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Abstract

Folksonomies, otherwise known as Collaborative Tagging
Systems, enable Internet users to share, annotate and search
for online resources with user selected labels called tags. Tag
recommendation, the suggestion of an ordered set of tags dur-
ing the annotation process, reduces the user effort from a
keyboard entry to a mouse click. By simplifying the anno-
tation process tagging is promoted, noise in the data is re-
duced through the elimination of discrepancies that result in
redundant tags, and ambiguous tags may be avoided. Tag rec-
ommenders can suggest tags that maximize utility, offer tags
the user may not have previously considered or steer users
toward adopting a core vocabulary. In sum, tag recommenda-
tion promotes a denser dataset that is useful in its own right
or can be exploited by a myriad of data mining techniques for
additional functionality.

While there exists a long history of recommendation algo-
rithms, the data structure of a Folksonomy is distinct from
those found in traditional recommendation problems. We first
explore two data reduction techniques, p-core processing and
Hebbian deflation, then demonstrate how to adapt K-Nearest
Neighbor for use with Folksonomies by incorporating user,
resource and tag information into the algorithm. We further
investigate multiple techniques for user modeling required to
compute the similarity among users. Additionally we demon-
strate that tag boosting, the promoting of tags previously ap-
plied by a user to a resource, improves the coverage and ac-
curacy of K-Nearest Neighbor.

These techniques are evaluated through extensive experimen-
tation using data collected from two real Collaborative Tag-
ging Web sites. Finally the modified K-Nearest Neighbor
algorithm is compared with alternative techniques based on
popularity and link analysis. We find that K-Nearest Neigh-
bor modified for use with Folksonomies generates excellent
recommendations, scales well with large datasets, and is ap-
plicable to both narrow and broadly focused Folksonomies.

Introduction

Folksonomies, also known as Collaborative Tagging Sys-
tems, have emerged as a powerful trend allowing Internet
users to share, annotate and explore online resources through
personalized labels. Several Collaborative Tagging Sys-
tems have recently gained popularity attracting millions of
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users. Delicious1 supports users as they bookmark URLs.
Flickr2 allows users to upload, share and manage online pho-
tographs. Citeulike3 enables researchers to manage and dis-
cover scholarly references. Still other Collaborative Tagging
Systems specialize in music, blogs and business documents.

At the core of Collaborative Tagging Systems is the post:
a user describes a resource with a set of tags. These
tags may be descriptive (“Folksonomies”), subjective (“awe-
some”), organizational (“toread”) or completely idiosyn-
cratic (“jfgwh”). Taken in isolation an individual annotation
allows a user to organize web resources for later use: re-
sources can be easily sorted, aggregated and retrieved. Re-
sources may be annotated with multiple tags allowing a re-
source to be identified with several topic areas rather than
pigeonholed in a single directory. Moreover users need not
conform to a predefined vocabulary or rigid hierarchy but
may annotate a resource with any tag they wish thereby re-
ducing user effort and limiting the entry cost.

However the utility of tagging extends beyond their im-
mediate use. Taken as a whole, the aggregation of many
annotations results in a complex network of interrelated
users, resources and tags often referred to as a Folkson-
omy (Mathes 2004). The opportunity to explore the Folk-
sonomy unburdened by a preconceived navigational or con-
ceptual hierarchy is crucial to the utility and popularity of
Folksonomies. Users are able to share or discover resources
through the collaborative network and connect to other users
with related interests. Collaborative Tagging Systems can
identify groups of like-minded users, catering not only to
mainstream but also to non-conventional users who are often
under-served by traditional Web tools. Furthermore, users
may enjoy the social aspects of collaborative tagging, at-
tracted by a sense of community not offered by either on-
tologies or search engines.

A distinct advantage of Folksonomies is the richness of
the user profiles. If a user is interested enough in a resource
to annotate it, the tag describes the user as much as it de-
scribes the resource. As users annotate resources, the system
is able to track their interests. These profiles are a powerful
tool for data mining algorithms.

1delicious.com
2www.flickr.com
3www.citeulike.org



Even though tags offer many benefits both in the short
and long term, they also present unique challenges for rec-
ommendation algorithms. Most Collaborative Tagging Ap-
plications permit unsupervised tagging; users are free to use
any tag they wish to describe a resource. This is often done
to reduce the entry cost of using the application and make
collaborative tagging more user-friendly. Unsupervised tag-
ging can result in tag redundancy in which several tags have
the same meaning or tag ambiguity in which a single tag
has many different meanings. Such inconsistencies can con-
found users as they attempt to utilize the Folksonomy.

Tag recommendation provides a means to overcome these
problems. It reduces the user effort to a mouse click rather
than a keyboard entry. By reducing the effort users are en-
couraged to tag more frequently, apply more tags to an in-
dividual resource, reuse common tags, and perhaps use tags
the user had not previously considered. Moreover, user error
is reduced by eliminating redundant tags caused by capital-
ization inconsistencies, punctuation errors, misspellings and
other discrepancies. The tag recommender can further pro-
mote a core tag vocabulary steering the user toward adopt-
ing certain tags while not imposing any strict rules. The tag
recommender may even avoid ambiguous tags in favor of
tags that offer greater information value. The final result is
a cleaner, denser dataset that is useful in its own right or for
further data mining techniques.

However the data generated through Collaborative Tag-
ging differs from that common in recommendation algo-
rithms. The introduction of tags manifests a third dimen-
sion which must be integrated into recommenders that tra-
ditionally incorporate only two dimensions. In this paper
we demonstrate how K-Nearest Neighbor may be adapted
to recommend tags in Folksonomies. We describe how both
user and resource information can be directly applied in the
algorithm improving both coverage and accuracy while re-
ducing computational costs. In addition several user models
are explored including vectors over the set of tags, vectors
over the set of resources, combinations of these two and fea-
tures derived through Hebbian deflation.

The rest of this paper is organized as follows. We be-
gin by presenting some related work involving the use of
recommendations in Folksonomies. We explore the data
structure of folksonomies and discuss two feature reduc-
tion techniques: p-core processing and Hebbian deflation.
We then outline the basic approach used for recommend-
ing tags in Folksonomies and propose modifications to K-
Nearest Neighbor. After a discussion of the datasets and a
description of the experimental methodology, we evaluate
the proposed modifications using data collected from two
real world Folksonomies. Finally, we compare the modified
algorithm with alternative strategies based on popularity and
link analysis.

Related Work
As Collaborative Tagging Applications have gained in popu-
larity researchers have started to explore and characterize the
tagging phenomenon. In (Macgregor and McCulloch 2006)
and (Golder and Huberman 2006) the authors studied the
information dynamics of Delicious, one of the most popular

Folksonomies. The authors discussed how tags have been
used by individual users over time and how tags for an in-
dividual resource stabilize over time. They also discussed
two semantic difficulties: tag redundancy, when multiple
tags have the same meaning, and tag ambiguity, when a sin-
gle tag has multiple meanings. (Macgregor and McCulloch
2006) provide an overview of the phenomenon and explore
reasons why both Folksonomies and Ontologies will have a
place in the future of information access.

There have been several recent research investigations
into recommendation within Folksonomies. Unlike tradi-
tional recommender systems which have a two-dimensional
relation between users and items, tagging systems have
a three dimensional relation between users, tags and re-
sources. Recommender systems can be used to recommend
each of the dimensions based on one or two of the other
dimensions. (Tso-Sutter, Marinho, and Schmidt-Thieme
2008) applies user-based and item-based collaborative fil-
tering to recommend resources in a tagging system and uses
tags as an extension to the user-item matrices. (Nakamoto et
al. 2008a) and (Nakamoto et al. 2008b) use tags as context
information to recommend resources.

Other researchers have studied tag recommendation in
folksonomies. (Jaschke et al. 2007) compares user-
based collaborative filtering and a graph-based recom-
mender based on the Pagerank algorithm to recommend per-
sonalized tags. (Heymann, Ramage, and Garcia-Molina
2008) use association rules to recommend tags and intro-
duce an entropy-based metric to find how predictable a tag
is. (Lipczak 2008) uses the title of a resource, the posts
of a resource and the user’s vocabulary to recommend tags.
The results show that tags retrieved from the user’s vocab-
ulary outperform recommendations driven by resource in-
formation. However the experiment was performed on data
from Bibsonomy, a Folksonomy focused on scientific pub-
lications, and thus might not be applicable to multi-domain
data that cover.

(Xu et al. 2006) presents general criteria for a good
tagging system including high coverage of multiple facets,
high popularity and least-effort. They categorize tags to
content-based tags, context-based tags, attribute tags, sub-
jective tags, and organizational tags and use a probabilistic
method to recommend tags. (Basile et al. 2007) proposes
a classification algorithm for tag recommendation. (Sig-
urbjörnsson and van Zwol 2008) uses a co-occurrence-based
technique to recommend tags for photos in Flickr. The as-
sumption is that the user has already assigned a set of tags
to a photo and the recommender uses those tags to recom-
mend more tags. (Adrian, Sauermann, and Roth-Berghofer
2007) suggests a semantic tag recommendation system in
the context of a semantic desktop. (Song et al. 2008) uses
clustering to make real-time tag recommendation.

Data Structures of Folksonomies
In this section we define the three-dimensional data struc-
ture of a Folksonomy and describe how to construct two-
dimensional projections. We further explore two data reduc-
tion techniques for use with Folksonomies. The first is a data
selection technique, P -core processing, that reduces the size



of the data by removing users, resources and tags that occur
less than a predefined number of times. The second is a data
extraction technique, Hebbian Deflation, which produces a
new set of features from a two-dimensional projection of the
Folksonomy.

Data Models

The data structure of a Folksonomy differs from that com-
mon to most traditional recommendation algorithms. A
Folksonomy can be described as a four-tuple D:

D = 〈U, R, T, A〉 , (1)

where, U is a set of users; R is a set of resources; T is a set
of tags; and A is a set of annotations, represented as user-
tag-resource triples:

A ⊆ {〈u, r, t〉 : u ∈ U, r ∈ R, t ∈ T} (2)

A Folksonomy can, therefore, be viewed as a tripartite
hyper-graph (Mika 2007) with users, tags, and resources
represented as nodes and the annotations represented as
hyper-edges connecting a user, a tag and a resource.

The tripartite nature of Folksonomies make it ill suited
for many traditional data mining techniques. User based K-
Nearest Neighbor for example requires a means to measure
the similarity between users. The introduction of a third di-
mension confounds this task.

Aggregate projections of the data can be constructed,
reducing the dimensionality by sacrificing information.
(Schmitz et al. 2006) The relation between resources and
tags can be formulated as a two-dimensional projection, RT ,
such that each entry, RT (r, t), is the weight associated with
the resource, r, and the tag, t. This weight may be binary,
merely showing that one or more users have applied that tag
to the resource, or it may be finer grained using the number
of users that have applied that tag to the resource:

RTtf(r, t) = |{a = 〈u, r, t〉 ∈ A : u ∈ U}| (3)

Such a measure is equivalent to term frequency or tf com-
mon in Information Retrieval. Similarly, term frequency *
inverse document frequency or tf*idf (Salton and Buckley
1988) can be adapted for use with two-dimensional projec-
tions:

RTtf∗idf(r, t) = RTtf(r, t) ∗ log(|R|/nr) (4)

The tf*idf multiplies the tag frequency by the relative dis-
tinctiveness of the tag. The distinctiveness is measured by
the log of the total number of resources, |R|, divided by the
number of resources to which that tag was applied, nr. Sim-
ilar two-dimensional projections can be constructed for UT
in which the weights correspond to users and tags, and UR
in which the weights correspond to users and resources.

While a portion of the information is lost through this pro-
cess the result is a two-dimensional matrix which can be
readily applied to existing data-mining algorithms such as
K-Nearest Neighbor.

P -Core Processing

Through P -Core Processing users, resources and tags are re-
moved from the dataset in order to produce a residual dataset
that guarantees each user, resource and tag occur in at least p
posts (Batagelj and Zaveršnik 2002) (Jaschke et al. 2007).
Here we define a post to include a user, a resource, and every
tag the user has applied to the resource.

The algorithm iterates through the posts, counting the oc-
currence of users, resources and tags. If the occurrence of
these items does not meet the requisite value, p, all occur-
rences of the item and the posts in which it appears are re-
moved from the dataset. Since removing a post based on
the occurrence of one item reduces the count for the other
items in the post, several passes through the dataset may be
required. The result is a smaller denser dataset.

Several reasons exist to use P -Core Processing. By re-
moving infrequent users, resources and tags noise in the data
is reduced; uncommon items whether they be tags used by
only a few users, unpopular resources, or unproductive users
are eliminated from consideration. Because of their scarcity,
these are the very items likely to confound recommenders.
Moreover, by eliminating infrequent items, the size of the
data may be dramatically reduced allowing the application
of the data mining techniques that would otherwise be com-
putationally impractical. In short, P -Core Processing offers
a means reduce noise and focus on the dense regions of the
data.

Hebbian Deflation

Whereas P -Core Processing offers a means to reduce the
size of a dataset through feature selection, feature extraction
techniques generate entirely new features. Many feature ex-
traction techniques exist such as Principle Component Anal-
ysis and Singular Value Decomposition. However, despite
the utility these techniques provide, their computational cost
and memory requirements make them impractical for use on
extremely large datasets common in Folksonomies. Hebbian
Deflation (Oja and Karhunen 1985) offers a means to ap-
proximate these feature extraction techniques with reduced
computational and memory needs.

Given a two-dimensional projection of the Folksonomy
and a preselected number of features, F, Hebbian Deflation
produces two smaller matrices that approximate the origi-
nal projection. Consider for example the two-dimensional
projection RT; Hebbian Deflation will produce two new ma-
trixes, RX and TX, such that:

RT (r, t) ≈

F∑

i=0

RXri ∗ TXti (5)

Since F is often far smaller than either the number of re-
sources or the number of tags the resultant matrixes require
many orders of magnitude less space than the original pro-
jection. Analogous features can be extracted from UR and
UT.

The algorithm requires many inputs: F , the number of
features to be extracted; epochs the number of epochs to
train each feature; and lr the learning rate at which the fea-
tures are adjusted.



Features are extracted one at a time. To begin, the fea-
tures are set to random weights. Then, for each resource-tag
pair in RT the actual weight is compared with the current
approximation. The features are adjusted based upon the
degree of the error, the learning rate and the corresponding
feature in the opposing matrix. These adjustments are re-
peated for the predetermined number of epochs before the
feature is finally adopted and the next feature is trained.

Input: RT , a projection of a Folksonomy; F , the
number of features to derive; epochs, the
number of epochs to train each feature; lr, the
learning rate

Output: RX and TX, the Hebbian features
for f = 1 → features do

for epoch = 1 → epochs do
foreach (r, t) ∈ RT do

aprox =
∑f

i=1 RXri ∗ TXti

error = RT (r, t)− approx
RX(r, f) += lr ∗ error ∗ TX(t, f)
TX(t, f) += lr ∗ error ∗ RX(r, f)

end

end

end
return RX and TX;

Algorithm 1: Hebbian Deflation

Like many learning algorithms, Hebbian Deflation may
result in overfitting. Overfitting occurs when the features
over specialize in the training data at the expense of general-
ization. In order to combat this, a percentage of the training
data may be held out. At each epoch, the Root Mean Square
Error (RMSE), is calculated both for the ability of the fea-
tures to approximate the training data and for their ability to
approximate the holdout set. If it is observed that the RMSE
is rising for the holdout data even as it is dropping for the
training data, overfitting can be assumed. Then the training
of the current feature may be halted and the training of the
next feature can begin.

Feature extraction through Hebbian Deflation offers many
benefits. It may offer a means to represent the data in a
smaller space, but the features themselves may offer insights
into the data. Domain experts can analyze features for their
characteristics. Users may navigate over the reduced feature
space rather than the larger Folksonomy. Users, resources
and tags may be modeled as a vector over the set of features
allowing reduced computation. Finally, Hebbian Deflation
may reveal similarities among items in a Folksonomy that
remained hidden when the data was expressed as a projec-
tion using tf or tf*idf.

Tag Recommendation in Folksonomies
Recommendation algorithms serve a vital role in Web ap-
plications allowing users to focus on a few relevant items
rather than being overwhelmed by a large unordered set of
mostly inappropriate options. Tag recommendation in Folk-
sonomies reduces the user effort to a mouse click rather than
a keyboard entry. This reduction in effort encourages tag-
ging more resources, promotes the application of multiple
tags to a resource, and may present the user with useful tags

the user had not considered. Moreover by eliminating the
keyboard entry tag recommendation reduces capitalization
inconsistencies, punctuation errors, misspellings, and other
discrepancies that add noise to the data.

The recommendation of high quality tags benefits the user
beyond the annotation process itself. Resources are often
tagged for future reference; by providing the most relevant
tags retrieval of the resources are made easier. Moreover,
when resources are tagged in order to characterize content,
the recommendation of clear descriptive tags can improve
the online experience for other users that are navigating the
site. This is particularly relevant for resources that are not
easily evaluated by computers such as photos, videos, and
music.

Tag recommendation may also be used to assert control
on tag usage without encumbering the user with a strict vo-
cabulary. Ambiguous tags such as can be avoided in pref-
erence of less ambiguous tags Moreover, the recommender
can offer tags with a higher level of detail. The overuse of
redundant tags can also be thwarted by consistently recom-
mending highly used tags while eschewing their less used
counterparts. The result is cleaner denser dataset that is use-
ful in own right for navigation, or for further data mining
techniques.

Basic Recommendation

In traditional recommendation algorithms the input is often
a user, u, and the output is a set of items, I. The user experi-
ence is improved if this set of items is relevant to the user’s
needs.

Tag recommendation in Folksonomies however differs in
that the input is both a user, u, and a resource, r. The output
remains a set of items, in this case a recommended set of
tags, Tr. One of the difficulties presented by tag recommen-
dation is the means to incorporate both user and resource
information into the recommendation algorithm.

Perhaps the simplest recommendation strategy is merely
to recommend the most commonly used tags in the Folk-
sonomy. However such a strategy ignores both user and re-
source information.

Alternatively given a user-resource pair a recommender
may ignore the user and recommend the most popular tags
for that particular resource. This strategy is strictly resource
dependent and ignores the tagging habits of the user. In a
similar fashion a recommender may ignore the resource and
recommend the most popular tags for that particular user.
While such an algorithm would include tags frequently ap-
plied by the user, it ignores the resource information and
may recommend tags irrelevant to the current resource.

An algorithm for tag recommendation in Folksonomies
therefore requires a means to include both user and resource
information in the process so that the recommendation set
includes tags that are relevant to the resource and also repre-
sent the user’s tagging practice.

K-Nearest Neighbor

User Based K-Nearest Neighbor is a commonly used rec-
ommendation algorithm in Information Retrieval that can be



modified to include both user and resource information. Tra-
ditionally it finds a set of users similar to a query user. From
these neighbors a set of recommended items it constructed.

We can modify this approach by ignoring users that have
not tagged the query resource. Once a neighborhood of sim-
ilar users has been discovered, the algorithm considers only
on those tags that have been applied to the query resource
and calculates a weight for each tag, wt, the average simi-
larity of the neighbors that have applied the tag to the query
resource. Thus the algorithm is resource driven through both
the selection of neighbors and the selection of tags. Still it
remains user driven in that neighbors are determined through
a user model.

Input: uq, a query user; rq, a query resource; k,
number of neighbors to consider; n, the number
of tags to recommend

Output: Tr , a set of recommended tags
foreach u ∈ U that has annotated rq do

su = similarity(u, uq)
end
Let N be k nearest neighbors to uq;
foreach u ∈ N do

foreach t that u applied to rq do
wt += su/k

end

end
Sort tags by wt;
Let Tr be the top n tags;
Return Tr

Algorithm 2: K-Nearest Neighbor Modified for Folk-
sonomies

K-Nearest Neighbor is considered a lazy algorithm; the
bulk of its computation takes place after the query. Tra-
ditional approaches would require a comparison between
the query user and every other user. However, since the
adapted algorithm for K-Nearest Neighbor considers only
those users that have annotated the query resource, the num-
ber of similarities to calculate is drastically reduced. The
popularity of resources in Folksonomies follows the power
law and the great majority of resources will benefit from this
reduced reduction in computation, while a few will require
additional computational effort. As a result the adapted K-
Nearest Neighbor scales well with large datasets, a trait not
shared by many other recommendation algorithms.

User Models

Applications vary in the way they model users. Possible
methods include recency, authority, linkage or vector space
models. In this work we focus on the vector space model
(Salton, Wong, and Yang 1975) adapted from the Informa-
tion Retrieval discipline to work with Folksonomies. Each
user, u, can be modeled as a vector over the set of tags,
where each weight, w(ti), in each dimension corresponds
to the importance of a particular tag, ti.

~ut = 〈w(t1), w(t2)...w(t|T |)〉 (6)

In calculating the vector weights a variety of measures can
be used: binary, term frequency or term frequency*inverse

document frequency. In this work we focus on term fre-
quency. Similarly a user can be modeled as a vector over
the set of resources where each weight, w(ri), corresponds
to the importance of a particular resource, ri.

~ur = 〈w(r1), w(r2)...w(r|R|)〉 (7)

Both of these models however ignore a portion of the user
profile. A user model consisting merely of tags does not con-
sider to which resources those tags have been applied. And
a user model consisting only of resources does not include
the tags applied to them.

The user model may be extended to include both tags and
resources. A new vector can be obtained by concatenating
the two previously mentioned vectors.

~ut+r = 〈w(t1)...w(t|T |), w(r1)...w(r|R|)〉 (8)

While this model does include both tags and resources,
the model does not specify which tags were applied to which
resources. However, the tags and resources may be tightly
coupled in a vector over all tag-resource pairs where each
weight, w(tri), is one if the user has applied tag, t, to the
resource, r, and zero otherwise.

~u(tr) = 〈w(t1r1), w(t1r2)...w(t|T |r|R|)〉 (9)

However these user models risk becoming exceedingly
large and extremely sparse. Hebbian features may be used to
combat this sparsity. For example, features extracted from
either UR or UT may be used to construct the user model:

~uHebbian = 〈f1, f2...f|F |〉 (10)

These extracted features can greatly reduce the computa-
tional costs of calculating similarities since the number of
features is far smaller than the size of the original matrix.
Moreover feature extraction may discover hidden relation-
ships and identify similarities among users that the previ-
ously described models would not capture.

Several techniques exist to calculate the similarity be-
tween vectors such as Jaccard similarity or Cosine similarity
(Van Rijsbergen 1979). In this work we focus on cosine sim-
ilarity.

Boosting Tags

In most traditional recommendation approaches the recom-
mendation set would not include an item the user has already
used. However in Collaborative Tagging Applications users
often reuse tags. Previously used tags are then an important
clue for the recommendation algorithm.

We propose a boosting factor, b, that can be used to pro-
mote tags in the user profile. As an additional step to the
modified K-Nearest Neighbor recommender, b is added to
the weight of the tag if the user has previously applied that
tag to another resource.



foreach t ∈ T that any u ∈ N has applied to rq do
if (uq has applied t) then

wt = wt + b
end

end

Algorithm 3: Optional Step Including Boost K-Nearest
Neighbor

FolkRank

In (Hotho et al. 2006) the authors proposed an adaptation of
link analysis to the Folksonomy data structure. They have
called this technique Folkrank since it computes a Pagerank
vector from the tripartite graph induced by the Folksonomy.
This graph is generated by regarding U ∪R∪T as the set of
vertices. Edges are defined by the two-dimensional projec-
tions, UT, UR and RT.

If we regard the adjacency matrix of this graph, W , (nor-
malized to be column-stochastic), a damping factor, d, and a
preference vector, p, then we compute the Pagerank vector,
w, in the usual manner:

w = dAw + (1 − d)p (11)

However due to the symmetry inherent in the tripartite
graph, this basic Pagerank can too easily focus on the most
popular elements in the Folksonomy. The Folkrank vector
is taken as a difference between two computations of Pager-
ank: one with a preference vector and one without the pref-
erence vector.

In order to generate tag recommendations Folkrank uti-
lizes the preference vector to bias the algorithm towards the
query user and resource(Jaschke et al. 2007). These ele-
ments are given a substantial weight in the preference vector
where all other elements have uniformly small weights.

We have included this method as a benchmark as it has
been shown to be an effective method of generating tag rec-
ommendations. However it has a distinct disadvantage in
that it requires a complete computation of the Pagerank vec-
tor for each query. This makes the method problematic when
working with data from large Folksonomies.

Experimental Evaluation

Here we describe the methods used to gather data for the
experiments and provide details of our datasets. We then
discuss modifications to N -Fold Cross Validation for Folk-
sonomies and describe our experimental methodology. We
briefly discus the common metrics recall and precision and
then detail the results of our experiments.

Data Sets

We validate our approach through extensive evaluation of
the proposed modifications using data from two real Collab-
orative Tagging Applications: Delicious and Citeulike.

Delicious is a popular Website in which users annotate
URLs. On 10/19/2008, 198 of the most popular tags were
taken from the user interface. For each of these tags the
2,000 most recent annotations including the contributors of

the annotations were collected. This resulted in 99,864 dis-
tinct usernames.

For each user, the “Network” and “Fans” were explored
recursively collecting additional usernames. A user’s Net-
work consists of the other users that the user has explicitly
chosen to watch. Conversely a Fan is another user that has
explicitly chosen to watch the user. This resulted in a total
of 524,790 usernames.

From 10/20/2008 to 12/15/2008 the complete profiles of
all 524,790 users were collected. Each user profile con-
sisted of a collection of annotations including the resource,
tags and date of the original bookmark. The top 100 most
prolific users were visually inspected; twelve were removed
from the data because their annotation count was many or-
ders of magnitude larger than other users and were therefore
suspected to be Web-bots.

Due to memory and time constraints, 10% of the user pro-
files was randomly selected. A P -core of 20 was derived
such that each user, resource and tag appear in at least 20
posts where a post is defined as a user, resource and all tags
that user applied to the resource.

The result was a dataset with 18,105 users, 42,646 re-
sources and 13,053 tags. There are 2,309,426 annotations
and 8,815,545 triples. The average number of tags in a post
is 3.82.

Citeulike is a popular online tool used by researchers to
manage and discover scholarly references. They make their
dataset freely available to download4. On 2/17/2009 the
most recent snapshot was downloaded with data extending
back to 5/30/2007. The data contains anonymous user ids
and posts for each user including resources, the date and
time of the posting and the tags applied to the resource. The
original dataset contains 41,689 users, 1,370,729 resource
and 284,389 tags.

Because of its relatively small size and sparse data, the
Citeulike data cannot support a P -core of 20. Instead a P -
core of 5 was derived. This reduced the size of the data to
2,051 users, 5,376 resource and 3,343 tags. There are 42,277
annotations and 105,873 triples. The average number of tags
in a post is 2.50.

Folksonomy Delicious Citeulike

Users 18,105 2,051

Resources 42,646 5,376
Tags 13,053 3,343
Posts 2,309,427 42,277

Annotations 8,815,545 105,873

Table 1: Datasets

An important distinction between the two datasets is their
focus. Users in Delicious are able to tag any URL avail-
able on the Web. As such an individual’s interests are often
varied encompassing many topics. In Citeulike however re-
searchers tag scholarly publications and their tagging is of-
ten focused in their area of expertise.

4http://www.citeulike.org/faq/data.adp



The data available for Delicious is also far more abundant.
Using only a fraction of the data scraped from the Website,
the Delicious dataset still has more than fifty times the an-
notations in the Citeulike dataset. Moreover, the Delicious
is far denser supporting a P -core of 20 rather than a P -core
of 5.

Experimental Methodologies

We implemented an extension of N -Fold Cross Validation
for Folksonomies. Each user profile was divided among n
folds, each fold containing approximately 1/n of each user’s
posts. A post includes the user, a resource and all tags the
user applied to that resource. Models were built using n− 1
folds of the data, while the posts in the remaining fold served
as test cases.

Each test case consists of a user, u, a resource, r, and all
the tags the user has applied to that resource. These tags, Th,
are analogous to the holdout set commonly used in Informa-
tion Retrieval. The tag recommendation algorithms accept
the user-resource pair and return an ordered set of recom-
mended tags, Tr . From the holdout set and recommendation
set utility metrics were calculated.

For each evaluation metric the average value was calcu-
lated across all test cases of an individual fold. The average
was then calculated across all folds. Experiments completed
on Delicious consisted of 10 folds, while experiments on Ci-
teulike had 5 folds.

The exception to this methodology are the experiments
completed for Folkrank. Due to the steep computational re-
quired for this approach only one post from each user was
placed in the testing set. Experiments were then run on this
single testing set as described in (Hotho et al. 2006).

Experimental Metrics

Recall is a common metric for evaluating the utility of rec-
ommendation algorithms. It measures the percentage of
items in the holdout set that appear in the recommendation
set. Recall is a measure of completeness and is defined as:

recall = |Th ∩ Tr |/|Th| (12)

Precision is another common metric for measuring the
usefulness of recommendation algorithms. It measures the
percentage of items in the recommendation set that appear
in the holdout set. Precision measures the exactness of the
recommendation algorithm and is defined as:

precision = |Th ∩ Tr|/|Tr| (13)

Hebbian Features

A fundamental assumption of user models based upon Heb-
bian Deflation is that meaningful features can be extracted
from the two-dimensional projections. In order to affirm
this assumption we have taken the two-dimensional projec-
tion of the Delicious dataset, RT, using the tag counts as the
weights and performed Hebbian Deflation to generate RX
and TX. A learning rate of .001 was chosen as this value
allows the features to converge quickly and smoothly. Ini-
tially 100 features were built, but examination of the RMSE

on a 2% overtraining-holdout set showed little improvement
over 50 features. Additionally, 2000 epochs were selected
to train each feature, but in all cases the algorithm halted the
training when it detected overfitting and proceeded to the
next feature.

Table 2 shows selected tags along with their six most sim-
ilar neighbors. (Salton, Wong, and Yang 1975) has demon-
strated similar results using co-occurrence, Folkrank and
context metrics. Similarities are calculated by representing
each tag as a vector of weights over the Hebbian features
and calculating the cosine similarity between two tags.

Initial examination of the nearest tags lends credence to
the assumption that Hebbian Deflation can be used to dis-
cover meaningful features. For example the nearest tags
to “photo” are clearly redundant tags. However other tech-
niques such as stemming and thesaurus tables could provide
the same utility.

The example “toread” demonstrates that this method
goes beyond what other techniques might provide. Where
“photo” had been a descriptive tag, “toread” is an organiza-
tional tag. The ability of the Hebbian features to match it
with things that will in fact be read and other organization
tags illustrated the effectiveness of Hebbian Deflation.

Moreover in the example of “folksonomies” show how
highly related words can be discovered through the Heb-
bian features. “Tags” are of course a crucial part of “folk-
sonomies” that provide “classification” by providing “meta-
data.”

Domain specific words like “mac” or “osx” are difficult
to relate, but again Hebbian features are able to highlight
their similarity. Perhaps the most intriguing example is the
subjective tag “cool.” Hebbian features are able to find two
other subjective tags with high similarity, “interesting” and
“fun”.

Tags can also be modeled from features extracted from
UT; Similarly users and resources may be modeled from
features extracted from the projections. In all cases similar
trends are observed.

Table 3 shows the same experiment completed with data
from Citeulike. Again RT matrix was built from count data.
The learning rate is set to .001. As before, 2000 epochs were
selected, but RMSE testing on a holdout set halted the train-
ing of features when overfitting was detected. 100 features
were extracted, but only the first 20 showed progress in re-
ducing RMSE.

The related tags in Citeulike show similar trends to those
found in Delicious. However because of its sparsity and rel-
atively small size, it appears to be more difficult to extract
features. Nevertheless visual inspection of the tags reaffirms
the assumption that Hebbian Deflation and cosine similarity
offer a method to discover meaningful features.

While this paper proposes using Hebbian features to
model users, these features offer many other uses for Folk-
sonomies. Hebbian features might provide a means for users
to navigate the Folksonomy. After selecting a user, resource
or tag the system could present additional items based upon
the Hebbian features. The user may then select an item from
that list and explore other users, resources or tags that are
similar. By repeating this process the user could traverse



photo shopping

0.789 photos 0.803 Shopping
0.737 photography 0.780 shop

0.652 pictures 0.560 buy
0.640 foto 0.530 google
0.637 Photo 0.519 store

0.627 fotos 0.469 handmade

toread folksonomy

0.886 article 0.807 tagging
0.816 articles 0.786 tags
0.811 advice 0.691 tag
0.810 Bookmarks 0.635 classification

0.808 to read 0.574 metadata
0.805 interesting 0.523 folksonomies

mac cool

0.849 osx 0.711 interesting
0.840 Mac 0.673 fun

0.778 apple 0.621 imported
0.768 OSX 0.608 how-to
0.653 macosx 0.595 article

0.650 Apple 0.571 useful

Table 2: Selected Delicious tags and their nearest neighbors
using cosine similarity and 50 Hebbian features extracted
from the RTc matrix

datamining networks

0.981 computational 0.840 social networks
0.935 conceptual 0.792 classification

0.933 data-mining 0.751 community
0.930 webservices 0.740 socialnetworks
0.925 tools 0.738 graph

0.915 data mining 0.737 functional

Table 3: Selected Citeulike tags and their nearest neighbors
using cosine similarity and 20 Hebbian features extracted
from the RTc matrix

the Folksonomy or focus in on a particular domain. Heb-
bian features might be particularly useful in this task since
they are able to uncover relationships in the Folksonomy
that other methods, such as co-occurrence, are unable to dis-
cover.

The individual features themselves might be interesting.
A domain expert could analyze the features in an effort to
understand how the Folksonomy is growing, what aspects
are dominating, and which users are having the most impact.

Moreover this reduced yet rich feature space can be uti-
lized in a variety of data mining tasks: recommendation, per-
sonalization, search, navigation, etc.

Experimental Results

Here we present our experimental results beginning with the
tuning of variables. We discuss the impact of the boost vari-
able in the quality of the K-Nearest Neighbor algorithm,
then provide an in depth comparison of the recommendation

Figure 1: The effect of k in KNN on recall and precision
for a recommendation set of 5 tags. Users are modeled as a
vector over the tag space.

Figure 2: The effect of boosting previously used tags in
KNN on recall and precision for a recommendation set of
5 tags. Users are modeled as a vector over the tag space.

techniques.

The experiments with K-Nearest Neighbor require the
tuning of two key variables: k, the number of neighbors,
and b, the boosting factor.

Figure 1 shows the relation between k and the the evalua-
tion metrics recall and precision for a recommendation set of
size 5. The Delicious dataset was used for this experiment.
Weights in the user vector are calculated as the frequency of
tags or tf . This experiment does not include any boosting
factor for previously used tags. As k increases so does re-
call and precision. However this improvement suffers from
diminishing returns until a k of 100 offers little more benefit
than a k of 50. This trend was observed for all K-Nearest
Neighbor experiments. As such, all K-Nearest Neighbor ex-
periments were completed using a k of 50. Similar results
are observed for the Citeulike dataset.

Figure 2 demonstrates the effectiveness of the boosting
modification for K-Nearest Neighbor. The modification
gives extra weight to those tags the user has previously ap-
plied to a resource. This experiment is completed with a k
of 50; b is adjusted in the range of 0 through 0.20 at 0.025
increments. Both recall and precision for a recommendation



set of 5 tags are sharply improved when b in increased to
0.05. Afterward, the effect of the boosting parameter slowly
diminishes.

Table 4 provides a more detailed view of the effect boost-
ing can have. For example without any boosting factor the
precision for a recommendation set of size 3 is 43.5%. With
the boosting factor, precision is increased to 45.9%, an im-
mediate 3.4% gain. For all size recommendation sets preci-
sion is increased. The boosting factors enables K-Nearest
Neighbor to become more precise.

Likewise recall increases across the board. For example
recall given a recommendation set of size 10 jumps from
66.9% to 69.5%, a 2.6% increase. Boosting therefore ap-
pears to increase the completeness of the recommendation
set.

Delicious

KNN − UT, b = 0.00 KNN − UT, b = 0.05
N Rec. Prec. N Rec. Prec.

1 0.211 0.567 1 0.232 0.606
2 0.332 0.489 2 0.361 0.519
3 0.418 0.435 3 0.450 0.459
4 0.485 0.394 4 0.516 0.413
5 0.538 0.361 5 0.568 0.376
6 0.580 0.333 6 0.609 0.345
7 0.613 0.307 7 0.641 0.317
8 0.636 0.282 8 0.664 0.291
9 0.653 0.259 9 0.682 0.268

10 0.669 0.239 10 0.695 0.248

Citeulike
KNN − UT, b = 0.00 KNN − UT, b = 0.05

1 0.201 0.404 1 0.255 0.509
2 0.292 0.309 2 0.355 0.377
3 0.346 0.252 3 0.407 0.299
4 0.383 0.213 4 0.439 0.247
5 0.407 0.184 5 0.456 0.208
6 0.427 0.162 6 0.465 0.178
7 0.444 0.145 7 0.474 0.157
8 0.457 0.131 8 0.479 0.139
9 0.467 0.120 9 0.484 0.125

10 0.474 0.110 10 0.488 0.113

Table 4: The recall and precision for the top 10 recom-
mended tags of K-Nearest Neighbor applied to the Deli-
cious and Citeulike datasets. Users are modeled as vectors
over the tag space. Vector weights are computed as the tag
frequency. k was set to 50. N is number of tags recom-
mended. Detailed results for two different boost values, 0.00
and 0.05, are presented.

This behavior is consistent with all K-Nearest Neighbor
experiments conducted on the Delicious dataset and across
all user models and all values for k; boosting results in an
approximate 2.0% to 4.0% increase in recall and precision.
The optimum value for b is between 0.05 and 0.075. For
consistency all other K-Nearest Neighbor experiments are
run using a boosting factor of 0.05.

Similar results were discovered using Citeulike data. Pre-

cision for a recommendation set of size 1 jumps from 40.4%
to 50.9%, a dramatic increase of 10.5%. However, this im-
provement diminishes as the size of the recommendation is
increased. Precision for a recommendation set of 5 climbs
from 18.4% to 20.8%, a 2.4% improvement. For a recom-
mendation set of size 10, the improvement shrinks to 0.3%.

An examination of recall shows similar signs. For a rec-
ommendation set of size 1, the improvement is 5.4%. The
improvement drops to 4.7% for a recommendation set of size
5 and drops further to an improvement of 1.4% when N is
increased to 10.

In general boosting tags based upon previous usage is
demonstrated to add additional utility to the K-Nearest
Neighbor algorithm. Yet differences in the improvements
between Delicious and Citeulike offer additional insights.

First the average number of tags per posts in Delicious is
3.82. Citeulike has less with 2.5 tags per post, only 65% the
number found in Delicious. As a result Citeulike presents
a smaller target for tag recommendation. Moreover since
the holdout set is smaller for Citeulike, boosting will have
a greater impact on smaller recommendation sets than on
larger sets when contrasted with Delicious. This is observed
as the improvement to precision garnered from boosting
drops from 10.5% when the recommendation set contains
1 tag to only 0.3% when the recommendation set consists of
10 tags. Improvements in Delicious, on the other hand, are
more stable dropping from 3.9% to 1.8%. An examination of
recall shows a parallel trend; in both cases recall improves
as the size of the recommendation set increases subject to
diminishing returns. However the effect of diminishing re-
turns hampers Citeulike recommendations earlier and more
strongly than it affects Delicious. These observations sug-
gest that care must be taken when comparing recommenda-
tion algorithms across multiple Folksonomies.

Furthermore the two datasets have a markedly different
focus. Delicious users are able to annotate any URL on the
Web often tagging resources across many different topics.
Citeulike users on the other hand are focused on scholarly
publications and often focus primarily on their area of ex-
pertise. This observation suggests that recommendation al-
gorithms giving added weight to resources may be more ap-
propriate for Delicious since user information may befuddle
the recommendation algorithm by incorporating unrelated
tags. Conversely if a user in Citeulike has annotated items
related to his research and does not stray from this topic, the
user profile based on tags could offer exceptional utility.

Evidence for this analysis is provided in the difference of
precision and recall between the two datasets. For a rec-
ommendation set of size 1, boosting a user’s previously as-
signed tags offers a 3.9% gain in Delicious and a 10.5% gain
in Citeulike. This trend continues as N increases until the
improvements gradually diminish. This stark contrast sug-
gests that recommendation algorithms augmented by boost-
ing tags offer more gain for focused Folksonomies such as
Citeulike than broader Folksonomies such as Delicious.

Having ascertained the optimal values for k and the boost-
ing factor we turn our attention to the user models for K-
Nearest Neighbor. Experimental results are shown in Fig-
ure 3 detailing the recall and precision for recommendation



Figure 3: The comparison of tag recommender strategies for Delicious.

sets of size 1 through 10. For comparison purposes rec-
ommendation algorithms based on popularity are included.
“Most Popular” recommends the most popular tags in the
dataset. “Most popular by User” recommends the most pop-
ular tag for a particular user. “Most popular by Resource”
recommends the most popular tags for a given resource. K-
Nearest Neighbor models users as a vectors over the tag
space (KNN-UT), vectors over the resource space (KNN-
UR), a concatenation of the two (KNN-UR+T), a strict com-
bination of every resource-tag pair (KNN-U(RT)) and as fea-
tures derived through Hebbian deflation on either the UT or
UR matrix (KNN-UT-Hebbian or KNN-UT-Hebbian). For
all K-Nearest Neighbor models, k is set to 50 and the boost
factor is set to .05. “Folkrank” is provided for further com-
parison and adapts link analysis to the folksonomy structure,
recommending tags through manipulation of the preference
vector.

The approach that merely recommends tags that are pop-
ular throughout the Folksonomy achieves poor results in the
Delicious dataset. Recommending popular tags for a spe-
cific user fairs better, but is clearly out done by recommend-
ing popular tags given a specific resource. Nearly all user
models for K-Nearest Neighbor surpass these techniques
based upon popularity. In particular models that treat each
user as a vector over the set of tags appear to perform best for
the Delicious dataset. Folkrank offers additional complete-
ness as seen by its superior recall, but offers less specificity
as measured by it precision.

Similar trends are observed for Citeulike except for a
few notable exceptions. First recommendations that rely on
the popularity of a tag given a user outperform recommen-
dations based on the popularity of a resource. This reaf-
firms our notion that the focused nature of Citeulike is bet-
ter suited for algorithms that rely on user-tag information
whereas resource-tag information is critical in broader Folk-
sonomies where a user’s annotations cover multiple topic ar-
eas.

Folkrank outperforms other methods as a measure of re-
call to a larger extent than in the Delicious dataset, but fur-
ther trails as a measure of precision.

As in Delicious, K-Nearest Neighbor which treats users
as vectors over the set of tags performs strongly in Citeu-
like, whereas the effectiveness of other approaches vary. The
ability of this model to outperform other methods in both
datasets should be noted. This is due to the inherent com-
prehensiveness of the KNN-UT algorithm.

Only those users that have tagged the query resource are
considered for the neighborhood resulting in an algorithm
that focuses on user-resource information. Then only those
tags that have been applied to the query resource are consid-
ered for the recommendation set focusing on the resource-
tag connections. Finally by treating user models as vectors
over the tag space the recommender incorporates user-tag re-
lationships. Consequently the KNN-UT algorithm accounts
for all three aspects of the Folksonomy and is adaptable to
many Folksonomies that may require an emphasis on spe-



Figure 4: The comparison of tag recommender strategies for Citeulike.

cific relationships. Not surprisingly the user models that per-
form nearly as well as KNN-UT are KNN-UR+T and KNN-
UT-Hebbian which share the same characteristic. Though
KNN-UT-Hebbian does perform relatively poorly in Citeu-
like, likely due to the fact that this dataset is sparse and the
Hebbian features are more difficult to extract.

Beyond recall and precision, time constraints should
be considered when evaluating tag recommendation algo-
rithms. Recommenders based on popularity can perform
much of the computation offline thereby streamlining the
recommendation process. K-Nearest Neighbor on the other
hand is often referred to as a lazy algorithm since it per-
forms the bulk of its computation during the query process.
However since the proposed modifications to the algorithm
limit the number of similarities that must be calculated to
only those users that have tagged the query resource, the
algorithm scales very well with large datasets. The compu-
tational cost may be reduced further if Hebbian features are
extracted from the Folksonomy thereby reducing the length
of vectors used for calculating cosine similarity. Hebbian
deflation however is appropriate only when the data is dense
enough that meaningful features can be extracted.

Folkrank, while it performs well in tag recommendation,
is hampered by computational costs requiring a complete
calculation of the Pagerank vector for each query. For exam-
ple to compute 18,105 recommendations required 80 hours
of computation on a modern dual-core desktop. In contrast
2,309,427 recommendations were completed in less than 1

hour using K-Nearest Neighbor.

Conclusions and Future Work

In this work we have proposed using K-Nearest Neighbor
for tag recommendation in Folksonomies. Due to the unique
data structure of Folksonomies, modifications are required
to adapt the algorithm. Neighbors are selected only if they
have tagged the query resource and tags are selected for the
recommendation set only if they have been applied by the
neighbor to the query resource. These modifications tie user-
resource and resource-tag information into the algorithm
while it dramatically reduces the computational costs. There
exists a myriad of ways in which to calculate user similarity;
We have found that cosine similarity between users modeled
as vectors over the tag space performs well. This model in-
corporates user-tag information into the algorithm. By in-
cluding all three relationships inherent in Folksonomies, the
algorithm is robust for both broad and narrow Folksonomies.
In addition, K-Nearest Neighbor can be improved by boost-
ing tags the user has previously used. The performance of
K-Nearest Neighbor exceeds that of recommendation algo-
rithms based on popularity, while the running time makes it
computationally viable for large real world Folksonomies.

In the future we plan to investigate alternative tag rec-
ommendation strategies and study resource or user recom-
mendation algorithms. Other approaches such as associa-
tion rules mining and neural networks are worth considering



for recommendation in Folksonomies. Probabilistic Latent
Semantic Analysis offers an alternative means to derive fea-
tures from the Folksonomy. Feature extraction of any sort
presents intriguing opportunities in search, navigation, per-
sonalization and recommendation.

Acknowledgments

This work was supported in part by the National Science
Foundation Cyber Trust program under Grant IIS-0430303
and a grant from the Department of Education, Graduate As-
sistance in the Area of National Need, P200A070536.

References

Adrian, B.; Sauermann, L.; and Roth-Berghofer, T. 2007.
Contag: A semantic tag recommendation system. In
Pellegrini, T., and Schaffert, S., eds., Proceedings of I-
Semantics’ 07, pp. 297–304. JUCS.

Basile, P.; Gendarmi, D.; Lanubile, F.; and Semeraro, G.
2007. Recommending smart tags in a social bookmarking
system. In Bridging the Gep between Semantic Web and
Web 2.0 (SemNet 2007), 22–29.
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