
The OWLlink Protocol
Infrastructure for Interfacing and Managing OWL2

Reasoning Systems

Thorsten Liebig1, Marko Luther2, and Olaf Noppens1

1 Institute of Artificial Intelligence, Ulm University, Ulm, Germany
firstname.lastname@uni-ulm.de

2 DOCOMO Communications Laboratory Europe GmbH, Munich, Germany
lastname@docomolab-euro.com

Abstract. A semantic application typically is a heterogenous system
of interconnected components, most notably a reasoner. OWLlink is
an implementation-neutral protocol for communication between OWL 2
components. It specifies how to manage reasoning engines and their
knowledge bases, how to assert axioms, and how to query inference re-
sults. A key feature of OWLlink is its extensibility, which allows the
addition of required functionality to the protocol. We introduce the
OWLlink structural specification and extension mechanism. Further-
more, we present two extensions, one for retrieving previously asserted
axioms and one for retracting axioms from a reasoner. Finally, we de-
scribe a binding to HTTP/XML and give an overview of existing imple-
mentations.

1 Introduction

Strong evidence suggests that OWL 2 will become an important standard for
representing ontologies. According to the W3C, its purpose is to enable applica-
tions to meaningfully process information by means of reasoning. However, this
requires not only a language standard for ontologies but also a standard way
to interact with components that supply reasoning or accompanying services.
OWLlink3 adds this missing piece of ontology infrastructure by providing an
extensible protocol for communication among OWL 2-aware systems intended
to replace the outdated DIG protocol [1] but based on the DIG 2 proposal [2].

OWLlink consists of a core and a set of extensions as well as respective
bindings. The OWLlink core specifies how to introspect the capabilities of an
OWL reasoning engine and how to set common or specific system options. It also
defines primitives for the handling and manipulation of OWL Knowledge Bases
(KBs), such as the creation or deletion of KBs or the successive assertion of single
axioms or sets of axioms. Furthermore, the core offers a set of basic queries to
access the standard inference services offered by OWL reasoning engines.

3 http://www.owllink.org

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

http://www.owllink.org

OWLlink differs from ordinary ontology APIs, such as the Java-based OWL-
API [3], in that it is language-neutral and flexible in how to encode as well as
transmit API calls and responses. It supports different transport mechanisms
ranging from in-memory access over remote interface calls to Web service in-
vocations. This feature plays an important role within distributed and hetero-
geneous systems typically found in industry. Here, the distributed architecture
results from technical conditions or is implied by requirements such as reliabil-
ity or exchangeability of components. For instance, the developers of IYOUIT,
a context-aware mobile service [4], incorporate OWL reasoning technology in
several components, but need to guarantee that a reasoner breakdown will not
affect the availability of the whole system. This rules out the use of in-memory
connections as provided by the OWL-API.

Extensibility is another important characteristic from the perspective of an
application developer. Over time requirements may change or new systems with
novel services might emerge. OWLlink provides an extension mechanism that
allows the incorporation of additional functionalities as desired. Defining an
extension is explicitly intended to be an open and community-driven process.
Hopefully, further extensions and bindings will evolve that account for domain
specific services which could not be anticipated at this time.

This paper extends a previous publication [5] and introduces the key build-
ing blocks of OWLlink. Since its version from October 2008 OWLlink has been
updated to the latest OWL 2 specification as well as enhanced with new server
configurations and requests which are LoadOntologies, Classify, and Real-

ize. In the following we briefly describe the protocol preliminaries, the core
structural specification, the extension mechanism, and the existing as well as
potential further bindings. We conclude with a summary and a survey of proto-
col implementations.

2 Preliminaries

OWLlink is a client-server based on OWL 2. Consequently, OWLlink inherits all
of its underlying language concepts such as the notion of structural equivalence.
However, it does not support any parts of OWL 2 beyond the level of axioms.
Furthermore, the OWLlink specification does not address issues such as trans-
actions, authentication, encryption, compression, concurrency, multiple clients
and so on. Some of those features might be provided transparently by the access
protocol (e. g., HTTP/1.1) underlying a particular binding.

OWLlink is specified in two parts: the first part defines the structural specifi-
cation of the protocol, and the second part defines a binding of the protocol to a
concrete transport mechanism. The structural specification is introduced within
the next sections (3 to 7). Like the OWL 2 structural specification, OWLlink
uses a subset of UML class diagram notations within its specification and reuses
UML classes provided by the OWL 2 specification [6]. The names of abstract
classes (that is, the classes that are not intended to be instantiated) are writ-

RequestMessage

Request

requests

1..* 1..*

Response

ResponseMessage

warning: String [0..1]

Confirmation

error: String

Error

KBResponse

OK

result: boolean

BooleanResponse

KBRequest

KBError

SyntaxError

SemanticError

responses

Fig. 1. Basic protocol objects

ten in italic. The names of all OWL 2 UML classes are prefixed with ox. to
emphasize that they are not defined in the OWLlink specification.

3 Sessions, Messages, and Error Handling

An OWLlink session abstracts the actual bidirectional communication channel
between the client and the server. It provides primitives to transport requests
and responses. The actual implementation of a session is defined by the transport
mechanism used to access an OWLlink server.

OWLlink servers are allowed to service several clients concurrently. However,
interaction within one session is not concurrent. A session is assumed to transport
requests and responses in sequential order. Each request should be processed by
the server such that the results are the same as if the requests were processed
sequentially in the order they were dispatched.

The basic interaction pattern is that of request-response. Each request is
paired with exactly one response. Depending on the transport mechanism, it
might be inefficient to send individual requests to a server separately. Therefore,
OWLlink requests are bundled into messages. A RequestMessage encapsulates
a list of Request objects, whereas a ResponseMessage encapsulates a list of
Response objects (cf. Fig. 1). The server must send the responses to the client in
exactly the same order in which the requests were received. If a request has been
processed successfully, the type of the returned response depends on the request
type. For instance, if a request addresses a specific KB, i. e. is a subclass of the
abstract KBRequest class, the corresponding response has to be a subclasses of
the abstract KBResponse class. If a request does not produce any specific data,
the server should still return a subclass of the general Confirmation response,

e. g. an OK, to the client. Any confirmation may carry a warning string intended
to be meaningful to a human user.

If a request fails, the server should return an Error response to the client
containing a message specifying the cause for failure. Specific error classes al-
low the reporting of syntactic violations (SyntaxError), semantic problems
(SemanticError) and issues regarding the management of a Knowledge Base
(KBError). If a server cannot process a request, it should attempt to recover
gracefully, and process other pending requests as if the error did not happen. If,
however, this recovery is not possible, the server should send the Error response
and close the session.

4 Managing Servers and KBs

OWLlink servers have to support the GetDescription request, to allow clients
to discover their identity and introspect their capabilities. The response to this
request is a Description, providing information about the server’s current state,
including: the name of the server, its version, an optional identification message,
the protocol version, the currently managed KBs, the supported extensions (see
Sect. 7), and a set of configurations.

A Configuration is either a Property or a Setting. While properties are
read-only, settings can be adjusted per KB at any time via a Set request. The
settings given in a Description indicate the server’s defaults that hold for
newly created KBs. The actual settings can be retrieved via GetSettings. While
OWLlink defines the general format of configurations, it does not provide specific
details on available configurations – these will be defined on a per-server basis.
However, some configurations (selectedProfile, appliedSemantic, support-
edDatatypes, abbreviatesIRIs, ignoresAnnotations, ignoresDeclarations
and uniqueNameAssumption) have to be supported by any OWLlink server.

OWLlink servers can manage more than one KB simultaneously. A new KB
is allocated within the OWLlink server by sending a CreateKB request. If the
optional argument kb is given, the new KB is allocated with the given IRI,
otherwise a new (server-generated) IRI is used. On successful creation of the
new KB, a KB object containing the IRI that identifies the allocated KB is
returned. The optional argument name allows to associate a name with a KB,
which is then published to other clients (together with its IRI) within the server
description.

5 Asserting Axioms

OWLlink relies on the language primitives of OWL 2. With respect to the tell
requests – those message parts which add axioms to a KB – this basically means
that OWLlink refers to the various axioms about classes, properties or facts
defined in Sect. 9 of the OWL 2 specification [6]. A tell request contains a set
of one or more OWL2 axioms and will be answered with an OK response when
successfully processed by the server. Analogous to the definition of an ontology

in OWL 2, an OWLlink KB is defined by a set of unordered axioms without
duplicates based on the OWL 2 structural equivalence.

6 Asking Basic Queries

The OWLlink core includes a set of general requests for retrieving information
about the KB. These so called basic asks cover common queries with respect to
the given and inferred axioms of the KB. More complex queries are delegated
to query extensions (see the next section). To provide an informal overview, the
table in the Appendix lists all of the basic asks. Their semantics and a detailed
description of their corresponding responses is given in the OWLlink structural
specification.
Within this table “{O|D}” abbreviates that this query exists in two flavors, either
for Object- or for DataProperties. Furthermore, the “XXX” in Is{O|D}PropertyXXX
is a wild-card for the various characteristics a property can have. The flag [dir]
indicates that the request respects a boolean argument to retrieve only the di-
rect sub- resp. super-classes or properties (default false). The boolean [neg]
argument can be used to retrieve the corresponding negative object and data
property assertions of the requests.

Responses of type SetOfXXXSynset consist of zero or more synsets of an
OWL 2 entity such as NamedIndividuals, Object- or DataProperties, or Classes.
Such a synset is a set of one or more elements whose members are all equivalent
to each other (i. e., for which mutual equivalence is entailed from the axioms
of the KB). In the case this information about equivalence sets is not required
(e. g., under the UNA) there are so called flattened variants for those asks which
return one single set consisting of named individuals.

7 Extension Mechanism

The OWLlink core is extendable in terms of the supported language fragment,
the offered services, as well as provided management tasks. An extension consists
of a set of documents specifying the additional messages, a structural specifica-
tion providing sufficient information about their meaning, and a document per
supported binding defining the extra syntax. A server reports the set of exten-
sions supported in the Description object by listing their associated IRIs.

To date there are three OWLlink extensions: Told Data Access, Retraction,
and Ontology Based Data Access (OBDA). In the following we briefly describe
the first two of them. The third is an extension that provides access to data
stored in heterogeneous data sources through a semantic layer in the form of
an ontology. The relationship between the data in the sources and the entities
(concepts/roles) of the ontology is then expressed through a set of semantic
mappings which can be maintained by the OBDA extension via OWLlink.

7.1 Told Data Access

The Told Data Access extension defines a set of queries and their semantics
for retrieving previously asserted OWL 2 axioms from a server. Access to told
axioms allows distinguishing between explicitly given and inferred axioms. This
is of importance for non-standard reasoning services such as black-box debugging
or explaining of KBs resp. fractions thereof, and computing the least common
subsumer. In addition, it allows a third component to readout assertions for
statistical analyses, back up purposes or parallel visualization.

The told data of a KB is defined as the set of successfully received axioms
by the hosting OWLlink server since creation of the KB. The extension defines
queries to retrieve axioms about OWL2 entities. There are queries to retrieve
class axioms and concept inclusion axioms (GCIs), property characteristics (such
as range, domain, etc.) and facts. Additional queries on assertions allow, for
example, to retrieve told property fillers or related individuals.

7.2 Retraction

The OWLlink core defines a communication interface which reflects some kind
of batch-oriented reasoning procedure that builds up a knowledge base mono-
tonically. After submitting of a set of axioms, a client can pose some queries, add
further axioms, query again, etc. Deletion of axioms is only possible by releasing
a KB and re-submitting of axioms. The retraction extension allows retraction of
previously told KB fragments at the axiom level.

The Retract request is the inverse of Tell and takes a set of OWL 2 ax-
ioms to be removed from the given KB. The removal must be sensitive to the
rules of structural equivalence of OWL 2. If all axioms of a retraction request
are successfully removed from the KB, the server should respond with an OK

response.

7.3 Further Extensions

Obviously, the list of possible OWLlink extensions is infinite. However, we want
to highlight some extensions that will be defined in the near future. One of the
most necessary extensions is an expressive query language. To date, there is no
commonly agreed conjunctive query language for OWL reasoning systems. The
upgrade attempt to SPARQL, namely SPARQL-DL [7], very much relies on the
triple structure of RDF and therefore is somewhat orthogonal to the axiomatic
representation of OWL. On the other hand, query languages such as nRQL [8]
are very expressive but tailored to one specific implementation.

In the case of very large ontologies and frequent updates, it might be ad-
visable to retrieve the answers to even the basic asks not as a whole but as
differences from a previous answer. An incremental answer extension could for
example send only the changes of the class hierarchy since the last hierarchy
request.

Most current OWL reasoning engines have been designed and optimized for
more or less static KBs. However, a recent trend is the application of infer-
ence services to applications with frequently changing data like those underlying
situation-aware mobile services [9]. The concept of Stream Reasoning [10] cou-
ples reasoners with stream management systems to achieve reasoning in near
real time. This coupling could be supported by an OWLlink publish-subscribe

extension that allows the establishment of subscriptions to published queries.
As soon as the result set of a query changes, based on the continuous stream of
axiom assertions and retractions, the subscriber would be informed.

8 Bindings

An OWLlink binding specifies how request-response pairs are transmitted be-
tween the client and server. There are many possible bindings. The following
briefly describes the probably most commonly used binding, namely XML over
HTTP. Other bindings may utilize SOAP or another particular Remote Message
Invocation protocols and encode axioms utilizing the OWL 2 functional-style
syntax. Even mapping the OWLlink specification to an API of a programming
language for in memory communication is a possible as well as a desired binding.

The HTTP/XML binding of OWLlink uses HTTP for exchanging XML con-
tent between a reasoner and a client. An OWLlink session is mapped to an
HTTP connection and is typically established upon sending the first request.
The XML schema is obtained by a straightforward translation of the objects
from the structural specification: the names of XML elements correspond to the
names of the corresponding UML classes. It relies on the OWL 2 XML serial-
ization for the primitives of the ontology language. As a result, implementors of
the HTTP/XML binding can re-use their implementation of OWL 2 parsers to
read the OWL2 specific contents of the tell and ask primitives.

9 Status and Outlook

We have introduced the extensible OWLlink protocol which facilitates client ap-
plications to configure a reasoner, to transmit OWL 2 ontologies or fragments
thereof, and to access reasoning services via a set of basic queries. The protocol
has eliminated many deficiencies of its predecessor DIG [11], such as limitations
in the supported language fragment, and explicitly is defined on a more abstract
level as well as language independend than a programming interface like the
OWLAPI4, SPARQL-DL5, or SPARQL/Update.6 It enables the communication
among OWL components that are implemented on platforms or in implemen-
tation languages not covered by existing OWL2 APIs, like the OCAML-based
CB7 or a Ruby-on-Rails based Web shop.
4 http://owlapi.sourceforge.net/
5 http://www.webont.org/owled/2008dc/papers/owled2008dc_paper_8.pdf
6 http://jena.hpl.hp.com/~afs/SPARQL-Update.html
7 http://code.google.com/p/cb-reasoner/

http://owlapi.sourceforge.net/
http://www.webont.org/owled/2008dc/papers/owled2008dc_paper_8.pdf
http://jena.hpl.hp.com/~afs/SPARQL-Update.html

The OWLlink specification has been aligned with the OWL 2 recommenda-
tion. It consists of a core and three extensions as well as two different bindings
(HTTP/XML and HTTP/Functional) containing many examples. Furthermore,
there is now the first server side OWLlink implementation with the freely avail-
able RacerPro 2.0 preview8 that implements both bindings and the retraction
extension. On the client side, the latest version of the Prolog library for OWL 2
Thea9 now fully implements the OWLlink HTTP/XML binding. An OWLlink
connector for the Java-based OWLAPI that supports both, the client and the
server side, will follow very soon. It will enable OWLAPI-aware reasoners, such
as Pellet, FaCT++ and Cel, and OWLAPI-based clients, like Protege 4, to com-
municate via OWLlink.

References

1. Bechhofer, S., Möller, R., Crowther, P.: The DIG Description Logic interface. In:
Proc. of the Int. Workshop on Description Logics (DL’03). (2003)

2. Turhan, A.Y., Bechhofer, S., Kaplunova, A., Liebig, T., Luther, M., Möller, R.,
Noppens, O., Patel-Schneider, P., Suntisrivaraporn, B., Weithöner, T.: DIG2.0 –
towards a flexible interface for Description Logic reasoners. In: Proc. of the OWL
Experiences and Directions Workshop at the ISWC’06. (2006)

3. Horridge, M., Bechhofer, S., Noppens, O.: The OWL API. In: Proc. of the 3rd
OWL Experiences and Directions Workshop at the ESWC’07. (2007)

4. Böhm, S., Koolwaaij, J., Luther, M., Souville, B., Wagner, M., Wibbels, M.: Intro-
ducing IYOUIT. In: Proc. of the 7th Int. Semantic Web Conference (ISWC 2008),
Karlsruhe, Germany, Springer Verlag (2008)

5. Liebig, T., Luther, M., Noppens, O., Rodriguez, M., Calvanese, D., Wessel, M.,
Möller, R., Horridge, M., Bechhofer, S., Tsarkov, D., Sirin, E.: OWLlink: DIG
for OWL 2. In: Proc. of the Fifth OWL Experiences and Directions Workshop
(OWLED 2008), Karlsruhe, Germany (2008)

6. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C Proposed Recommen-
dation, 22 September 2009, World Wide Web Consortium (2009)

7. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: Proc. of the
OWLED 2007 Workshop on OWL: Experiences and Directions. (2007)

8. Wessel, M., Möller, R.: A High Performance Semantic Web Query Answering
Engine. In: Proc. of the Int. Workshop on Description Logics (DL2005). (2005)

9. Luther, M., Böhm, S.: Situation-Aware Mobility: An Application for Stream Rea-
soning. In: Proceedings of the 1st International Workshop on Stream Reasoning.
Volume 466 of CEUR Workshop Proceedings., CEUR.org (2009)

10. Della Valle, E., Ceri, S., Barbieri, D., Braga, D., Campi, A.: A First step towards
Stream Reasoning. In: Proceedings of the Future Internet Symposium. (2008)

11. Dickinson, I.: Implementation experience with the DIG 1.1 specification. Technical
Report HPL-2004-85, Hewlett-Packard (2004)

8 http://www.racer-systems.com/products/racerpro/preview/
9 http://www.semanticweb.gr/thea/

http://www.racer-systems.com/products/racerpro/preview/
http://www.semanticweb.gr/thea/

Appendix: List of Basic Asks and Responses
Ask KBResponse

GetAllClasses SetOfClasses
GetAllObjectProperties SetOfObjectProperties
GetAllDataProperties SetOfDataProperties
GetAllAnnotationProperties SetOfAnnotationProperties

K
B

E
n
ti

ti
es

GetAllIndividuals SetOfIndividuals
GetAllDatatypes SetOfDatatypes

IsKBSatisfiable BooleanResponse
IsKBDeclaredConsistent BooleanResponse

S
ta

tu
s

GetKBLanguage StringResponse

IsClassSatisfiable BooleanResponse
IsClassSubsumedBy BooleanResponse
AreClassesDisjoint BooleanResponse
AreClassesEquivalent BooleanResponse
GetSubClasses [dir] SetOfClassSynsets
GetSuperClasses [dir] SetOfClassSynsets
GetDisjointClasses SetOfClassSynsets
GetEquivalentClasses SetOfClasses
GetSubClassHierarchy ClassHierarchy
Are{O|D}PropertiesEquivalent BooleanResponse
Is{O|D}PropertySatisfiable BooleanResponse

S
ch

em
a

Are{O|D}PropertiesDisjoint BooleanResponse
Is{O|D}PropertySubsumedBy BooleanResponse
Is{O|D}PropertyXXX BooleanResponse
GetSub{O|D}Properties [dir] SetOf{O|D}PropertySynsets
GetSuper{O|D}Properties [dir] SetOf{O|D}PropertySynsets
GetDisjoint{O|D}Properties SetOf{O|D}PropertySynsets
GetEquivalent{O|D}Properties SetOf{O|D}Properties
GetSub{O|D}PropertyHierarchy {O|D}PropertyHierarchy

AreIndividualsEquivalent BooleanResponse
AreIndividualsDisjoint BooleanResponse
IsInstanceOf BooleanResponse
GetTypes [dir] SetOfClassSynsets
GetFlattenedTypes [dir] SetOfClasses
GetDisjointIndividuals SetOfIndividualSynsets
GetEquivalentIndividuals SetOfIndividuals
GetFlattenedDisjointIndividuals SetOfIndividuals
Get{O|D}PropertiesOfSource [neg] SetOf{O|D}PropertySynsets
GetObjectPropertiesOfTarget [neg] SetOfObjectPropertySynsets
GetDataPropertiesOfLiteral [neg] SetOfDataPropertySynsets

F
ac

ts

Get{O|D}PropertiesBetween [neg] SetOf{O|D}PropertySynsets
GetInstances [dir] SetOfIndividualSynsets
GetObjectPropertyTargets [neg] SetOfIndividualSynsets
GetDataPropertyTargets [neg] SetOfLiterals
Get{O|D}PropertySources [neg] SetOfIndividualSynsets
GetFlattenedInstances [neg] SetOfIndividuals
GetFlattenedObjectPropertyTargets [neg] SetOfIndividuals
GetFlattened{O|D}PropertySources [neg] SetOfIndividuals
AreIndividualsRelated [neg] BooleanResponse
IsIndividualRelatedWithLiteral [neg] BooleanResponse

http://www.owllink.org/owllink-20091016/#Asks-KBEntities
http://www.owllink.org/owllink-20091016/#Asks-KBEntities
http://www.owllink.org/owllink-20091016/#Asks-KBEntities
http://www.owllink.org/owllink-20091016/#Asks-KBEntities
http://www.owllink.org/owllink-20091016/#Asks-KBEntities
http://www.owllink.org/owllink-20091016/#Asks-KBEntities
http://www.owllink.org/owllink-20091016/#Asks-KBStatus
http://www.owllink.org/owllink-20091016/#Asks-KBStatus
http://www.owllink.org/owllink-20091016/#Asks-KBStatus
http://www.owllink.org/owllink-20091016/#ClassAsks
http://www.owllink.org/owllink-20091016/#ClassAsks
http://www.owllink.org/owllink-20091016/#ClassAsks
http://www.owllink.org/owllink-20091016/#ClassAsks
http://www.owllink.org/owllink-20091016/#ClassQueries
http://www.owllink.org/owllink-20091016/#ClassQueries
http://www.owllink.org/owllink-20091016/#ClassHierarchy
http://www.owllink.org/owllink-20091016/#ClassHierarchy
http://www.owllink.org/owllink-20091016/#ClassHierarchy
http://www.owllink.org/owllink-20091016/#ObjectPropAsks
http://www.owllink.org/owllink-20091016/#ObjectPropAsks
http://www.owllink.org/owllink-20091016/#ObjectPropAsks
http://www.owllink.org/owllink-20091016/#ObjectPropAsks
http://www.owllink.org/owllink-20091016/#ObjectPropAsks
http://www.owllink.org/owllink-20091016/#ObjectPropQueries
http://www.owllink.org/owllink-20091016/#ObjectPropQueries
http://www.owllink.org/owllink-20091016/#ObjectPropGets
http://www.owllink.org/owllink-20091016/#ObjectPropGets
http://www.owllink.org/owllink-20091016/#ObjectPropHierarchy
http://www.owllink.org/owllink-20091016/#Individuals
http://www.owllink.org/owllink-20091016/#Individuals
http://www.owllink.org/owllink-20091016/#Individuals
http://www.owllink.org/owllink-20091016/#IndividualClassQuery
http://www.owllink.org/owllink-20091016/#IndividualClassQuery
http://www.owllink.org/owllink-20091016/#IndividualDisjoint
http://www.owllink.org/owllink-20091016/#IndividualQuery
http://www.owllink.org/owllink-20091016/#IndividualQuery
http://www.owllink.org/owllink-20091016/#IndividualObjectPropQueries
http://www.owllink.org/owllink-20091016/#IndividualObjectPropQueries
http://www.owllink.org/owllink-20091016/#IndividualDataPropQueries
http://www.owllink.org/owllink-20091016/#IndividualObjectPropQueries
http://www.owllink.org/owllink-20091016/#IndividualIndividualObjectPropSynsets
http://www.owllink.org/owllink-20091016/#IndividualIndividualObjectPropSynsets
http://www.owllink.org/owllink-20091016/#IndividualConstantDataPropSynsets
http://www.owllink.org/owllink-20091016/#IndividualIndividualObjectPropSynsets
http://www.owllink.org/owllink-20091016/#IndividualIndividualObjectPropFlatten
http://www.owllink.org/owllink-20091016/#IndividualIndividualObjectPropFlatten
http://www.owllink.org/owllink-20091016/#IndividualIndividualObjectPropFlatten
http://www.owllink.org/owllink-20091016/#IndividualsRelated
http://www.owllink.org/owllink-20091016/#IndividualsRelated

	The OWLlink Protocol
	 Thorsten Liebig (Ulm University, Germany), Marko Luther (DOCOMO Europe GmbH, Munich, Germany), Olaf Noppens (Ulm University, Germany)

