
A Reasoning Broker Framework for OWL

Jürgen Bock, Tuvshintur Tserendorj, Yongchun Xu, Jens Wissmann, and
Stephan Grimm

FZI Research Center for Information Technology, Karlsruhe, Germany
{bock,tserendo,xu,wissmann,grimm}@fzi.de

Abstract. Semantic applications that utilise OWL ontologies can ben-
efit from a broad range of OWL reasoning systems, which allow for the
inference of implicit knowledge from explicitly given facts and axioms.
Different OWL reasoners, however, specialise in different reasoning prob-
lems or kinds of ontologies, and hence perform differently in certain
reasoning scenarios. This paper presents a reasoning broker framework,
which connects to different existing reasoning systems and intelligently
delegates reasoning requests. The behaviour of the broker is controlled
by exchangeable and configurable broker strategies featuring selection
and parallelisation of reasoners, centralised caching, simulated anytime
reasoning, and various other potential features. A first experiment shows
performance improvement for a sequence of queries compared to the use
of different single reasoners.

1 Introduction

The Web Ontology Language (OWL) is to large extents based on Description
Logics [1], a family of decidable fragments of first order logic. This character-
istic allows OWL based semantic applications to perform automated reasoning
in order to infer implicit knowledge from explicitly stated facts and axioms. In
such applications different reasoning tasks arise, such as satisfiability checking,
subsumption checking, classification, or instance retrieval. There can be various
other derived reasoning tasks, such as the ones provided by the OWL API’s [2]
reasoner interface. Although theoretically all reasoning tasks can be reduced
to satisfiability checking, different reasoning systems are optimised for different
kinds of tasks. Furthermore different reasoning systems are optimised for differ-
ent kinds of ontologies, such as ontologies with large ABoxes or complex TBoxes,
and hence different reasoners perform differently in different scenarios [3–7]. The
upcoming W3C standard for OWL 2 (Web Ontology Language version 2) [8] dis-
tinguishes between different Profiles [9], namely OWL 2 EL, OWL 2 QL, and
OWL 2 RL, which trade language expressivity for reduced reasoning complexity.
Currently there is a number of reasoning systems being developed focusing on
efficient reasoning on those fragments. Apart from traditional sound and com-
plete reasoning systems, such as Pellet [10], FaCT++ [11], or KAON2 [6], there
are approximate reasoners, such as SCREECH [12] and AQA [13], which trade
soundness and/or completeness for runtime performance. In certain scenarios
where speed is highly desired, such a tradeoff can be tolerated.

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

2 Reasoning Brokerage

The idea behind reasoning brokerage is to utilise different existing reasoners in
the background while providing a single interface to the user or application. The
broker invokes connected remote reasoners in an intelligent manner such that
their strengths and weaknesses are considered, and the shortest possible run-
time for a particular reasoning task (or a sequence of tasks) is achieved. Refer
to Sect. 3 for an overview on which presented features are currently realised.

Parallel Reasoner Invocation. Predicting the exact run-time of reasoning
systems for a given ontology and a given query is hardly possible in practice.
Even prediction of the first reasoner to finish a given query is not possible in
many cases, which motivates the parallel execution of reasoning tasks on a set
of reasoning systems. The reasoner that finishes first can then propagate the
results of the query, assuming correctness of all reasoners invoked.

Reasoner Selection. Due to benchmarks and knowledge about the implemen-
tations of different reasoning systems, some of the available reasoners can be
selected prior to actually executing the reasoning tasks. This selection will keep
reasoners unsuitable for a given ontology/query combination idle and available
for other reasoning tasks they are more appropriate for.

Query Decomposition. Queries containing complex class or property expres-
sions can be analysed if those expressions decompose into several subexpressions
which can be answered by different reasoners in parallel. It must be ensured,
though, that the combination of the results delivered by different reasoners does
not bear an unacceptable overhead compared to the performance gained by
parallel computation. A naive example of such a decomposition is to split a
conjunctive class expression into its operands and answer each subexpression in
parallel. The answer in this simple case would be the intersection of the answers
delivered by the different reasoners.

Partitioning of Ontologies. The notions of conservative extensions and local-
ity provide means to partition an ontology into several semantically independent
modules [14]. Executing a query on such a module instead of the whole ontology
can result in run-time performance improvements for reasoning requests. More-
over, in combination with intelligent query decomposition more complex queries
can be executed by different reasoners on different ontology modules in parallel.

Load Balancing and Scheduling. In a scenario where a sequence of queries
is to be answered, or multiple applications are using the same instantiation
of a reasoning broker, it is necessary to balance the workload of each remote
reasoner in order to provide optimal overall run-time performance. To this end

an asynchronous reasoner interface would allow for acceptance of more than a
single query at once from an application. Query answering can then be scheduled
to be processed by the different remote reasoners according to their strengths
and language conformance, in order to ensure maximum throughput of queries.

Anytime Reasoning. Anytime algorithms are designed to gradually improve
the quality or quantity of their results as computation time increases, and end
with providing the whole answer if complete computation is required. Anytime
algorithms have been developed for the reasoning broker framework by com-
bining approximate reasoning systems [12, 13]. The anytime behaviour can be
achieved by either combining only the approximate methods or by combining
them with a sound and complete reasoner.

Real-time Benchmarking. Assuming that the reasoning systems have been
correctly implemented, existing benchmarks for ontology reasoning basically fo-
cus on performance measurements. It is also important to perform correctness
tests for the implementation of the reasoning systems [7], in particular for the
evaluation of emerging approximate reasoning systems with measuring the qual-
ity of answers as a special case of correctness tests. The reasoning broker provides
an ideal infrastructure for both performance and correctness tests.

3 Implementation

The reasoning broker has been implemented as the HERAKLES system1 in the
JavaTM programming language, based on the OWL API2 [2]. HERAKLES is im-
plemented in a client/server architecture to ensure modular decoupling of remote
reasoners, i.e. the HERAKLES server, and the broker layer, i.e. the HERAK-
LES client. The HERAKLES client implements the OWLReasoner interface of
the OWL API and can thus be used like any standard reasoner from within an
OWL API based application. The HERAKLES client furthermore maintains a
reasoner registry to record attached remote reasoners that can be used by the
broker. Remote reasoners are wrapped into a remote reasoner adapter, which
allows them to be run as reasoning servers connected to the HERAKLES client.
This adaptation has not only been realised for OWL API compliant reasoners,
but also for the KAON2 reasoner with its own API, and the KAON2 based
approximate reasoning systems SCREECH and AQA. The communication be-
tween client and servers has been realised using JavaTM RMI3. Hence reasoning
servers can be run on remote machines, which allows for exclusive provision of
computational resources for each reasoner.

In addition to the implementation of the OWL API reasoner interface, there
is a plug-in available for the Protégé 4 ontology editor [15]. Via this plug-in

1 http://herakles.sourceforge.net
2 http://owlapi.sourceforge.net
3 Remote Method Invocation

HERAKLES can be selected and used the same way as any standard reasoner
from within Protégé 4. The plug-in provides additional functionality, namely (i)
selection of remote reasoners to be used, (ii) strategy selection and configura-
tion, (iii) anytime querying with asynchronous result delivery, and (vi) real-time
statistics of run-time performance of the attached remote reasoners.

3.1 Broker Strategies

The behaviour of the broker and thus the implementation of the features dis-
cussed in Sect. 2 is controlled by exchangeable broker strategies. More precisely
there is a load strategy to control the loading of ontologies into the different re-
mote reasoners, and an execution strategy to control the execution of reasoning
tasks by those reasoners. The strategy concept allows for easy substitution of
both load and execution strategy by different implementations depending on the
usage scenario of the reasoning broker. Furthermore the strategy concept allows
for the implementation and use of customised strategies for specific use cases.
Implementation of strategies in HERAKLES is simplified by several strategy
components, which encapsulate core broker tasks such as parallelisation, rea-
soner selection, partitioning, or ontology analysing. These strategy components
can then be used and combined to assemble new broker strategies. The follow-
ing paragraphs describe interfaces and currently available implementations of
strategy components and strategies for HERAKLES.

Paralleliser. This component invokes the execution of a reasoning task on a selec-
tion of reasoners in parallel. It will most likely be the final component involved in
a strategy, possibly after some partitioning and selection steps. Currently there
are two implementations: a competing paralleliser, which delivers the result of
the reasoner that finishes first, and a blocking paralleliser, which waits until all
reasoners have finished. The former will most likely be the default implemen-
tation in order to gain the best run-time performance of the broker, while the
latter could be used for benchmarking tasks.

Selector. This component selects a set of reasoners out of the ones registered
by the broker. Different implementations can apply different selection criteria,
such as ontology properties, reasoning task to be executed, or query properties4.
Currently there are two implementations: an ontology selector, which selects
reasoners according to properties of the ontology, and a task selector, which
selects reasoners according to the reasoning task to be performed. Selection of
reasoners in this way requires knowledge about the capabilities of the different
reasoners, which are currently recorded by the remote reasoner adapters.

Modulariser. This component provides means to partition an ontology into sev-
eral modules, which can ideally be processed by different reasoners concurrently.
There is currently no implementation available, but there are plans for realising
partitioning as discussed in Sect. 2.
4 Query properties could be for instance the language features used in a class descrip-

tion in an instance query.

Analyser. This component is supposed to be used in load strategies which per-
form an analysis of the ontologies to be loaded. The information gained by this
analysis, i.e. characteristics of the ontologies, can then be used e.g. by selectors
in the execution phase.

Basic/Analysing Load Strategy. This load strategy loads the ontology into all
available remote reasoners. The analysing load strategy extends the basic load
strategy by additionally analysing the ontologies and recording their character-
istics.

Basic/Fault-tolerant Parallelisation Strategy. This execution strategy performs
a reasoning request on all available (idling) remote reasoners, which have loaded
the ontologies. A fault-tolerant parallelisation strategy extends the basic paral-
lelisation strategy by being insensitive to failing remote reasoners. In case of a
failure, it waits for more reasoners to become available and fails on a particular
query only if all remote reasoners fail.

(Fault-tolerant) Task Selection Strategy. This execution strategy selects remote
reasoners according to the reasoning task requested. Selection is carried out
by a task selector strategy component, which can be configured in order to map
reasoning tasks to reasoners having certain characteristics. Selected reasoners are
then invoked in parallel using the competing paralleliser strategy component. A
fault-tolerant task selection strategy extends the task selection strategy by being
insensitive to failing remote reasoners. In the case all selected reasoners fail on
a particular query, it also selects reasoners not matching the selection criteria in
order to try and have the query succeed5.

Anytime Strategy. This execution strategy simulates anytime reasoning behav-
iour by using approximate reasoning systems as discussed in Sect. 2. It selects
distinct sets of remote reasoners respecting soundness, completeness, and both
soundness and completeness. All reasoners are invoked in parallel using the com-
peting paralleliser strategy component, where each set of reasoners is invoked by
a different paralleliser. Results are delivered from the fastest reasoner of each
set, characterising results as sound, complete, or sound/complete rsp. Anytime
behaviour arises from the faster run-times of the approximate reasoners and thus
from the early delivery of (potentially) unsound or incomplete answers.

Benchmark Strategy. This execution strategy can be used for simple run-time
performance benchmarking of reasoners. It invokes all available remote reasoners
in parallel without any prior selection. The strategy component for parallel ex-
ecution is the blocking paralleliser to enable time measurement of each reasoner
for each reasoning task. The blocking characteristic of this strategy component
ensures availability of all reasoners for each reasoning task out of a test series.

5 This behaviour assumes that the selection in the first place was only based on ex-
pected run-time performance and not due to language conformance.

3.2 Query Stream Experiment

To demonstrate the effect of the reasoning broker using multiple remote reasoners
compared to the use of single reasoners, an experiment has been conducted to
simulate the behaviour of answering a sequence of queries on a single ontology.
Such a setting, in which the ontology or set of ontologies is rather stable, are
typical for most domain specific semantic applications6.

Note that this experiment is not intended to be yet another benchmark of the
reasoners used. There was neither a comparison of the results delivered by the
different reasoners, nor of the time needed by each reasoner for a single query.

Setup. In this experiment a sequence of queries is asked on a modified version
of the Wine ontology. It is the same version as used in previous benchmarks [6,
4], enriched by a datatype property in order to be able to ask queries containing
some datatype expression. A set of 100 queries was randomly generated using
all reasoning query methods of the OWL API, and arbitrary class and prop-
erty expressions using named entities of the ontology. The length of the query
expressions was limited to use at most 6 named entities from the ontology. It
is not relevant for the purpose of this experiment, that queries might be mean-
ingless since results are not compared and inference of an empty result is itself
challenging. Note that there was also no explicit request (query) for classifica-
tion or realisation of the ontology. The reasoners used as remote reasoner in this
experiment are Pellet 2.0.0-RC7, FaCT++ 1.3.0, and KAON2 (2008-06-29).

The experiment was conducted in a distributed computing environment us-
ing four identical Linux (2.6.18-8) machines with four 1.86GHz Intel R© Xeon R©
CPUs, and 1GB physical memory each. Each reasoner and the HERAKLES
client were running on different machines to guarantee exclusive use of com-
puting resources for each reasoner. HERAKLES was set up with the basic load
strategy and fault tolerant parallelisation strategy.

Result. It could be observed that Pellet was the only reasoner to answer all
queries without failing. KAON2 is unable to answer requests, where the class
description contains nominal expressions, which was the case in 10 test queries.
FaCT++ does not support a number of OWL API reasoner methods using its
OWL API wrapper implementation. For this reason, it could not handle 32 test
queries. It should be noted, that some of the queries that could only be answered
by Pellet were rather complex, which explains the conspicuously slower run-
time of Pellet in this experiment. In HERAKLES a fault tolerant parallelisation
strategy was used (see Sect. 3.1), which made it recover from a failing reasoner
by waiting for other reasoners to become available in order to answer these
queries. As Fig. 1 shows, the simultaneous use of all three reasoners resulted
in a significant improvement of run-time performance compared to solely using
Pellet, while retaining faultless processing of the query stream.

6 It is assumed that such a semantic application uses the OWL API as ontology
management back-end interface.

 0

 200000

 400000

 600000

 800000

 1e+06

FaCT++ (F:32) KAON2 (F:10) Pellet (F:0) *All* (F:0)

Ti
m

e
(m

s)

Reasoner(s) used

Runtime comparison of reasoners in the reasoning broker framework

Fig. 1. Comparison run-time performances of HERAKLES used with different remote
reasoners for a sequence of 100 queries. (The numbers in parentheses indicate the
number of failures, i.e. queries that could not be answered.)

4 Conclusion

The variety of language features available in the upcoming W3C standard for
OWL 2 and its profiles, as well as the multitude of available OWL reasoners
makes it a challenge to choose the best performing reasoner on a given ontology
and reasoning task. This problem is tackled by a reasoning broker framework,
which connects to different standard reasoners and provides a number of features
in order to increase overall run-time performance for reasoning tasks. Among
those features are selection and parallel invocation of reasoners, ontology par-
titioning, query decomposition, anytime reasoning, etc. Some of these features
have already been implemented in the HERAKLES system. A first experiment
asking a sequence of queries on a static ontology shows HERAKLES to perform
favourable using several reasoners compared to the use of a single one.

HERAKLES is in active development, and all features as pointed out in
Sect. 2 will be implemented soon. Most prominently the focus will be on on-
tology partitioning and query decomposition. There are also plans to include
reasoner selection heuristics in order to select suitable reasoners based on their
expected run-time behaviour. To this end, machine learning techniques will be
applied in order to classify reasoners according to their performance on ontologies
and queries with certain properties. There will also be efforts towards adopting
the OWLLink7 protocol both for the interface to HERAKLES, as well as for
the communication between the HERAKLES client and the remote reasoning
servers.
7 http://www.owllink.org/

Acknowledgement

The presented research was funded by the German Federal Ministry of Eco-
nomics (BMWi) under the project Theseus (number 01MQ07019).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook – Theory, Implementation and Applications.
Cambridge University Press (2003)

2. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 Touch Paper: The
OWL API. In: OWLED. Volume 258 of CEUR Workshop Proceedings., CEUR-
WS.org (2007)

3. Luther, M., Liebig, T., Böhm, S., Noppens, O.: Who the Heck is the Father of
Bob? – A Survey of the OWL Reasoning Infrastructure for Expressive Real-World
Applications. In: Proc. of the 6th European Semantic Web Conference (ESWC).
Volume 5554 of LNCS., Berlin, Springer (May 2009) 66–80

4. Bock, J., Haase, P., Ji, Q., Volz, R.: Benchmarking OWL Reasoners. In: Proc. of
the ARea2008 Workshop, Tenerife, Spain (June 2008)

5. Weithöner, T., Liebig, T., Luther, M., Böhm, S., von Henke, F.W., Noppens, O.:
Real-World Reasoning with OWL. In: Proc. of the 4th European Semantic Web
Conference (ESWC). Volume 4519 of LNCS., Berlin, Springer (June 2007) 296–310

6. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universität Karlsruhe (2006)

7. Gardiner, T., Tsarkov, D., Horrocks, I.: Framework For an Automated Comparison
of Description Logic Reasoners. In: Proc. of the 5th Int. Semantic Web Conf.
(ISWC). Volume 4273 of LNCS., Berlin, Springer (2006) 654–667

8. Golbreich, C., Wallace, E.K.: OWL 2 Web Ontology Language: New Features and
Rationale. W3C working draft, W3C (June 2009) http://www.w3.org/TR/2009/
WD-owl2-new-features-20090611/.

9. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language:Profiles. W3C candidate recommendation, W3C (June 2009)
http://www.w3.org/TR/2009/CR-owl2-profiles-20090611/.

10. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semantics 5(2) (June 2007) 51–53

11. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR). Volume
4130 of LNAI., Berlin, Springer (August 2006) 292–297

12. Tserendorj, T., Rudolph, S., Krötzsch, M., Hitzler, P.: Approximate OWL-
Reasoning with Screech. In: Proc. of the 2nd Int. Conf. on Web Reasoning and
Rule Systems. Volume 5341 of LNCS., Berlin, Springer (October 2008) 165–180

13. Tserendorj, T., Grimm, S., Hitzler, P.: Approximate Instance Retrieval. Tech-
nical report, FZI Research Center for Information Technology, Karlsruhe, Ger-
many (December 2008) availavle at http://www.aifb.uni-karlsruhe.de/WBS/
phi/resources/publications/approxInstRetr08.pdf.

14. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the Right Amount: Ex-
tracting Modules from Ontologies. In: Proc. of the 16th Int. Conf. on World Wide
Web (WWW), New York, NY, USA, ACM (May 2007) 717–726

15. Bock, J., Tserendorj, T., Xu, Y., Wissmann, J., Grimm, S.: A Reasoning Broker
Framework for Protégé. 11th Int. Protégé Conf., Amsterdam (June 2009)

