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Abstract The current OWL 2 specification provides mechanisms for im-
porting whole ontologies. This paper discusses the import of only a mod-
ule of an external ontology, which is specified by a set of terms (classes
and properties) and defined in such a way that it contains “all knowledge”
of the external ontology about these terms. We discuss possible design
choices for such an import mechanism, based on the well-understood
properties of logic-based module extraction techniques.

1 Introduction

When developing an ontology, it is helpful for the engineer if she can reuse infor-
mation from external, already existing, ontologies. For example, when modelling
knowledge related to a specific medical topic, it is useful to reuse knowledge from
well-established medical ontologies such as SnomedCT [13], NCI1 [5], FMA,2
Galen,3 and GO.45 This means that the engineer, who is not necessarily an
expert in all the fields covered by those ontologies, does not have to “reinvent”
the representation of the knowledge therein. For the purpose of reusing ontolo-
gies, OWL2 provides the directlyImportsDocuments association, from which
the associations directlyImports and imports are derived.

The size of some existing ontologies such as SnomedCT or FMA makes
it difficult for current tools to load and navigate through them on a standard
computer, not to mention to classify them. It is therefore more economic to reuse
parts of existing ontologies; ideally these parts cover all the knowledge about
the terms the ontology engineer is interested in. There are many approaches to
module extraction, see [14], which differ in their ability to provide coverage.

In order to make the notion of coverage more precise, let us assume that
an ontology O directly imports an external ontology E . Furthermore, assume
that, in O, all classes and properties used from the axiom closure of E are in our
“interface signature” S, which is the set of terms that we are interested in reusing.
Now assume that, instead of importing the whole ontology E as described in [11,
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Section 3.4], we only added a (hopefully much smaller) subset M(S, E) of E to
O. A minimal condition for M(S, E) being an acceptable substitute for E is that
M(S, E) covers all knowledge that E has about S. In other words, regardless of
how O looks like and what it says about terms from S, if O∪E entails something
(e.g., that ’john’ is an instance of ’happy and man’ or that ’neoplasm is a subclass
of carcinoma’), then so does O∪M(S, E). As a consequence of this coverage, we
wouldn’t notice the difference between importing E or M(S, E)—other than in
the (hopefully much smaller) size of the resulting ontology, and as long as we
use, in O, only those terms from E that are in S.

Coverage is provided by only a few module notions, such as those based on
conservative extensions [4, 10], E-connections [2], and locality [1, 6]. While mod-
ules based on conservative extensions are minimal coverage-providing modules,
they cannot be extracted efficiently for OWL DL and even sublanguages thereof
[4, 10], except for fragments of OWL EL [8] and OWL QL [15]. As a remedy,
modules based on locality have been introduced, which sacrifice minimality for
the efficiency of computing. We have shown recently that these modules are a
good compromise [12], and have implemented their extraction in the OWL API.6

Since the current import mechanism of OWL only allows to import whole
ontologies, we are suggesting a refinement that enables the import of coverage-
providing modules. This refinement consists in adding the interface signature
S as a parameter to the import statement and leaving the choice of a suitable
module notion to the implementation level. We find this distribution over the
specification and implementation level appropriate, for the following reasons.
First, without allowing to specify the interface signature at the language level,
we would not be able to provide modular import at all. If a tool encounters an
unrestricted import statement, there is no way of deciding whether a module
would be appropriate and, if so, which. Second, if we did not leave the choice
of module type to the implementation level, we would have to fix a module
type, which is hard given the above described circumstances: minimal coverage-
providing modules for an OWL 2 ontology are computationally very difficult to
extract, and there currently exists one good approximation that is efficient and
applicable to OWL 2. If we committed the specification to the latter type of
module, we would lose the chance to employ other approximations that might
be developed, and shown to be more economic, in the future. Currently, if we
assume that the tool makes a reasonable choice, there is not much of a choice
to make given the small number of module extraction approaches that provide
strong logical guarantees and efficient extraction algorithms.

In contrast to similar approaches to working with modules based on inter-
faces, such as [3], our approach does not require any features of the underlying
languages. In particular, nominals are not required, but may be present; and no
epistemic reasoning needs to be performed. Therefore, reasoning over the im-
porting ontology is as hard as for the OWL 2 fragment determined by its import
closure. We are not concerned with an extension of the underlying description
logic; we only propose an extension of the structural specification of OWL 2.

6 http://owlapi.sourceforge.net
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We will discuss possible design choices and implementation issues, and briefly
look at consequences of a refined import statement for collaborative ontology
development.

2 Preliminaries

We consider an OWL DL ontology as a set of axioms and a module as a subset
thereof. Since the module notions that are of interest focus on the logical ax-
ioms of an ontology, a module in the strict sense will not contain any non-logical
axioms such as declarations or annotations. However, it is straightforward to
retrospectively enrich the module of an ontology with all declarations and anno-
tations for the terms that occur in it, and with all relevant ontology annotations.

We call ontologies to be reused external and denote them and their modules
with E and M, respectively. For ontologies importing E or M, and for arbitrary
ontologies, we use the denotation O. An interface signature S is a set of class
and property names. It acts as an interface for specifying the part of an ontology
by listing the terms that are of interest for extracting a module. When we say
that the subset M of E covers all knowledge that E has about S, we mean that,
for every axiom α that uses terms only from S, we have that E entails α if and
only if M entails α.7 Then, and only then, we call M an S-module of E .

Please note that the above definition of coverage is weaker than what we
have described as coverage in Section 1. It will be made stronger below when we
introduce robustness under replacement.

As pointed out in [12], there are stronger notions of a module that are of
interest for certain applications. In order to introduce these, we call the set of
terms (class, property and individual names) that occur in an ontology O the sig-
nature of O, and denote it by sig(O). A subset M of E is called a self-contained
S-module of E if M covers all knowledge that E has about S ∪ sig(M). It is
called a depleting S-module of E if the difference E \M has no knowledge about
S ∪ sig(M). For details see [12]. The first notion is stronger than the “plain”
module notion in that it requires the module to preserve entailments that can
be formulated in the interface signature plus the signature of the module. The
second notion means that the difference of E and its module M does not entail
any axioms in terms of S ∪ sig(M) other than tautologies. It is not necessar-
ily stronger than the first or the “plain” module notion; this depends on the
expressivity of the underlying ontology language [12].

For reuse scenarios, it is desirable that the used module notion has certain
robustness properties. Such robustness properties have been collected and exam-
ined in a more general context in [12]; here we are identifying them with their
consequences on modular reuse, giving their implications, not the definitions.

– Robustness under vocabulary restrictions means that, if M is an S-module
of E , it is also an S�-module of E , for any subset S� of S. This implies that,
after restricting the interface signature, we can still use the old module.

7 To be precise, “an ontology entails α” means that this ontology entails the ontology
consisting of only the axiom α, with ontology entailment defined in [11, Section 2.5].



– Robustness under vocabulary extensions implies that, whenever M is an S-
module of E , it is also an S�-module of E , for any set S� that does not extend
S by any terms used in E . This implies that, after extending the interface
signature with terms irrelevant for E , we do not have to import a new module.

– Robustness under replacement means that, whenever M is an S-module of E
and O does not contain any terms outside S that are not in E , O ∪M is an
S-module of O∪E . This implies that coverage is preserved under imports into
arbitrary OWL DL ontologies, and leads to the stronger notion of coverage
we have described in Section 1 and which is essential for our import scenario
where modules can be imported into arbitrary ontologies, which themselves
can be imported in turn.

– Robustness under joins means that, if two ontologies cover the same knowl-
edge about S without one necessarily being a subset of the other, it suffices
to import one instead of both.

Not all coverage-providing module notions provide these properties, and it has
turned out that certain locality-based modules are very robust in addition to
being efficiently computable [12].

According to [11, Section 3.4], the imports closure of an ontology O is the
set containing O and all the ontologies that O imports. The axiom closure of
O is the smallest set that contains all the axioms from each ontology O� in the
import closure of O with all anonymous individuals standardised apart, where
the latter notion means that anonymous individuals from different ontologies in
the import closure of O are treated as being different, see [11, Section 5.6.2].

3 An import mechanism for modules

In order to facilitate the import of modules, we propose a refined import associ-
ation directlyImportsDocuments that can have two parameters: the interface
signature as a list of class and property names, and the external ontology. The
derived directlyImports association will have as a parameter a module of the
external ontology for the interface signature, which has been extracted using a
suitable module notion. The choice of module notion is discussed further below.

To be more precise, we propose a change to the Functional-Style Syntax in
[11, Section 3.7], which consists in replacing the production

directlyImportsDocuments := { ’Import’ ’(’ IRI ’)’ } with

directlyImportsDocuments := {

’Import’ ’(’ IRI ’)’ |

’ImportModule’ ’(’ SignatureTerm {SignatureTerm} IRI ’)’ }

SignatureTerm :=
’Class’ ’(’ Class ’)’ |

’ObjectProperty’ ’(’ ObjectProperty ’)’ |

’DataProperty’ ’(’ DataProperty ’)’



This will facilitate the import of a module of an ontology for the interface sig-
nature consisting of the specified class and property names.

We have chosen to allow no entities other than classes, object properties and
data properties in the interface signature because of the module notion we prefer
and advise. This is explained in more detail in the following.
Structural specification of directlyImportsModule. The refined import
mechanism simply requires a preprocessing step where each ImportModule state-
ment, followed by a list of terms and an ontology IRI, is replaced with a statement
Import, followed by the IRI of the module computed for the terms and ontology
of the given IRI. This requires a small change to the canonical parsing process
specified in [11, Sec. 3.6], to be perform an additional step before CP 2.2:

For each ImportModule statement in DI , compute the corresponding
module, store it in a new ontology document M with IRI IM , and replace
the ImportModule statement with an Import statement that has IM as
a parameter.

This ensures that the computed module will be treated as a new ontology doc-
ument whose IRI occurs in the directlyImportsDocuments association. The
derivation of the associations directlyImports and imports as given in [11,
Section 3.4] remains unchanged. The same holds for the import closure and the
axiom closure; the former will contain the new ontologies, and the latter will con-
tain the axioms therein. No further changes are necessary to the parsing process
or the structure of the associations.

It is worth noting that certain properties which held trivially for Import do
not carry over to ImportModule, which might be counterintuitive at first sight.
In particular, imports are not commutative or associative anymore. This means
that, if we use “O1 imports O2” as a shortcut for the imports closure of O plus
the statement Import(O2), then the following properties hold, but do in general
not carry over if Import is replaced by ImportModule.

O1 imports O2 = O2 imports O1

(O1 imports O2) imports O3 = O1 imports (O2 imports O3)
O1 imports (O2 imports O3) = O1 imports (O3 imports O2)

Minimal requirements to the extraction of the module. In order to
obtain correct results for cyclic imports and import chains, it is necessary to
extract the module from the imports closure of the imported ontology. In the case
of cyclic import, the imports closure of an ontologyO contains all ontologies in all
cycles involving O. In the case of import chains, the order in which the ontologies
are parsed matters. For instance, if there are ontologies O0,O1,O2 with IRIs
I1, I2, I3 such that, for i = 0, 1, Oi+1 contains a statement ImportModule(Si, Ii)
or Import(Ii). If the statement in O0 is an ImportModule-statement rather than
an Import-statement, then it will be necessary to ensure that O1 is parsed before
O0. This can always be achieved for arbitrary import graphs because we have
just seen that cycles are unified with the union of the involved ontologies. We
thus obtain a partial order in which the ontologies need to be parsed.



Furthermore, the extraction of the module will need to ensure that the fol-
lowing two restrictions to the import closure from [11, Section 3.4] are met:

“The import closure of O should not contain ontologies O1 and O2 such that
– O1 and O2 are different ontology versions from the same ontology series, or
– O1 contains an ontology annotation owl:incompatibleWith with the value

equal to either the ontology IRI or the version IRI of O2.”

This can be ensured by requiring that the module of an ontology always contains
the relevant annotations to the ontology it has been extracted from. We will
discuss this together with the choice of module type.
The choice of module type. In principle, the above specification does not
restrict the way a module is extracted, except for the requirement that every
module of an ontology E should inherit version and incompatibility annotations
from E . We do, however, strongly advise the use of module extraction approaches
that provide coverage because, to the best of our knowledge, this is the only
way to ensure that the knowledge about the specified terms is preserved. We
furthermore suggest that modules should always be self-contained and depleting
because these are properties that are relevant for some applications, see [12].

Another important requirement to the module notion is economy, which has
two characteristics: (a) modules should be as small as possible because otherwise
the full ontology could be reused, which would trivially ensure coverage; and
(b) modules should be obtained efficiently. It is known that it is difficult to
combine these two characteristics for the description logic that underlies OWL
DL and many of its sublogics. For instance, there is no algorithm for extracting
minimal coverage-providing modules for a given interface signature and OWL
DL ontology because the underlying decision problem is undecidable [10].

Given the problems to combine (a) and (b), we believe, that a compromise
between (a) and (b) is the most feasible solution. Such a compromise is pro-
vided by modules based on syntactic locality [1, 6], which approximate minimal
coverage-providing modules. This means that, given an interface signature S and
OWL DL ontology E , a locality-based module (LBM) of E for S contains every
minimal coverage-providing module of E for S, and therefore provides coverage
as well. In general, LBMs can be larger, but initial experiments suggest that
the difference in size does not have to be large [12]. Although in another set
of experiments with OWL QL ontologies in [9], LBMs differed from minimal
coverage-providing modules more significantly, this has to be relativised because
the latter type of modules is usually neither self-contained nor depleting, but
locality-based modules are. The size differences in [9] between LBMs and other,
self-contained and depleting, modules are not as significant.

From the insights gained in [12], we recommend to use nested LBMs, namely
�⊥∗-modules. They have been implemented in the OWL API8 and combine the
following desirable properties.
8 To be precise, the current release 2.2 only captures �-, ⊥-, �⊥- and ⊥�-modules,

but longer nesting chains can easily be obtained iteratively. The upcoming version
3 of the OWL API will contain �⊥�-modules.



– They are efficiently computable.
– They are always self-contained and depleting modules.
– They have robustness properties that are relevant for reuse of ontologies, see

Section 2. Please note that these properties do not, in general, hold for �⊥-
and ⊥�-modules, so it is essential to use the ∗-versions.

It is possible to make use of the few exceptions that, for some small fragments
of OWL DL, smaller coverage-providing modules can be obtained efficiently.
The most notable such case is probably that of acyclic OWL EL terminologies,
for which the system MEX has been devised in [8, 7]. MEX modules have the
same robustness properties as LBMs, provide coverage and are contained in
the respective LBM. Therefore, if differences in module size really matter, it
is possible to determine whether the current ontology falls into that fragment
and, in the positive case, to extract a MEX module instead of an LBM. It is
known that the problem whether a given ontology belongs to this fragment can
be decided efficiently.

Since we strongly advise to use LBMs for importing modules, an interface
signature cannot contain entities other than classes, object properties and data
properties. This has to do with the way locality is defined; the reasons can
roughly be summarised as follows. First, it is not possible, or too strong a re-
striction, to interpret an individual (or a datatype, respectively) as the empty
set or the full domain (as the empty set or the full value space, respectively).
Therefore locality proceeds with individuals and datatypes as if they belonged to
the interface signature anyway. Second, since LBMs focus on the logical axioms
of an ontology, there is currently no support for specifying annotation properties
in an interface signature. We do, however, believe that this would be a straight-
forward extension: remember that, after the logical module has been extracted,
the relevant annotations are added. Among other things, this ensures that the
above mentioned relevant versioning and incompatibility annotations are pre-
served in the module. If we additionally allow the specification of annotation
properties in the interface signature, this will have the simple effect of an addi-
tional filter on the annotations to be included. Annotation properties relevant
for versioning and incompatibility would then have to belong to the interface
signature implicitly.

Directive versus integrity constraint. So far, we have treated the new
imports statement as a directive: “Given the specified interface signature S and
ontology E , extract the S-module of E and import it into the current ontologyO.”
This is only one possible way of interpreting this statement. Another possibility
is to additionally interpret it as an integrity constraint: “Given the specified
interface signature S and ontology E , make sure that all axioms in the current
ontology O use no other terms from E than those in S.” The idea behind this
is that, if the right module extraction techniques are used, a module can only
guarantee to cover all knowledge in E about the terms in the interface signature
(and in the module itself if it is a self-contained module). Reusing other terms
in O means that the knowledge in E cannot be guaranteed to be covered.



Unfortunately, the interpretation as an integrity constraint causes problems
in unrestricted import scenarios. Suppose we have ontologies O1, . . . ,O4 with
IRIs I1, . . . , I4, a class C ∈ sig(O1), interface signatures S1, S�

1, S2, S3 with C /∈
S1, C ∈ S�

1, C /∈ S2, C ∈ S3, and the following import statements:

(1) ImportModule(S1, I1) in O2 (3) ImportModule(S2, I2) in O4

(2) ImportModule(S�
1, I1) in O3 (4) ImportModule(S3, I3) in O4

See also the picture below, where Arrows point towards the importing ontology.
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Then (2) would enable C to occur in O3, which would justify its containment
in S3. Therefore (4) would explicitly express the desire to have C in the module
extracted from O3. On the other hand, since C is not in S2, (3) read as an
integrity constraint would forbid C to be reused in O4.

Now this problem could be resolved by giving permission a higher priority
than prohibition, i.e., if C occurs in the signature of some import statement
in O4 (explicit “permission” for its reuse), its absence in the other does not
prohibit its use in O4 any longer. This might also work when more ontologies are
involved and O4 contains more import statements. However, if we now deleted
the “permitting” import statements, the use of C would suddenly be forbidden,
but in order to be sure, we would have to trace its origin in the whole import
structure.

We believe that this behaviour is highly confusing and undesired, and there-
fore advise against the interpretation as an integrity constraint. The only situ-
ation where it might work is “flat” import scenarios, e.g., simple collaborative
development of an ontology where modules of an ontology are extracted to be
maintained independently, and these modules are themselves not imported into
any other ontology. Such a scenario has yet to be thoroughly described, which
is not in the scope of this paper.

However, interpretating an import statement as a directive has a pitfall,
too. Suppose ontology O1 imports a module M2 from an ontology O2 about
vehicles for S2 = {Car,Wheel}, and suppose O1 contains an axiom Tram � Bus,
where Tram and Bus occur in O2. From the perspective of O1, it is not clear
whether these two terms occur in M2, and hence whether our axiom changes
the knowledge of O2 about the imported terms. This indeed depends on the
module extraction algorithm used. As one possible workaround, all terms in O1

that are not in S2 could be treated as disjoint from the terms in O2.



Variations for convenience. It is possible to make the interface signature an
optional parameter to the ImportModule statement, i.e., the production directly-

ImportsDocuments can be extended as follows.

directlyImportsDocuments := {

’Import’ ’(’ IRI ’)’ |

’ImportModule’ ’(’ SignatureTerm {SignatureTerm} IRI ’)’ |

’ImportModule’ ’(’ IRI ’)’ }

In case of the third line, the module is extracted for the interface signature
comprising all entities from the external ontology that are reused in the current
ontology. Again, the above guidelines regarding cyclic imports and import chains
need to be taken into account.
Where is the module computed? Whenever an ontology is imported by
signature, the corresponding module needs to be computed. There are several
possible scenarios for this, and we consider it out of the scope of this paper to
make an ultimate choice between them.

One scenario is to have the module computed by the (host for the) importing
ontology. While this requires the download of all ontologies in the import closure
of the importing ontology and a recursive module extraction, this is still more
economic than simply importing the whole ontologies: first, they do not need to
be kept in memory at once; and second, the import of the modules will increase
the importing ontology only by an amount that is necessary.

Another scenario is to have the modules computed by the (hosts for the)
imported ontologies. This distributed approach ensures that, in addition to the
size of the resulting importing ontology, communication between the ontologies
is reduced. For this worthwile alternative, protocols need to be devised.

Independently of these two scenarios, one could ask what happens if the im-
ported ontology changes. Certainly all of its modules need to be recomputed.
But this is not a problem, given the efficient algorithms available for extract-
ing locality-based modules. Particularly for big, heavily re-used ontologies, the
computational overhead of extracting all modules that are imported in other
ontologies is clearly outweighed by the advantage of being able to work with the
import closure of those ontologies at all because they are now small enough to
be loaded, maintained, and classified.

4 Future work

Currently, modular import is not supported in OWL 2. It is conceivable to add
this support to the next version of OWL if there will be a successor. However,
even without having modular support specified in OWL, using the extension
we have proposed is harmless: it can easily be built into tools as an unofficial
extension, and tools that do not support it can simply ignore it. This can best
be achieved by encoding ImportModule statements as Import statements with
an additional annotation that contains the interface signature. We hope to im-
plement support for this extension in the upcoming version of the OWL API.



The obvious next step is to evaluate the use of this extension experimentally.
Furthermore, there needs to be support for ontology developers in choosing the
desired terms from ontologies from which they want to import modules.

Finally, once the new mechanism for modular import is in place, it will
facilitate collaborative ontology development. It remains to describe a precise
methodology and develop appropriate tools.
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