
Temporal Classes and OWL

Natalya Keberle

Chair of IT, Zaporozhye National University, Ukraine
nkeberle@gmail.com

Abstract. Temporal class as a design primitive for knowledge engineering
allows for natural representation of evolving concepts of a domain. The paper
proposes arguments to employ temporal entities (classes, axioms, ontologies) as
first-class citizens in the Semantic Web applications. The paper presents an
informal description of one temporal extension of a subset of OWL to deal with
temporal classes — OWL-MeT, based on the combination of metric temporal
logic and basic description logic with nominals, !"#-$%&'. Described are the
solutions proposed and the open issues of such a temporal extension.

Introduction and Use Cases

Temporal logics are successfully used for verification of the dynamic systems, e.g. in
software and hardware development. Application of temporal logics to the Semantic
Web applications is now limited due to the lack of standards on temporal ontology
languages and of the reasoning support.

The palette of the use cases utilizing temporal description logics is naturally
divided into those cases where usage of temporal concepts allows capturing more (or
even all) semantics implicit, and those where temporal concepts and/or axioms serve
as a new solution of a known problem.

Use case 1. Natural semantics of a dynamic concept. As noted in [1] it is a common
situation when an obvious dynamic concept is modeled statically, hiding or (worse)
loosing substantial information about a dynamic concept behavior.

A lot of theoretical examples, including the discussion on the precise definition of
a Mortal in [2] show that adding temporal concept constructors to the ontology
language enable definition of dynamic concepts.

Use case 2. Ontology evolution analysis. There are several complementing
approaches for the problem of ontology evolution analysis. First of all, such kind of
analysis can be focused on structural changes occurring in the elements of the
ontology during its lifetime. Well-known tools and plug-ins, including PROMPTDIFF
(and Prompt Tab in Protégé), OntoView, Changes Tab in Protégé, allow to store,
view, seek and analyze the consequences of structural changes. The critique of
structural change analysis is also known, it was discussed in [3] and [4]. To sum up, if

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

2 Natalya Keberle

there is no version log, usage of heuristics does not provide 100% correct detection of
changes, and if the version log exists, the results of change detection procedures can
be interpreted differently, and it will be better to write own procedures to look for
particular changes across the version log.

Another approach is the analysis of logical changes. The discussion of logical
compatibility of ontology versions was initiated in [5]. Here we envisage two use
cases. First, the user may want to see the logical difference in addition to / instead of
structural one. The steps in this direction are already made, for example, CEX
algorithm [6] that calculates the logical difference between two acyclic EL-
terminologies. Second, the user may want to pose (via some Web service) a query to
an ontology provider server, involving old and new terms and see the result. Such a
service might be an external part of the ontology version control system. Types of
queries may include subsumption, equivalence, disjointness of old and new terms,
entailment of facts from the new ontology with respect to the old terms etc. It’s
important to say that such queries are naturally extended not only to two ontology
versions, but also to several versions. And here we face with the formalism to
describe such queries – it should at least address versions, support the elements of the
ontology language, support the definition of the axioms, having elements from
different versions. One known solution for such type of logical analysis of evolution
is realized in MORE framework [7], where queries on different versions of ontology
were encoded in XML using temporal tags like “previous version” or similar.

In the light of temporal logic approach, the formal description of the task of logical
analysis of ontology evolution can be as follows.

Given a set of ontology versions }{
ktO and a time structure ,T , the

temporalized ontology can be defined as ,,}{ TO Ttt kk
. In the simplest case a

set of version is linearly ordered, and the correspondent time structure is isomorphic
to ,Z . Let L be a temporal description logic language, able to describe
temporalized ontology. A model of L is M IRR PF },,{, , where

},{ Zkk , each k represents the domain of the interpretation of ktO , FR and

PR are temporal accessibility relations and interpretation)(,)(kIkkI . Each

ontology version has a model in k . Then answering a general type query
)(LWFF over the set of ontology versions is the model checking problem,

M |= .
Temporal concept constructors in the temporal description logic enable the

following queries for logical evolution analysis.
Type 1. Presence of an atomic concept A or complex (non-temporalized) concept E

in a version kt (positive answer means A (or E) has a model in the ontology version).
M |= A@{ kt } M |= E@{ kt },

where E is constructed with the help of (,), ¬.

Due to the open world assumption, applicable to OWL as ontology language,
straightforward interpretation of such query allows arbitrary concept A be satisfiable

Temporal Classes and OWL 3

in the ontology, even if that concept is not defined in the ontology. Additional actions
should be taken to “close” the domain k .

Type 2. Presence of a complex (non-temporalized) concept E in a version defined
relatively to a version kt (n versions before/after, in some version before/after, in all
versions before/after).

M |= modality E @{ kt },
where modality is one of temporal operators like “somepast”, “allfuture” etc.
Type 3. Truth of a temporal formula of the general form relative to the ontology

versions set.
M |=

Use Case 3. Temporal conceptual modeling. Temporal description logics are known
to be an instrument for conceptual modeling of dynamic information [8], [9].
Investigated are several tractable logics, among them is TDL-Litebool [9], expressive
enough to translate temporal conceptual models into the set of logic formulae.

It was shown in [10] that UML class diagrams and ER models can be translated to
the description logic DL-Litebool. Entities can be mapped into concept names,
hierarchy of entities into subsumption axioms, n-ary relationships are reified etc. It
should be pointed that DL-Litebool enables general concept inclusions (GCI) that allow
complex concepts be subsumed by or equivalent to other concepts. TDL-Litebool
converts a subsumption axiom C *#D, where C and D are time-independent, to the
form allfuture(C *# D) (#### allpast(C *# D).

The three use cases described show different required levels of interoperation
between temporal and non-temporal part of a temporal description logic language.

OWL+Time=?

Time-related issues in the Semantic Web applications are usually modeled using
different formalisms, RDF-based or OWL-based [11]: reification, versioning, 4D-
fluents, and temporal logics.

Known solutions on the level of OWL are versioning and fluents [12], on the RDF
level – temporal RDF graphs [13] reified using OWL-Time [14].

The semantics of practical temporal description logic language enable non-
redundant definition of a dynamic concept. Non-redundancy here means that all the
temporal semantics is encoded in such language constructs, supported with the
reasoning engine, and no additional action is needed, except for proper definition of
the dynamic concept.

Steps towards practical implementation of temporal ontology languages based on
temporal logic are made recently. Temporal description logics known in the literature
explore interval-based or point-based, linear or branching time structures, assume
domain of time be concrete or abstract. The detailed survey of decidability and
complexity of reasoning for various temporal extensions of description logics for
point-based time structure is presented in [15].

4 Natalya Keberle

Depending on the time structure, already known are at least three different
temporal languages, based on the combination of temporal and description logics,
described in the abstract syntax.

TL-OWL – is the implementation of the known language "%-+,'-.(/), based
on "%-$%&0 [16] for interval-based time structure is presented in [17]. The language
has the abstract and the exchange syntax defined, together with the model semantics.
The authors have also proved the decidability of "%-+,'-.(/).

TOWL [18] proposes to present time as a concrete domain over real numbers with
binary predicates ,,, .

OWL-MeT [4] – is the implementation of the language !"-$%&' for point-
based time structure. The language has the abstract and the exchange syntax1, RDF
semantics defined.

Both TL-OWL and OWL-MeT do not apply temporal operators to the axioms and
provide various temporal restrictions, although different for interval-based and point-
based time structures. For example, OWL-MeT allows application of temporal
operators to concepts (thus making temporal concepts from non-temporal ones),
whereas in TL-OWL temporal relations (“before”, “during” etc.) are applicable only
to temporal variables, which in turn are binded to non-temporal concepts.

Without claiming to be the best solution, OWL-MeT was realized in practice. The
details and open issues of the realization are discussed in the next session.

Realization

The experimental realization of a reasoning support for OWL-MeT was made as the
extension of Pellet [19] reasoning engine, called Pellet-MeT2. The logic underlying
OWL-MeT, !"-$%&', is defined over linear infinite to the future and to the past
time line. Correspondent time structure is ,Z , where Z is the set of integers, and

 is reflexive and transitive precedence relation.
The DL-part of the logic is weaker then OWL Lite, particularly in axiomatization

of roles. The roots of such simplification are as follows: the first lies in the
complexity/decidability issues related to the usage of roles in temporal description
logics, and the second is the attempt to incrementally complicate the interoperation of
temporal and description logic and to analyze the behavior of the reasoner, having in
mind the results of others [20].

Let A denote atomic non-temporal concepts, R – atomic role, FE, – complex
non-temporal concepts, DC, – complex temporal concept, }{o – object nominal
(denoting an individual in some possible world), }{a – temporal nominal (denoting
possible world, e.g. a point on a time line). Then the rules presented in the Fig.1
generate complex concepts.

1 The complete syntactical definitions can be found at http://ermolayev.com/owl-met/
2 Pellet-MeT is available at http://ermolayev.com/owl-met/reasoner.htm

Temporal Classes and OWL 5

E, F A top bottom E (F E) F E R. E R. E }{o
C, D E }{a C intersection D C union D not C | C@ }{a future n C

 past n C somefuture C somepast C allfuture C allpast C

Fig. 1. Syntax rules for concepts/roles construction.

If C and D are temporal concepts, then C equivalent D, C subclassof D are
temporal formulae. If and are temporal formulae, then union ,

 intersection , not are also temporal formulae.
!"-$%&' is interpreted over Kripke model M VIRRdist PF ,},,{,, , where

},{ Zkk is a set of possible worlds, k is a set of individuals in k-th possible
world, }0{: Ndist is a metric on , PF RR , are accessibility relations, I
is an interpretation function, and V is a hybrid valuation function. Interpretation I
associates with each k an $%&'-interpretation)(,)(kIkkI . Function

Zaden }{: encodes temporal nominals into integers. For a temporal nominal }{a ,
hybrid valuation V assigns }{a a unique world)(aden - singleton subset of .

RDF serialization of OWL-MeT. Temporal classes and temporal restrictions
(unnamed classes) are defined with:

owlmet:TClass rdf:type rdf:resource .
owlmet:TRestriction rdf:type rdf:resource;
 rdfs:subClassOf owlmet:TClass .

All non-temporal classes are actually also temporal (see Fig.1):

owl:Class rdfs:subClassOf owlmet:TClass .

This statement needs some clarification. In OWL-MeT each non-temporal class A

can be defined as future 0 A (at 0 moments to the future A). Temporal nominals,
defining particular time moments on a time line are presented as owlmet:Instant:

owlmet:Instant rdf:type rdf:resource;
 rdfs:subClassOf owlmet:TClass .

Temporal operators, such as owlmet:allfuture, owlmet:at, owlmet:happens are

defined as instances of rdf:property:

owlmet:allfuture rdf:type rdf:property;
 rdfs:domain owlmet:TRestriction;
 rdfs:range owlmet:TClass .
owlmet:at rdf:type rdf:property;
 rdfs:domain owlmet:TRestriction;
 rdfs:range owlmet:Instant .

6 Natalya Keberle

owlmet:happens rdf:type rdf:property;
 rdfs:domain owlmet:TRestriction;
 rdfs:range owlmet:TClass .

Reasoning support for OWL-MeT. The main reasoning task for Pellet-MeT is
checking the consistency of a temporalized ontology. Temporalized ontologies here
are considered as sets of TBox axioms having temporal concepts both on the left and
the right parts. Additionally, a time structure can be defined as a finite set of temporal
nominals, ordered with precedence order. When a time structure is defined, the
reasoner uses the temporal nominals and its order during the completion procedure,
and may stop the completion if some completion rule requires introduction of a new
time moment. Absence of the time structure forces the reasoner to check the
consistency of a temporalized ontology over the infinite time line.

The loading procedure of a temporalized ontology includes parsing of temporal
constructs in addition to OWL parsing, search for a time structure, construction of a
TBox and an ABox. The TBox is then undergoing the standard procedures of
normalization and internalization. Specific features of hybrid and metric temporal
operators of OWL-MeT allow normalization of some combinations of temporal
operators (see [21]).

Consistency checking of a temporalized ontology starts with satisfiability checking
of every concept found in the temporalized ontology. For each concept C an Abox

Cx : is introduced. Predefined temporal nominal }{now corresponds to the initial
time moment. Tableau rules are divided into description logic tableau rules and
temporal/hybrid rules. Rules for $%&'-part remain the same as for description logic.

Hybrid extension of tableau rules creates for each temporal nominal }{a presented in
a given OWL-MeT formula a particular tableau, and establishes accessibility relations
between these tableaux depending on values of)(aden . Metric extension of tableau
rules is presented as movement across the tableaux sequence using the accessibility
relations, as well as creation of a particular tableau. Completion procedure for an
ABox stops in a standard way: either finding a clash in some time moment, or in
obtaining consistent and complete tableau.

Open issues. There were discovered several open issues that require specific
attention. They are mainly connected with the classification procedure and time
structure definition.

At first, subsumption axioms for temporal concepts define the hierarchy of
temporal concepts. Every hierarchy needs a root node, and in general, a root node for
all temporal classes. The choices can be owlmet:TemporalThing, having owl:Thing as
a subclass, and vice versa, owl:Thing can have owlmet:TemporalThing as the
subclass. If (and this is proposed in OWL-MeT) every owl:Class is a subclass of
owlmet:TClass, then owlmet:TemporalThing will subsume owl:Thing. The same
issue arises for the concepts owl:Nothing and owlmet:TemporalNothing.

At second, depending on the choice of the root for all temporal classes, the
classification procedure may behave differently, trying to classify a temporalized

Temporal Classes and OWL 7

ontology where both temporal and non-temporal classes are defined. Temporal class
has a model in several static domains, whereas non-temporal classes have models in a
static domain. With point-based time structure defined explicitly, the classification
may be done after splitting of temporal classes into groups of non-temporal classes
belonging to the same (static) domain, addressed with a temporal nominal. Then each
group can be classified separately. Another way is to follow the classification
procedure for OWL, with owlmet:TemporalThing instead of owl:Thing as a root
node.

At third, researchers in the temporal description logics field outline the importance
of the properties of a time structure such as linearity/branching, infinity, density etc.
The behavior of the underlying logic depends heavily on the combination of these
properties. It may be possible to declaratively define the properties of a time structure
in the temporalized ontology.

Conclusions

Temporal description logic without application of temporal operators to the axioms
and allowing temporal classes may verify the hierarchies of time-dependent entities of
a temporal conceptual model, describe dynamic concepts of a domains, serve as a
language for evolution analysis. Continuous research in the theoretical backgrounds
of temporal description logics gives certainty that practical implementation of
different OWL-based temporal languages is not far off. Starting from simple and
obvious languages and reasoning strategies the common grounding for consistent and
practical research in the field can be find.

The directions for future research include the development of the formalism for the
description of temporalized axioms, alternative sets of temporal operators (until/since,
until/next and others) in addition to metric ones, more rigorous description of a time
structure.

References

[1] Baader, F., Ghilardi, S., Lutz, C.: LTL over Description Logic Axioms. In: Baader, F., Lutz,
C., Motik, B. (eds.) 21st International Workshop on Description Logics (DL’08)

[2] Artale, A., Franconi, E.: Temporal Description Logics. In: Fisher, M., Gabbay, D., Vila, L.
(eds.) Handbook of Time and Temporal Reasoning in Artificial Intelligence, 1, pp. 375--
388. Elsevier, Amsterdam (2005)

[3] Plessers, P., de Troyer, O.: Ontology Change Detection using a Version Log. In: Gil, Y. et
al (eds.) The Semantic Web – ISWC 2005. LNCS, vol. 3729, pp. 578--592. Springer,
Berlin/Heidelberg (2005)

[4] Keberle, N., Litvinenko, Y., Gordeyev, Y., Ermolayev, V.: Ontology Evolution Analysis
with OWL-MeT. In: Flouris, G., d’Aquin, M. (eds.) Workshop on Ontology Dynamics
(IWOD 2007), pp. 1--12, http://kmi.open.ac.uk/events/iwod/papers/paper-05.pdf

[5] Klein, M.C.A., Fensel, D.: Ontology versioning on the Semantic Web. In: 1st Semantic
Web Working Symposium, pp. 75--91 (2001)

8 Natalya Keberle

[6] Konev, B., Lutz, C., Walther, D., Wolter, F.: Logical Difference and Module Extraction
with CEX and MEX. In: Baader, F., Lutz, C., Motik, B. (eds.) 21st International Workshop
on Description Logics (2008)

[7] Huang, Z., ten Teije, A., van Harmelen, F.: MORE2: An Extended Reasoning and
Management System for Multi-version Ontologies. Deliverable D 3.5.3 (WP3.5), EU-IST
Integrated Project (IP) IST-2003-506826 SEKT. Amsterdam, Vrije University (2007)

[8] Artale, A., Franconi, E., Mandreoli, F.: Description Logics for Modeling Dynamic
Information. In: Chomicki, J., van der Meiden, R., Saake, G. (eds.) Logics for Emerging
Applications of Databases 2003 [Outcome of a Dagstuhl seminar], pp. 239--275. Springer,
Berlin/Heidelberg (2003)

[9] Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M. Temporalising
Tractable Description Logics. In: 14th International Symposium on Temporal
Representation and Reasoning (TIME'07), pp. 11--22. IEEE Computer Society Press (2007)

[10] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies. In: Veloso, M. M., Kambhampati, S. (eds.) 20th National
Conference on Artificial Intelligence (AAAI 2005), pp. 602--607. AAAI Press / The MIT
Press (2005)

[11] Baratis, E., Petrakis, E.G.M., Batsakis, S., Maris, N., Papadakis, N.: TOQL: Temporal
Ontology Querying Language. In: Mamoulis, N., Seidl, Th., Pedersen, T. B., Torp, K.,
Assent, I. (eds.) SSTD-2009. LNCS, vol. 5644, pp. 338--354. Springer, Berlin/Heidelberg
(2009)

[12] Welty, C., Fikes, R.: A Reusable Ontology for Fluents in OWL. Frontiers in Artificial
Intelligence and Applications, 150, 226--236 (2006)

[13] Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing Time into RDF. IEEE Trans.
Knowledge and Data Engineering, 19 (2), 207--218 (2007)

[14] Time Ontology in OWL, http://www.w3.org/TR/owl-time
[15] Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal Description Logics: A Survey. 15th

International Symposium on Temporal Representation and Reasoning (TIME 2008), pp. 3--
14. IEEE Society Press (2008)

[16] Artale, A., Franconi, E.: A Temporal Description Logic for Reasoning about Actions and
Plans. J. Artificial Intelligence Research, 9, 463--506 (1998)

[17] Kim, S.-K., Song, M.-Y., Kim, C., Yea, S.-J., Jang, H.C., Lee, K.-C.: Temporal Ontology
Language for Representing and Reasoning Interval-Based Temporal Knowledge. In: 3rd
Asian Semantic Web Conference on the Semantic Web. LNCS, vol. 5367, pp. 31—45.
Springer, Berlin/Heidelberg (2008)

[18] Milea, V., Frasincar, F., Kaymak, U., Noia, T.: An OWL-based Approach Towards
Representing Time in Web Information Systems. In: Frasincar, F., Houben, G.-J., Thiran, P.
(eds.) 4th International Workshop of Web Information Systems Modeling (WISM 2007),
pp.791--802,
http://people.few.eur.nl/frasincar/workshops/wism2007/wism2007proceedings.pdf

[19] Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-
DL Reasoner. J. of Web Semantics: Science, Services and Agents on the World Wide Web,
5(2), 51--53 (2007)

[20] Günsel, C. A Tableaux-Based Reasoner for Temporalised Description Logics. Doctoral
Thesis of the Univ. of Liverpool (2005)

[21] Keberle, N.G.: Properties of Propositional Metric Temporal Calculus for Description of
Evolving Conceptualization. Problems of Applied Mathematics and Mathematical
Modelling, pp.80--99. Dniepropetrovsk, DNU Press (2006), http://ermolayev.com/owl-
met/owl-met-pubs/PTC-MT-mssai-05.pdf

