Adam Grove. Graphical models for prefer-
ence and utility. InProceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence (UAI-95)pages 3-10, Mon-
treal, 1995.

Ferenc Bodon. A fast apriori implementation. In Bart Goktha
and Mohammed J. Zaki, editordroceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations
(FIMIP'03), volume 90 of CEUR Workshop Proceeding®el-
bourne, Florida, USA, 19. November 2003.

Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-
Networks: A directed graphical representation of condaiautil-

ities. In Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence (UAI-01) pages 5664, Seattle,
2001.

Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. et
collaborative filtering. In Christopher Meek and Uffe Kjafu
editors,UAl, pages 98-106. Morgan Kaufmann, 2003.

Craig Boutilier, Tuomas Sandholm, and Rob Shields. Eiigiti
bid taker non-price preferences in (combinatorial) aungio In
Proceedings of the Nineteenth National Conference on diifi
Intelligence (AAAI-04)pages 204-211, San Jose, CA, 2004.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dalhei-Sc
urmans. Constraint-based optimization and utility edit@n us-
ing the minimax decision criteriorArtifical Intelligence 170(8—
9):686-713, 2006.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Datei8e
mans. Constraint-based optimization and utility eliéitatusing
the minimax decision criterionArtif. Intell., 170(8-9):686—713,
2006.

Craig Boutilier. A POMDP formulation of preference eliditan
problems. IrProceedings of the Eighteenth National Conference
on Artificial Intelligence (AAAI-02)pages 239—246, Edmonton,
2002.

Darius Braziunas and Craig Boutilier. Preference elitatind
generalized additive utility. IAAAI 2006.

Darius Braziunas and Craig Boutilier. Minimax regret-lzheéc-
itation of generalized additive utilities. IRroceedings of the
Twenty-third Conference on Uncertainty in Artificial Iftgénce
(UAI-07), pages 25-32, Vancouver, 2007.

Darius Braziunas and Craig Boutilier. Minimax regret baskck
itation of generalized additive utilities. IRroceedings of the
Twenty-third Conference on Uncertainty in Artificial Iftgénce
(UAI-07), pages 25-32, Vancouver, 2007.

Urszula Chajewska and Daphne Koller. Utilities as randoni va
ables: Density estimation and structure discoverproceedings
of the Sixteenth Conference on Uncertainty in Artificialellit
gence (UAI-00)pages 63—-71, Stanford, 2000.

Urszula Chajewska, Daphne Koller, and Ronald Parr. Makéag r
tional decisions using adaptive utility elicitation. Rroceedings
of the Seventeenth National Conference on Artificial ligetice
(AAAI-00) pages 363—369, Austin, TX, 2000.

Peter C. Fishburn. Interdependence and additivity in varitate,
unidimensional expected utility theorynternational Economic
Review 8:335-342, 1967.

Ralph L. Keeney and Howard RaiffaDecisions with Multiple
Objectives: Preferences and Value Trade-offéley, New York,
1976.

Panos Kouvelis and Gang YRobust Discrete Optimization and
Its Applications Kluwer, Dordrecht, 1997.

David McSherry. Diversity-conscious retrieval. BCCBR

'02: Proceedings of the 6th European Conference on Advances
in Case-Based Reasoningages 219-233, London, UK, 2002.
Springer-Verlag.

Robert Price and Paul R. Messinger. Optimal recommendation
sets: Covering uncertainty over user preference®raceedings

of the Twentieth National Conference on Atrtificial Intefiigce
(AAAI'05), pages 541-548, 2005.

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry
Smyth. Dynamic critiquing. In Peter Funk and Pedro A.
Gonzalez-Calero, editorECCBR volume 3155 of ecture Notes
in Computer Scien¢gages 763-777. Springer, 2004.

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry
Smyth. Incremental critiquing<nowl.-Based Syst18(4-5):143—
151, 2005.

James Reilly, Jiyong Zhang, Lorraine McGinty, Pearl Pu, and
Barry Smyth. Evaluating compound critiquing recommenders
a real-user study. In Jeffrey K. MacKie-Mason, David C. leark
and Paul Resnick, editor&CM Conference on Electronic Com-
merce pages 114-123. ACM, 2007.

Stuart Russell and Peter Norvidrtificial Intelligence: A Mod-
ern Approach Prentice-Hall, Englewood Cliffs, NJ, 2nd edition
edition, 2003.

Ahti Salo and Raimo P. Hamalainen. Preference ratiosuttim
attribute evaluation (PRIME)—elicitation and decisiongedures
under incomplete informatiolEEE Trans. on Systems, Man and
Cybernetics31(6):533-545, 2001.

Leonard J. SavageThe Foundations of StatisticaWiley, New
York, 1954.

Paul Slovic. The construction of preferend&merican Psychol-
ogist 50(5):364-371, 1995.

Barry Smyth and Paul McClave. Similarity vs. diversity. In
David W. Aha and lan Watson, editor&cCBR volume 2080
of Lecture Notes in Computer Scienpages 347-361. Springer,
2001.

