
Practical Aspects of Query Rewriting for OWL 2

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Oxford University Computing Laboratory, Oxford, England
{hector.perez-urbina,ian.horrocks,boris.motik}@comlab.ox.ac.uk

Abstract. Query answering for the QL profile of OWL 2 and a substan-
tial fragment of the EL profile can be implemented via query rewriting. In
our previous work, we presented RQR—a rewriting algorithm for OWL
QL that can also deal with most of the EL profile. In order to test the
likely practicality of RQR, we have implemented it in a query rewriting
system that we call REQUIEM. A recent empirical evaluation of RE-
QUIEM, in which we considered OWL 2 QL ontologies, indicates that
it produces significantly smaller rewritings than existing approaches in
most cases. However, our results suggest that typical queries over real-
istic ontologies can still lead to very large rewritings (e.g., containing
many thousands of queries). In this paper, we describe query rewriting,
briefly present the results of our empirical evaluation, and discuss various
optimization techniques aimed at reducing the size of the rewritings. We
additionally discuss the consequences of rewriting queries w.r.t. OWL 2
EL ontologies and present results from a preliminary empirical evaluation
of REQUIEM in which we consider realistic OWL 2 EL ontologies.

1 Introduction

There are several advantages to the use of an ontology with a data repository. On
the one hand, the ontology can be used as a conceptual schema in order to provide
an intuitive and unified view over one or more repositories, allowing queries to
be independent of the structure and location of the data; on the other hand,
data repositories typically provide persistence and efficient query answering over
large volumes of (instance) data. The use of ontologies as conceptual schemas
has been extensively studied in the context of applications, such as information
integration [3]. The use of data repositories to store instance data is becoming
increasingly important due to the widespread use of ontologies and the scalability
requirements of many applications, such as the semantic Web.

In OWL 2—a new version of the OWL ontology language that recently be-
came a W3C candidate recommendation—scalability requirements are addressed
by profiles: subsets of the language that enjoy desirable computational proper-
ties. The OWL 2 QL profile has been specifically designed for answering queries
via query rewriting : conjunctive queries posed against an OWL 2 QL ontology
and a set of instance data stored in a data repository can be answered by first
using the ontology to rewrite the query and then delegating the evaluation of the
rewritten query to the data repository. We describe the whole process in Section

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009), 
Rinke Hoekstra and Peter F. Patel-Schneider, editors.  http://www.webont.org/owled/2009

Rinke Hoekstra




2 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

2. We will focus on the case where the data is stored in a relational database and
accessed using SQL queries, but the same technique could be applied to data
stored in a triple store and accessed via SPARQL queries.

OWL 2 QL is based on DL-LiteR—one of a family of description logics de-
veloped by Calvanese et al. [2]. The same authors proposed a query rewriting
algorithm, which we will refer to as CGLLR, that transforms a conjunctive query
Q and a DL-LiteR ontology O into a union of conjunctive queries (UCQ) QO
such that the answers to Q over O and any set of instance dataA can be obtained
by evaluating QO over A only. CGLLR is used in reasoners such as QuOnto1

and Owlgres2. Unfortunately, as shown by Calvanese et al., the size of QO is
worst-case exponential w.r.t. the size of Q and O. This means that, on the one
hand, QO may be costly to compute, and, on the other hand, its evaluation by
current database systems may be costly or even unfeasible. Trying to produce
smaller rewritings is, therefore, of critical importance to the practical application
of query rewriting in general, and of OWL 2 QL in particular.

Motivated by the prospect of applying deductive database techniques to im-
prove the scalability of reasoners, in our previous work [7] we considered the
problem of query rewriting for various logics of the DL-Lite and EL families,
the latter being the basis for the OWL 2 EL profile. Our algorithm, called RQR
(Resolution-based Query Rewriting), takes as input a conjunctive query Q and
an ELHIO¬ ontology O, and uses a resolution-based calculus to produce a
rewritten query QO. Although QO will, in general, be a (possibly recursive) dat-

alog query (DQ)—and thus necessitate the use of a deductive database system—
the algorithm exhibits “pay-as-you-go” behavior for various logics. In particular,
if O is a DL-LiteR ontology, then QO is a UCQ; the algorithm can therefore be
seen as a generalization and extension of CGLLR. An advantage of using RQR
as opposed to CGLLR is that, in addition to OWL 2 QL, RQR can handle most
of the EL profile.

In order to test the likely practicality of query rewriting and the perfor-
mance of the different rewriting techniques for DL-LiteR, we implemented RQR
in a query rewriting system that we call REQUIEM3 (REsolution-based QUery
rewrIting for Expressive Models). We recently conducted an empirical evalua-
tion [6] in which we compared REQUIEM to an implementation of CGLLR. The
comparison uses a benchmark suite containing realistic DL-LiteR ontologies and
test queries as well as some artificial ontologies and queries designed to highlight
the differences between the two algorithms. REQUIEM often produced signifi-
cantly smaller rewritings than its counterpart; however, our results show that,
even when using REQUIEM, typical queries over realistic ontologies can lead to
very large rewritings (e.g., containing many thousands of queries).

Both algorithms are clearly be amenable to optimizations aimed at reducing
the size of the rewritings. One obvious optimization would be to use query sub-
sumption checks to eliminate redundant conjunctive queries from the rewriting.

1
http://www.dis.uniroma1.it/~quonto/

2
http://pellet.owldl.com/owlgres/

3
http://www.comlab.ox.ac.uk/projects/requiem/



Practical Aspects of Query Rewriting for OWL 2 3

Our empirical evaluation showed that the query subsumption check can signifi-
cantly reduce the size of the rewritings, and that the optimized versions of RQR
and CGLLR produce very similar rewritings. However, the resulting rewritings
can still be very large (e.g., containing many hundreds of queries). In order to
address this problem, in Section 3 we describe various optimizations that can be
used in order to further reduce the size of the rewritings.

Finally, in Section 4 we go beyond OWL 2 QL and discuss the consequences
of using RQR to rewrite queries w.r.t. OWL 2 EL ontologies. We present a
further optimization that can be used to reduce the size of the rewritings in
case they are DQs. Moreover, we present a simple procedure that can be used
to transform non-recursive DQs into UCQs. We have conducted a preliminary
empirical evaluation of REQUIEM in which we consider typical queries posed
over realistic OWL 2 EL ontologies. Our results suggest that in many cases the
rewritings can be transformed into relatively small UCQs, which means that it
will often be possible to use a database system for answering conjunctive queries
even over ontologies that go beyond OWL 2 QL in realistic scenarios.

2 Ontology-based Data Access via Query Rewriting

We now describe how to answer queries posed over an OWL 2 QL ontology and a
database using query rewriting. We illustrate the process by means of an exam-
ple. Suppose we have a relational database DB containing a table Professor with
attributes name and department; and a table Student with attributes name,
major, and tutor. We can use a suitable ontology as a conceptual schema that
describes the structure of the data. For example, we might use the following
OWL 2 QL ontology O to describe DB:4

Professor � ∃teaches
∃teaches � Teacher

∃hasTutor− � Professor

The ontology O states that professors teach at least someone, that the domain
of the property teaches is Teacher, and that the range of the property hasTutor
is Professor. Given suitable mappings from the classes and properties in the
ontology to data in the database, queries posed in terms of the ontology can be
answered using the database. Mappings from the ontology to the database are
typically defined using expressions of the form D �→ QD, where D is a class or
property occurring in the ontology and QD is an SQL query over the database;
QD could, however, equally well be a SPARQL query that accesses data in an
RDF triple store. In our example, the mapping M between O and DB is defined
as follows:

Professor �→ SELECT Name FROM Professor

hasTutor �→ SELECT Name, Tutor FROM Student

4 We use the description logic syntax for the sake of compactness.



4 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Queries posed over the ontology are answered in two steps: first, the ontology
is used to rewrite the query into a UCQ—so-called rewriting—and second, the
mappings are used to transform the rewriting into an SQL query that is then
evaluated using the database system where the instance data resides. Intuitively,
the rewriting is an expanded query that incorporates the knowledge encoded
in the ontology that is relevant for answering the original query. Consider, for
example, the query Q = Q(x) ← Teacher(x). A piece of relevant information
encoded in O for answering Q is, for instance, that all professors are teachers;
therefore, the rewriting QO of Q w.r.t. O should reflect this fact. In particular,
QO should retrieve instances of Professor as well as instances of Teacher.

There are currently two main algorithms that can be used to compute the
rewriting of a query w.r.t. an OWL 2 QL ontology: CGLLR and RQR. Although
the algorithms compute the rewritings quite differently—CGLLR uses the ax-
ioms of the ontology as ‘rewriting’ rules, whereas RQR employs a resolution-
based calculus—both algorithms are guaranteed to produce UCQs when rewrit-
ing queries w.r.t. OWL 2 QL ontologies. Given the inputs Q and O as above,
either algorithm will produce the following rewriting QO:

Q(x) ← Teacher(x) (1)
Q(x) ← teaches(x, y) (2)
Q(x) ← Professor(x) (3)
Q(x) ← hasTutor(y, x) (4)

Once QO has been computed, we can proceed to evaluate it over the database
DB. In order to do so, we need to transform the rewriting into an SQL query.
Transforming QO into an SQL query sql(QO) basically amounts to using the
mappings M to replace each class or property D occurring in a query contained
in QO with the corresponding SQL query QD, and forming the union of the
resulting queries. Note that in this case, M does not contain a mapping for
every class and property of O. The answer to any query containing an atom
for which there is no mapping will necessarily be empty, and we can therefore
discard such queries. In this case, queries (1) and (2) can be discarded. It is easy
to see that, as a result, sql(QO) is

SELECT Name FROM Professor UNION SELECT Tutor FROM Student.

Finally, the evaluation of sql(QO) is delegated to the database system where DB
resides.

3 Query Rewriting in Practice

Calvanese et al. showed that the size of the rewriting QO of a query Q w.r.t.
an OWL 2 QL ontology O is worst-case exponential w.r.t. the size of Q and O
[2]. Consider, for instance, the ontology O = {R1 � R2, R2 � R3, ..., Rn−1 �
Rn} and the query Q = Q(x0) ← Rn(x0, x1) ∧Rn(x1, x2) ∧ ... ∧Rn(xm−1, xm).



Practical Aspects of Query Rewriting for OWL 2 5

It can be shown that the rewriting QO of Q w.r.t. O will contain nm queries. As
the example shows, queries containing classes or properties with many subsumers
can lead to large rewritings. This means that, on the one hand, QO may be
costly to compute, and, on the other hand, the evaluation of sql(QO) by existing
database systems may be costly or even unfeasible.

One obvious optimization that can help to reduce the size of the rewritings
is based on the notion of query subsumption. We say that a query Q1 subsumes

another query Q2 if there is a substitution σ such that Q1σ ⊆ Q2, where both
queries are regarded as Horn clauses [4]. The query subsumption optimization
consists in checking subsumption between pairs of queries in QO and eliminating
every clause that is subsumed by another.

In order to test the likely practicality of query rewriting, we recently con-
ducted an empirical evaluation of REQUIEM—our implementation of RQR—in
which we compare it to an implementation of CGLLR [6]. The results of our eval-
uation indicate that, while RQR produced significantly smaller rewritings than
the CGLLR algorithm in most cases, with the query subsumption optimization
the two techniques produced almost identical rewritings. Unfortunately, our eval-
uation showed that, even when using query subsumption, the rewritings can be
extremely large. Therefore, is it vital to devise other optimization techniques to
further reduce the size of the rewritings.

Other optimizations similar to query subsumption are the well-known for-

ward and backward subsumption [1]. Both techniques compare each new clause
C1 produced in the saturation step with the set of previously generated clauses.
In forward subsumption, C1 is discarded if the set of clauses already contains
a clause C2 that subsumes C1 under the multiset semantics; in backward sub-
sumption, C1 is removed from the set of clauses if it is subsumed by C2 under
the multiset semantics. Since RQR is based on a resolution calculus, these op-
timizations can be straightforwardly applied without affecting completeness [1].
In the case of CGLLR, however, forward subsumption renders the algorithm in-
complete [6] and it is not clear whether backward subsumption can be applied
to CGLLR without affecting completeness.

Once the rewriting has been computed, we may still be able to further reduce
it by exploiting the information contained in the mappings. As explained in
Section 2, the answer to any query in QO containing an atom for which there
is no mapping will necessarily be empty; therefore, such queries can be safely
discarded before computing sql(QO). We believe that, in practice, it is likely that
the set of mappings does not contain a mapping for every class and property
occurring in the ontology. In these cases, we expect that pruning QO w.r.t. the
mappings would significantly reduce the size of sql(QO), hopefully producing an
SQL query of manageable size.

4 Going Beyond OWL 2 QL

An advantage of using RQR as opposed to CGLLR is that it can handle frag-
ments of OWL 2 that go beyond the QL profile. In fact, RQR supports ontologies



6 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

expressed in ELHIO¬—a description logic that captures most of the EL pro-
file of OWL 2. Unlike DL-LiteR, the DL ELHIO¬ allows for axioms containing
conjunction on the l.h.s. (e.g., Student � ∃hasSupervisor � GraduateStudent),
qualified existential restrictions on the l.h.s. (e.g., ∃studies.Course � Student),
and nominals—classes that are to be interpreted as singletons or sets with only
one element (e.g., OxfordStudent � ∃studiesAt.{OxfordUniversity}).

When dealing with OWL 2 EL ontologies, however, RQR is no longer guaran-
teed to produce UCQs; instead, the rewriting QO might be a possibly recursive
DQ. In order to understand why this is so, consider the following example. Sup-
pose we want to rewrite the query Q = Q(x) ← Student(x) w.r.t. an OWL 2 EL
ontology O containing the axiom

∃hasClassmate.Student � Student, (5)

which states that anybody who has a classmate who is a student is also a student.
It can be shown that RQR will produce the following rewriting QO:

Q(x) ← Student(x) (6)
Student(x) ← hasClassmate(x, y) ∧ Student(y) (7)

Intuitively, the reason RQR produced such a DQ is that clause (7) is recursive.
In order to evaluate such a DQ, we require a deductive database system. Existing
deductive database systems, such as IRIS5 or XSB6, allow for the specification of
external data sources. Therefore, assuming the data resides in a data repository
DB, the mappings between O and DB can be used to specify an external data
source in the deductive database system in order for QO to be evaluated.

A straightforward optimization to reduce the size of QO before evaluation
is based on the so-called dependency graph. We define the dependency graph
G(QO) of QO as follows: every predicate P occurring in QO is a node in G(QO)
and there is an edge from a predicate P1 to a predicate P2 if there is a clause
C ∈ QO such that P1 occurs in the head of C and P2 occurs in the body of
C or vice versa. We can use G(QO) to identify and discard the set of clauses
in QO that are unreachable from the query predicate of QO as such clauses are
clearly irrelevant to answer QO. Consider, for example, an OWL 2 EL ontology
O consisting of the axioms

∃studies.Course � Student,

∃hasTutor− � Professor,

that state that anybody that studies a course is a student and that the range
of the property hasTutor is Professor; and the query Q = Q(x) ← Professor(x).
On input Q and O, RQR will produce the following rewriting QO:

Student(x) ← studies(x, y) ∧ Course(y) (8)
Q(x) ← Professor(x) (9)
Q(x) ← hasTutor(y, x) (10)

5
http://www.iris-reasoner.org/

6
http://xsb.sourceforge.net/



Practical Aspects of Query Rewriting for OWL 2 7

Input: DQ QO
Q�

O = QO;
foreach IDB predicate P occurring in QO except the query predicate do

CP = {C | C ∈ Q�

O with head predicate P};
foreach clause C ∈ CP do

if P occurs in the body of C then
return Q�

O;
end

end
foreach clause C ∈ CP do

Unfold C into every clause in Q�

O;
Q�

O = Q�

O \ {C};
end

end
return Q�

O;

Algorithm 1: Greedy Unfolding

It can be readily verified that clause (8) is not reachable from the query predicate
of QO in G(QO); therefore, we can deduce that such a clause is not relevant for
answering QO and discard it.

Even though RQR is not guaranteed to produce UCQs for OWL 2 EL, ex-
amination of a large corpus of ontologies [5] suggests that in many realistic cases
ontologies do not contain (or imply) cyclic axioms such as (5), which might allow
us to transform QO into a UCQ even for OWL 2 EL ontologies. Suppose, for
example, that RQR computed the following rewriting QO:

Q(x) ← Teacher(x) (11)
Teacher(x) ← teaches(x, y) ∧ Student(y) (12)

It is not difficult to see that by unfolding (12) into (11), such a datalog query
can be transformed into the following UCQ:

Q(x) ← Teacher(x)
Q(x) ← teaches(x, y) ∧ Student(y)

A simple procedure for transforming non-recursive DQs into UCQs is shown
in Algorithm 1. Soundness of this procedure follows from [7]. As can be seen,
the idea is to unfold and discard non-recursive non-query clauses. Clearly, if we
are able to unfold and discard every non-query clause in the original DQ, in the
end we will obtain a UCQ.

We have recently conducted a preliminary empirical evaluation of our system
REQUIEM—enhanced with the greedy unfolding procedure and the optimiza-
tions described in this paper—in which we consider real OWL 2 EL ontologies.
Our test data includes the well-known ontology NCI7 and an ELHI version of the

7
http://www.mindswap.org/2003/CancerOntology/



8 Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

university bechmark ontology developed at Lehigh University8. Our first results
suggest that REQUIEM will often perform well and produce small rewritings in
practice, especially when dealing with relatively small ontologies. Additionally,
our evaluation suggests that we can often use the greedy unfolding procedure
in order to obtain relatively small UCQs. This is an encouraging result since
it means that we will often be able to use an off-the-shelf database system for
answering conjunctive queries even over ontologies that go beyond OWL 2 QL
in realistic scenarios.

5 Future Work

We plan to implement an OWL 2 QL ontology-based data access system using
REQUIEM. Based on our results, we expect such a system to be useful for
answering many realistic queries even over OWL 2 EL ontologies. Moreover,
we expect the system to perform well both w.r.t. the size of the rewritings
and the time needed to compute them; its practicality is, however, still open,
as our results suggest that there are cases where the rewritings may be too
large to evaluate. In such cases, we believe that the optimization that uses the
mappings to prune irrelevant queries (see Section 3) might produce rewritings of
manageable proportions. We plan to test our system with actual data in order to
discover if this is indeed the case. Additionally, we plan to extend the system to
support all of OWL 2 QL, which mainly involves adding support for datatypes.

References

1. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 2, pages
19–100. North Holland, 2001.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. J. of Automated Reasoning, 2007.

3. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
Logic Framework for Information Integration. In Principles of Knowledge Repre-

sentation and Reasoning, pages 2–13, 1998.
4. M. Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1996.
5. T. Gardiner, D. Tsarkov, and I. Horrocks. Framework for an automated comparison

of description logic reasoners. volume 4273, pages 654–667, 2006.
6. H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient Query Answering for OWL

2. In Proceedings of the 8th International Semantic Web Conference (ISWC 2009),

Chantilly, Virginia, USA, 2009.
7. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable Query Answering and Rewrit-

ing under Description Logic Constraints. Journal of Applied Logic, 2009. To appear.

8
http://swat.cse.lehigh.edu/projects/lubm/


