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1 Introduction

Over the past few years there has been a significant amount of interest in the
area of explaining entailments in OWL ontologies. Without some kind of tool
support, it can be very difficult, or even impossible, to work out why entailments
arise in ontologies. Even in small ontologies that only contain tens of axioms,
there can be multiple reasons for an entailment, none of which may be obvious.
It is for this reason that there has recently been a lot of focus on generating
explanations for entailments in ontologies. In the OWL world, justifications are
a popular form of explanation for entailments. A justifications is a minimal
subset of an ontology that is sufficient for an entailment to hold[1, 7, 10]. More
precisely, for an ontology O and an entailment η where O |= η (O entails η),
a set of axioms J is a justification for η with respect to O if J ⊆ O, J |= η
and, for all J � � J , J � �|= η. Additionally, J is simply a justification (without
respect to O) if J |= η and, if J � � J , then J � �|= η.

Virtually all mainstream ontology editors such as Protégé-4, Swoop, and Top
Braid Composer provide support for generating justifications as explanations for
arbitrary entailments. Justifications have proved enormously useful for under-
standing and debugging ontologies. In [7], Kalyanpur presents a user study which
showed that the availability of justifications had a significant positive impact on
the ability of users to successfully diagnose and repair an ontology. Recently, jus-
tifications have been used for debugging very large ontologies such as SNOMED
[2], where the size of the ontology prohibits efficient manual debugging.

Despite the utility of justifications, and the fact that the availability of a
justification as a form of an explanation is nearly always better than nothing,
in certain cases people can struggle to understand how a justification supports
an entailment. In fact, in a recent study [5], it has been shown that people, who
have expertise in building OWL ontologies, can find it very difficult and even
impossible to understand some justifications.

The work presented in this paper looks at solving this problem using Jus-

tification Oriented Proofs. Given a justification, intermediate inference steps,
called lemmas, are automatically derived to bridge the gap between the axioms
in the justification and the entailment. A justification oriented proof shows in a
stepwise way how the lemmas, and ultimately the entailment, follow from the
justification. The framework makes use of a “complexity model”, which predicts
how easy or difficult it is for a user to understand a justification, and is used for
selecting the lemmas to insert into a proof.
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2 Background and Motivation

As mentioned previously, people with varying levels of expertise in OWL can
find justifications difficult or even impossible to understand. In order to give a
flavour of why this might be the case, two example justifications are presented
in Figures 1 and 2. The reader is encouraged to work through and understand
these justifications in order to appreciate the issues.

Consider the justification shown in Figure 1, which is for the entailment
Person � ⊥ (i.e. Person is unsatisfiable). This is a justification for an entailment
from a real ontology about movies that was posted to the Protégé mailing list.
The person who posted it could not understand why Person was unsatisfiable,
even when presented with the justification. When this justification was shown
to a range of people, some of them having worked with OWL for several years,
many of them struggled to understand it. In fact, some of the people claimed
that it was not a justification for the entailment.

Person � ¬Movie

RRated � CatMovie

CatMovie � Movie

RRated ≡ (∃hasScript.ThrillerScript) � (∀hasViolenceLevel.High)

Domain(hasViolenceLevel, Movie)

Fig. 1. A justification for Person � ⊥

Figure 2 presents an example justification for the entailment Newspaper(
DailyMirror) (read as DailyMirror is an instance of Newspaper). When this jus-
tification was shown to people, many of them were put off by the number and
variety of axioms in the justification. Those that weren’t put off reported that
they found it very difficult to work through.

In previous work [5], a user study was carried out where people were asked
to view and understand justifications. Participants had varying levels of experi-
ence in OWL, ranging from less than six months to over four years. Some of the
participants were bio-informaticians, while others worked on OWL tools such as
editors and reasoners. In the study participants were shown a series of justifica-
tions and asked to rank them based on how difficult they found it to understand
the justifications. The results of the study, confirm that there is indeed a prob-
lem, and that there are naturally occurring justifications that people find very

difficult or even impossible to understand.
In essence, while a justification gathers together the axioms, or premises, for

an entailment, it is left up to the person reading the justification to figure out
how these premises interplay with each other to give rise to the entailment in
question. In some cases, for example those presented in Figures 1 and 2, the



InverseProperties(hasPet, isPetOf)

isPetOf(Rex, Mick)

Domain(hasPet, Person)

Male(Mick)

reads(Mick, DailyMirror)

drives(Mick, Q123ABC)

Van(Q123ABC)

Van � Vehicle

WhiteThing(Q123ABC)

Driver ≡ Person � ∃drives.Vehicle

Driver � Adult

Man ≡ Adult �Male � Person

WhiteVanMan ≡ Man � ∃drives.(Van �WhiteThing)

WhiteVanMan � ∀reads.Tabloid

Tabloid � Newspaper

Fig. 2. A justification for Newspaper(DailyMirror)

“gap” between seeing the premises and understanding how they give rise to the
entailment is too large. So much so, that it is very difficult, or even impossible,
for a person to understand the justification.

It is arguable that, what is needed, is some kind of “proof”, that explicates
the various steps involved in understanding how a justification supports an en-
tailment. In what follows various approaches to a solution are discussed and
Justification Oriented Proofs are presented as the chosen solution.

3 Proof Based Explanation Techniques

As stated previously in the Introduction, a justification for an entailment η may
be regarded as the set of premises for some proof that shows how η follows from
it. When searching for a solution to the problem of understanding justifications,
it therefore seems fruitful to explore the space of presenting proofs to users.

Broadly speaking, proof based explanation techniques are typically inspired
by Natural Deduction [4]. A Natural Deduction proof shows how a conclusion (a
formula) follows from a set of premises (set of formulae) by presenting a series
of intermediate formulae that step from the premises to the conclusion. Each
formula in the proof is either a premise, the conclusion, or a formula which
was derived from previous formulae in the proof via the application of syntac-
tic transformation rules. A natural deduction proof begins with the premises
(axioms in a justification), and ends with the conclusion (entailment). It is fre-



quently claimed that Natural Deduction mimics human reasoning, hence the
name, and so is suitable for presenting proofs to humans.

In terms of Description Logics, there have been various efforts to provide
frameworks for constructing explanation based proofs. One of the most no-
table frameworks was presented by Borgida et al. in “Explaining ALC Sub-
sumption” [3]. In this work, a baseline form of explanation for an entailment is
considered to be the proof obtained by extracting a completion tree, and the
steps used to derive it, from a tableaux reasoner. They argue that due to the
refutation based nature of, and normalising transformations, such as de Mor-
gans rules, tableau proofs are difficult and unnatural for end users to examine
and understand. They also state that it is undesirable to have an explanation
component that is dissociated from the implementation of a reasoner (tableaux
reasoner), citing reasons of efficiency and possible deviation between implemen-

tation and explanation. The authors therefore turn to Sequent Calculi, which
are similar to Natural Deduction Calculi, for generating higher level proofs. The
result is proofs that consist of a steps that parallel “steps” in tableaux based

proofs, but that do not expose the refutation aspect of tableaux reasoning, and
are chained together with “easily explainable” transformation rules. These proofs
are then lifted to a level that is appropriate for end users, by pruning extraneous
parts and using templates to generate “surface syntax” that is more palatable
than the Sequent Calculus notation.

Borgida’s work was followed up by Kwong [8], who implemented it as part of a
tool for generating explanations of subsumptions in ALC. An example of the out-
put produced by Kwong’s work is shown in Figure 3, which presents an explana-
tion for ∃hasFriend.��∀hasFriend.¬(∃hasChild.¬Doctor�∃hasChild.Lawyer)
� ∃hasFriend.∀hasChild.(Rich�Doctor). It is notable that each step contains
two subsumptions, with one being derived from the other according to a partic-
ular transformation rule.

It is easy to see that approach taken in [3] and in [8] is likely to be more
acceptable to end users as a form of explanation than simply extracting and
presenting the completion tree from a tableaux reasoner. Indeed reading such a
proof probably requires much less training than would be required to understand
and read tableaux based proofs. However, the structure and style of proofs such
as the one above raise the issue of proof checking versus proof understanding.

3.1 Proof Checking versus Understanding

Despite the fact that Natural Deduction based explanations are obviously better
than tableaux based proofs, it is not clear how successful these proofs would
be for users of tools like Protégé-4. While some justifications suffer from there
being too big a gap between the premises and conclusion, it is arguable that
Natural Deduction based explanations suffer from the opposite problem. One
of the main features of Natural Deduction inspired proof techniques, is that
the proofs generated by them can be very fine-grained. This is because each
step corresponds to the application of a transformation rule. Each step asserts a
simple truth that is easy to verify. While this makes it easy to understand how



Fig. 3. An Example Explanation Generated By Kwong’s ALC Subsumption Explana-
tion Generator

to get from one step to the next, and makes it easy to verify that the conclusion

follows from the premises, it can make it difficult to understand how the steps fit
together to form the bigger picture. Indeed, despite the availability of a proof, the
relationship between the premises and the conclusion can still be non-obvious.

One way to address this problem is to add more transformation rules, which
group together or bridge other rules. In this case, it is necessary to devise a set
of derived rules that make Natural Deduction style proofs nicer to read. On the
flip side, a related approach, is to omit trivial inference steps that can otherwise
be inferred by the person reading the proof [9, 6]. In this case it is necessary
to identify what constitutes a trivial inference step. Both approaches point to
some middle ground, where each step comfortably takes a reader from a set of
premises or intermediate formulae to an intermediate conclusion.

Therefore, our approach is to construct proofs from justifications, where each
step in the proof is not defined by a transformation rule, but is defined by a
justification—i.e. entailment. In this scenario, each step represents a manageable

chunk of information that can be easily traversed by a user, but is not so fine-
grained that it clouds the overall structure of the proof and how the premises
(asserted axioms) relate to the conclusion (entailment).

3.2 Proofs Based On Justifications

In addition to the issues discussed above, there are several other well founded
reasons for basing proofs on justifications:



One, when a user seeks an explanation for an entailment in an ontology, they
do so not to verify that the entailment holds, but to determine what it is they have

said in the ontology that causes the entailment to hold, and why these statements

cause the entailment to hold. Justifications have been used very effectively as a
way of addressing the “what causes it?” problem. Indeed, by definition, they ad-
dress this problem directly. To a large degree, justifications can also successfully
be used to address the “why do these axioms cause it?” problem—the study
detailed in [5] showed that there are many kinds of justifications that people can

understand. This includes people who have never seen justifications before, or
people who have minimal experience with OWL and Description Logics. Peo-
ple quickly feel comfortable in understanding how justifications work, and, after
seeing just two or three example justifications, they generally feel comfortable
with reading them. Note that this is despite the fact that justifications are axiom
oriented and many modern ontology editors such as Protégé-4, the NeOn toolkit
and Top Braid Composer present ontologies in a frame-based fashion. Hence,
in cases where people can understand justifications, it would seem strange and
unnecessary to turn these justifications into proofs similar to the ones presented
above.

Two, proofs based on justifications are reasoning procedure independent. This
is because each “step” in the proof is based on the entailment relation and not
some transformation rule that is sensitive to the syntax of the axioms in the
step. There is no explicit fixed set of rules for deriving one axiom from a set of
axioms. This means that the technique will work for different logics and future
OWL extensions.

Three, justifications are reasoner independent. This means that a service
that computes justification oriented proofs can be designed that can be used
with arbitrary reasoners. People can use their favourite reasoner and they are
not constrained to using a particular reasoner, or type of reasoner, just to obtain
the proofs.

4 Justification Oriented Proofs

The main idea behind a justification oriented proof is depicted in Figure 4. The
numbered rectangles represent axioms, with the rightmost rectangle, labelled
η, representing the entailment of interest. The shaded rectangles labelled with
“1” – “6” represent exactly the axioms that appear in the original justification
J for the entailment (and are therefore in the ontology as asserted axioms).
Hence J = {1, 2, 3, 4, 5, 6} is a justification for η with respect to the ontology
that entails η. The idea behind a justification oriented proof, is to augment
a justification with helpful intermediate steps, called lemmas. This produces a
weakly connected directed acyclic graph, with one sink node that represents the
entailment of interest and a source node for each axiom in the justification. In the
example shown in Figure 4, axiom 7 is a lemma for axioms 1, 2 and 3 (conversely,
axioms 1, 2 and 3 are a justification for axiom 7). Axiom 8 is a lemma for axioms
3, 4 and 5 (conversely axioms 3, 4 and 5 are a justification for axiom 8). Together



axioms 6, 7 and 8 constitute a justification for η i.e. the entailment. Notice that
axiom 3 participates in different justifications for different lemmas. The main
idea of this approach, is that compared to the justification J , it is easier to
see and understand why axioms 6, 7 and 8 entail η, and it is also easy to see
why axioms 1, 2 and 3 entail axiom 7, and why axioms 3, 4 and 5 entail axiom
8. Moreover, the ability to spot that J entails axioms 7 and 8, and to realise
the part these axioms play, may be key to understanding how J |= η, yet they
may not be at all salient to a person looking at J . In other words, the process
of understanding why a justification supports an entailment, is transformed to
understanding how subsets of the justification result in intermediate entailments,
and understanding how these intermediate entailments fit together to give rise
the main entailment of interest.
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Fig. 4. A schematic of a Justification Oriented Proof

4.1 Choosing The Steps

Key to producing a “good” justification oriented proof is good choice of the
intermediate lemmas and their lemmatised justifications. In the framework pre-
sented here, a complexity model that predicts how difficult or easy a justification
is to understand is used. The complexity model used is the one that is described
in previous work [5]. It is used to construct proofs where each lemmatised jus-
tification is deemed easy to understand. Proofs are computed in a top down
manner, where, for a justification J for η, a lemmatised justification J � of low
complexity, as predicted by the model, is computed for η. Then, for each axiom
λ in J � that is not in J , a justification J �� for λ with respect to J is com-
puted. If J �� is of too high complexity then it is lemmatised and the process is
repeated. An example justification oriented proof for the justification shown in
Figure 1 is shown in Figure 5, and an example justification oriented proof for
the justification shown in Figure 2 is shown in Figure 6.

There are some further restrictions on how lemmas in justification oriented
proofs can be generated from the original justification. These restrictions are
discussed in more detail in [5], however, the most pertinent restriction is that
lemmas must either be of the form � � A or A � ⊥ for some A in the signature of
the justification, or must be drawn from the deductive closure of tidy subsets of
the original justification. A set of axioms is tidy is it is (a) consistent (b) entails no
synonyms of � (� � A for any A in the signature of the original justification),
and (c) entails no synonyms of ⊥ (A � ⊥ for any A in the signature of the
original justification). These restrictions are in place to avoid counter-intuitive
lemmatisations, examples of which may be found in [5].



Entailment : Person � ⊥

Person � ¬Movie (1)

� � Movie (2)

∀hasViolenceLevel.⊥ � Movie (3)

∀hasViolenceLevel.⊥ � RRated (4)

RRated ≡ (∃hasScript.ThrillerScript) � (∀hasViolenceLevel.High) (5)

RRated � Movie (6)

RRated � CatMovie (7)

CatMovie � Movie (8)

∃hasViolenceLevel.� � Movie (9)

Domain(hasViolenceLevel, Movie) (10)

Fig. 5. A schematic of a justification oriented proof for the justification shown in
Figure 1

4.2 Examples

In what follows, two examples relating to the justifications shown in Figures 1
and 2 are presented. Note that the presentation style used here is merely for
illustrative purposes, it is designed to give a flavour of the kinds of lemmas that
get introduced into a proof rather than as an end user presentation device. The
axioms shown in bold are the axioms that appear in the original justification,
and are therefore asserted, and all other axioms correspond to lemmas. Notice
that axioms at each level of indentation form a justification for the axiom that
is above them.

In the presentation here, the example shown in Figure 5 may be read as
follows. Person is unsatisfiable because Person is disjoint with Movie (axiom 1,
asserted, and thus bold) and yet everything must be a Movie (axiom 2, a lemma,
generated by our approach). The level below � � Movie, corresponding to axiom
3 and axiom 9, explains why everything must be a Movie. This is due to the fact
that everything that does not have a violence level is a Movie (axiom 3), and
everything that does have a violence level is a Movie (axiom 9). The reason that
anything that does not have a violence level is a Movie is due to axioms 4 and
6, both of which are lemmas, which form a justification saying that anything
that does not have a violence level is RRated and anything that is RRated is
a Movie. Axiom 4, which specifies that anything that does not have a violence
level is RRated, is a lemma which is entailed by one asserted axiom, i.e. axiom
5. Similarly, the lemma corresponding to axiom 6 is entailed by two asserted
axioms, 7 and 8. Finally, the lemma that everything that has a violence level is
a Movie is entailed by axiom 10, the asserted domain axiom.

Figure 6 shows a justification oriented proof for the entailment DailyMirror
is a Newspaper, with a regular justification for this entailment being shown in
Figure 2. Notice that the summarising effect of the justification oriented proof
is rather dramatic—in the top level justification in the proof there are three



Entailment : Newspaper(DailyMirror)

reads(Mick DailyMirror)

Tabloid � Newspaper

∀reads.Tabloid(Mick)

WhiteVanMan � ∀reads.Tabloid

WhiteVanMan(Mick)

Man � ∃drives.(Van �WhiteThing) � WhiteVanMan

WhiteVanMan ≡ Man � ∃drives.(Van �WhiteThing)

WhiteThing(Q123ABC)

drives(Mick Q123ABC)

Man(Mick)

Adult �Male � Person � Man

Man ≡ Adult �Male � Person

Adult(Mick)

. . .

Male(Mick)

Person(Mick)

hasPet(Mick Rex)

. . .

Domain(hasPet Person)

Fig. 6. A schematic of a justification oriented proof for the justification shown in
Figure 2. Note that the full proof is not shown here (see dots) due to space limitations

summarising axioms (compared with 15 axioms in the original justification),
two of which have been asserted and were therefore in the original justifica-
tion, reads(Mick DailyMirror) and Tabloid � Newspaper, and one lemma, namely,
∀reads.Tabloid(Mick) i.e. Mick only reads Tabloids. This lemma is entailed by a
justification containing two axioms, one of which is asserted, WhiteVanMan � ∀reads.Tabloid,
and one of which is another lemma, WhiteVanMan(Mick).

While the presentation in Figures 5 and 6 is for illustrative purposes only,
one could imagine an interactive debugging and explanation tool that uses the
underlying proof structures to derive a user friendly proof presentation. Such
a presentation may offer the ability to expand and collapse various levels. Ad-
ditionally, the presentation used here is a “top down” presentation which goes
from entailment to asserted axioms. The alternative presentation would be a
“bottom up” presentation that would go from asserted axioms, via lemmas, to
the entailment.

Given the proofs above, it is noticeable that general concept inclusion axioms
(GCIs) are introduced into some of the intermediate justifications. For example,
the GCI, Man � ∃drives.(Van �WhiteThing) � WhiteVanMan is introduced as a
lemma into the proof in Figure 6. Since people typically edit ontologies in en-
vironments that show entities using frame-based displays, such as Protégé-4, a
natural question that arises is, whether people who use these environments would



find it acceptable to see GCIs in proofs. In the study carried out in [5], it was
found that people who were unused to seeing GCIs, were initially surprised at
seeing one for the first time, with comments such as, “I’ve never seen a subclass
statement this way round before”. However, in terms of reading an understand-
ing justifications, once over the initial surprise, none of the participants found
GCIs problematic.

5 Conclusions and Future Work

Some justifications can be difficult for people to understand. Justification ori-
ented proofs have been presented as a possible solution to this problem. A justi-
fication oriented proof is composed of a series of justifications, which are lemma-
tisations of the original justification. In the framework presented in this paper,
justification oriented proofs are derived using a complexity model, which predicts
how easy or difficult it is to understand a justification, and by selection of lem-
mas that follow from subsets of the original justification. As future work, we aim
to investigate how sensitive the proofs are to the complexity model that drives
their construction. We also intend to carry out studies that show if justification
oriented proofs are beneficial to users of tools such as Protégé-4.
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