
Task Representation and Retrieval in an

Ontology-Guided Modelling System
�

Yuan Ren1, Jens Lemcke2, Tirdad Rahmani2, Andreas Friesen2, Srdjan
Zivkovic3, Boris Gregorcic3, Andreas Bartho4, Yuting Zhao1 and Jeff Z. Pan1

1University of Aberdeen, 2SAP AG, 3BOC Information Systems GmbH, 4Technische
Universität Dresden

Abstract. A modelling procedure consists of a sequence of modelling
tasks. With the increasing size of models during the development, the
relations among modelling objects and their corresponding tasks become
more and more complex. Therefore, the automatic identification of avail-
able tasks for current modelling environments can significantly improve
the efficiency of modelling. In this paper, we present a novel approach
which integrates task pre- and post-conditions into ontologies that de-
scribe the models, and infers availability of tasks through ontology rea-
soning and query answering. We illustrate this approach with an applica-
tion on process modelling and show how this can be generalised to other
domains.

1 Introduction

In model-driven software development (MDSD), a modelling procedure consists
of a sequence of modelling tasks. These tasks are performed by particular mod-
elling engineers to manipulate the modelling objects. With the increasing size of
models produced and utilized during the development, the relations among mod-
elling objects and their corresponding tasks become more and more complicated.
It is usually difficult for developers to manually identify the tasks. Therefore, the
automatic identification of available tasks for current modelling environment can
significantly improve the efficiency of modelling.

In this paper, we discuss how to formalise and infer the knowledge about
development tasks. With an illustrative example concerning process modelling
and refinement, we show that the relations between modelling tasks and objects
can be represented by ontology language OWL 2 EL. We also show that with
such ontological representation, the tasks can be automatically inferred.

The rest of the paper is organised as follows. Section 2 gives a brief introduc-
tion about the syntax of OWL 2 EL. Section 3 introduces the case studies about
guidance in modelling system. Section 4 discusses how to formalise the guidance
knowledge into ontologies and how to infer task information. At the end section
5 summaries the paper.
� This work has been supported by the European Project Marrying Ontologies and

Software Technologies (EU ICT 2008-216691).

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

2 Ontology Language OWL 2 EL

Web Ontology Langue (OWL) is the de facto standard language for ontology
recommended by W3C. In its 2nd version, OWL 2, there are three profiles sup-
porting tractable reasoning, namely OWL 2 EL, OWL 2 QL and OWL 2 RL [6].
OWL 2 EL is based on the EL family of Description Logics [1, 2]. Its correspond-
ing underpinning logic is EL++.

In OWL 2 EL, concepts can be constructed as top concept, bottom concept,
atomic concept, singleton, conjunction or existential restriction of other concepts.
General concept inclusions, concept disjointness, domain, range restrictions and
property chain axioms are supported by OWL 2 EL.

A important feature of OWL 2 EL is that it disallows the usage of negation,
disjunction and universal restriction of concepts. With such restrictions, classi-
fication in OWL 2 EL is PTime-complete and efficient algorithms [3] have been
developed and implemented. Although the expressiveness is limited to maintain
the tractability of the language, OWL 2 EL has been widely applied in real world
ontologies such as Gene Ontology, NCI ontology, SNOMED, and others.

Basic reasoning services such as concept subsumption checking, instance re-
trieval and conjunctive query answering are supported for OWL 2 EL. Due to
the introduction of the bottom concept, OWL 2 EL also supports concept satis-
fiability and ontology consistency checking.

3 Guidance in Modelling Systems

Here we discuss the guidance issue for a computer-aided modelling system. We
first introduce some important notions and knowledge assets for guidance in
general. Then we illustrate them with process modelling and refinement.

3.1 Concepts and Knowledge Assets of a Modelling Scenario

There are several important notions in modelling procedures, such as artefact,
task, role, etc. In this paper, we are mostly interested in capturing the semantics
of the following notions:

1. Tasks of different types can be performed in a particular modelling environ-
ment, such as create a model, remodel a model, refine a model, etc.

2. Pre- and Post- Conditions describe the prerequisites and effects of tasks
of certain types. In legacy systems, they are usually described in natural
languages. For example, the post-condition of creating a model is that a
model is created.

3. Artefacts are the various entities that can be input or output by the mod-
elling environment. Usually, an artefact can be a model or its component.

The relations between tasks, conditions and artefacts are also interesting.
Generally speaking, the status of artefacts satisfy some pre-conditions, thus en-
able corresponding tasks. When a task is performed, its post-conditions will

result in changes of artefacts. Although trust and security issues such as access
control are also important in guidance systems, our major concern in this paper
is the pro-active identification of tasks.

The guidance functionality should be designed and developed independently
from concrete modelling scenarios. For a specific application, except for the above
notions, the following knowledge assets have to be considered:

1. Domain Meta-model defines the syntax of the models and global con-
straints that are independent from concrete task types. Because in the mod-
elling systems, concrete models are regarded as model instances, the meta-
model actually corresponds to TBox in an ontology.

2. Model Knowledge is the concrete status of the models under develop-
ment. In contrast to the meta-model, models correspond to the ABox of an
ontology. Given the fact that models will be constantly changed during the
development procedure, the ABox will also be frequently updated.

3. Task Knowledge characterises the pre-/post-conditions of specific task
types. This knowledge is the interaction between artefacts and task types,
therefore they can not be solely defined in the meta-model. The proper in-
terpretation of task knowledge and its integration with meta-model/model
is the major challenge of an ontology-guided modelling system.

4. Queries are used to retrive tasks and artefacts. They should be designed in
a way that they are as independent from concrete domains as possible.

For an application scenario, the above knowledge assets should be integrated
into a generic guidance engine to form an dedicated system. In the next subsec-
tion, we use process modelling and refinement as an example to introduce the
above notions in detail. Our focus will be knowledge about various task types.

3.2 Process Modelling and Refinement

Processes are important types of models in software development. They are gener-
alised representations of control flow, data flow, etc. The results of a development
are usually produced and utilized through a process. Therefore the modelling of
processes is crucial for the planning and organization of development.

In MDSD, processes are usually designed step by step on different levels
of abstraction. This creates refinement chain of the process models. In [7], an
ontological solution for validating BPMN process refinement is presented.

The artefacts in this example include, among others, Process, Activity, Com-
ponent Behavior Model, etc. The meta-model includes constraints such as “A pro-
cess contains only activities (including start and end) and gateways”. The task
types include Remodel Process, Refine Process, Ground Process, etc. Knowledge
about some typical tasks and their pre- and post-conditions can be described in
natural language as follows:

1. Remodel Process: an engineer can always remodel an existing process.
Pre-condition: a process exists.
Post-condition: the process is remodeled.

2. Refine Process: when a process is neither refined nor grounded, the process
needs to be refined by another process.
Pre-condition: a process neither refined nor grounded exists.
Post-condition: another process is created or referred to as the refinement of
the current process.

3. Ground Process: any process that can be refined can also be grounded to
a component behavior model.
Pre-condition: a process neither refined nor grounded exists.
Post-condition: a component behavior model is created or referred to as the
grounding of the current process.

When an user is modelling processes, the system should automatically tell
which task is available for which artefact. When the user performs a task and
hence changes the models, task availability will also be updated accordingly.

4 Task Representation and Retrieval via Ontologies

In the specification of the case studies, the pre- and post- conditions of a task
are described in natural language. However, a machine-readable specification
requires representation in a formal language. In this paper, we use an ontology to
represent the knowledge. Then, the challenges become: (1) Formalising the task
knowledge by ontologies; (2) Reduction of task retrieval to ontology reasoning
problems. In the following, we present our answers to these two challenges. We
use the process modelling and refinement use case to illustrate the solution. After
that, however, we will generalise the solution to provide a generic approach. At
the end, we will discuss the computational aspect of this approach.

4.1 Formalising Guidance Knowledge into Ontologies

Domain Ontology: Meta-model and Model Intuitively, various artefacts
can be categorized into concepts such as Process, Activity, ComponentBehaviorModel,
etc. These concepts have a common super concept Artefact. The relation be-
tween these concepts are modeled as object properties. The concrete modelling
entities will be instances. We call such an ontology the domain ontology. Its
TBox (ABox) corresponds to the meta-model (Models) of the domain. As we
will show, domain ontology has little influence on the inference mechanism of
tasks, so we can regard them as separate.

Task Ontology Various tasks can be categorized into concepts such as RefineProcess,
GroundProcess, etc. These task types have a common super type Task. Once
a task is performed, Task ontology ABox will be updated.

The pre-conditions of a task type can be described by axioms. For example,
when a process is NOT refined or grounded, it should be refined or grounded.
This actually implies that, EVERY process should be refined or grounded, to
either an existing process/component behavior model, or an implicit one. The

former implies that a Refine Process or Ground Process task has already
been performed. The latter implies that a Refine Process or Ground Process

tasks has to be performed. Therefore, the existence of a process actually becomes
the pre-condition of a Refine Process or Ground Process task.

However, the disjunction implies that, neither Refine Process nor Ground

Process is really compulsory for processes, but Refine or Ground Process

is. We call these two Alternative Tasks. If we query for one of a set of alternative
tasks, the ontology will not infer its necessity. We have to query for all of them.
To solve this problem, we introduce a new task type RefineOrGroundProcess

as the super concept of both RefineProcess and GroundProcess. Of course,
RefineOrGroundProcess will also be a sub-concept of Task. We can model
such semantics with an axiom in Manchester Syntax [4] as follows:

SubClassOf : Process, preconditionOf some RefineOrGroundProcess

Once a task of RefineOrGroundProcess is found to be needed, we shall
generate two tasks RefineProcess and GroundProcess to be displayed for
the user. This means RefineOrGroundProcess will not have direct instances.
Once a RefineProcess or GroundProcess task is performed on an artefact,
a RefineOrGroundProcess is regarded as performed because an instance of
RefineProcess or GroundProcess is also an instance of RefineOrGroundProcess.

Regarding post-conditions, the effect of the task is the creation of another
process or component behavior model. Thus, the existence of such a process or
component behavior model actually becomes the post-condition of the task that
is either performed or to be performed. Because RefineOrGroundProcess is a
“abstract” task type, we only model the postcondition for RefineProcess and
GroundProcess:

SubClassOf : RefineProcess, hasPostcondition some Process

SubClassOf : GroundProcess, hasPostcondition some ComponentBehaviorModel

Similarly, we will have Remodel Process:

SubClassOf : Process, preconditionOf some RemodelProcess

SubClassOf : RemodelProcess, hasPostcondition some Process

From these axioms, we can generalise the formalization patterns as:

SubClassOf : [Artefact], preconditionOf some [Task]

SubClassOf : [Task], hasPostcondition some [Artefact]

where Task is a concrete type of task (or the super type of alternatives), Artefact

is a concrete type of artefact. Obviously, one artefact type can be pre-condition
of multiple task types. As we can see, these two patterns are independent from
concrete task types, and even concrete domains. This implies that we can also
design generic patterns to retrieve tasks regardless of which type or domain it
is.

4.2 Retrieving Tasks by Query Answering

Once we generate the domain ontology and task ontology by the axioms pre-
sented in the previous section, we can use a reasoner to automatically retrieve
the tasks. Intuitively, this can be performed by querying the artefacts on which
certain task types should or could be performed. For example, if we propose the
following query:

?x←?x : Artefact, (?x, ?y) : preconditionOf, ?y : RemodelProcess

to a query engine, it will return all artefacts ?x such that there exists some
instance of RemodelProcess ?y of which ?x is the pre-condition. This literally
presents all the processes that can be remodeled.

However, this query can not yet be generalised to other task types. For exam-
ple, if we use the similar query for RefineOrGroundProcess task, the results
will include the processes that have already been refined or grounded. These
redundancies are due to the fact that there are actually two categories of tasks:

1. Compulsory Task: a task that must be performed. Once performed, it is
not necessary to perform it again. Task types such as Refine Process and
Ground Process belong to this category.

2. Optional Task: a task that could be performed. Once performed, it can
still be performed again. Task types such as Remodel Process belong to
this category.

Optional tasks can use the similar query pattern presented above. The pre-
sented compulsory tasks should only contain tasks that have not been performed
yet, i.e. the implicit instances of tasks. They can be obtained by subtracting
the performed ones from the whole set. Taking RefineOrGroundProcess as an
example, we propose the following two queries:

?x←?x : Artefact, (?x, ?y) : preconditionOf, ?y : RefineOrGroundProcess

?x, ?y ←?x : Artefact, (?x, ?y) : preconditionOf, ?y : RefineOrGroundProcess

in which the first query returns all the processes that should be refined or
grounded, the second query returns all the processes that have been refined
or grounded, together with the corresponding tasks. The difference of the two
will be the processes on which RefineOrGroundProcess must be performed.
Therefore the redundancy of compulsory tasks are resolved.

In order to distinguish the compulsory tasks and the optional tasks we intro-
duce two concepts CompulsoryTask and OptionalConcept as the sub-concepts
of Task and super-concepts of all the compulsory tasks and optional tasks, re-
spectively. Then the query can be generalised as follows:

1. for each direct sub-concept T of OptionalTask, propose query

?x←?x : Artefact, (?x, ?y) : hasOptionalTask, ?y : T

The solution will be the artefacts on which task type T could be performed.

2. for each direct sub-concept T of CompulsoryTask, propose two queries

?x←?x : Artefact, (?x, ?y) : hasCompulsoryTask, ?y : T

?x, ?y ←?x : Artefact, (?x, ?y) : hasCompulsoryTask, ?y : T

The difference of solution ?x will be the artefacts on which task type T

should be performed. Note that individual alternative concepts will not be
tested, but their common super concept will be. Due to the introduction of
common super-concepts for alternative concepts, T needs to be translated
before presented to user.

4.3 Generalised Solution for Representation and Retrieval

Now we summarise the above findings to provide a generalised solution:

– Defining the domain ontology.
– For alternative tasks, introducing common super task type.
– Categorizing compulsory and optional tasks.
– For each type of compulsory task, proposing two queries and getting the

difference to retrieve the artefacts to which such type of task is necessary.
– For each type of optional task, proposing one query to retrieve the artefacts

on which such type of task can be performed.
– Translating the query results to generate the task list.
– Updating the ABox with the relations of artefacts and tasks such that com-

pulsory tasks will not be repeated.

As we can see, the above solution is independent from the concrete task types
and even application scenarios, thus it can be generalised. Actually, when applied
to different domains, the system only needs to load the Domain Ontology and
Task Ontology, then generates queries on the available task types.

4.4 Computational Properties

We first review the language needed. There are two major types of axioms: one
for pre-conditions and the other for post-conditions. They are both within the
expressive power of OWL 2 EL, especially considering that disjunction of task
types must be resolved.

The reasoning services requested include both TBox classification and con-
junctive query answering. In order to present a generic solution for guidance,
it is necessary to automatically detect all the concrete compulsory task types
and optional task types instead of hard-coding them into queries. This can be
easily realised by getting all the direct-subconcepts of CompulsoryTask and
OptionalTask, which is a service provided by TBox classification.

When processing the queries, especially the first query of compulsory task
and the query of optional task, it is important to notice that the variable ?y
is not returned. This implies that ?y is a non-distinguished variable, which can

be bound to either an existing individual, or an implicit individual. In terms of
ontology reasoning, this arises the requirement of query answering under Open
World Assumption (OWA). Query answering with non-distinguished variables is
an open issue for expressive DLs. And it is even proved that query answering in
arbitrary EL+ ontology is already undecidable [5]. However, we restrict the task
ontology to be regular, for which query answering algorithm and implementation
has already been developed [8]. Also, in the current example the query can be
rewritten into a instance retrieval of, e.g. preconditionOfsomeRemodelProcess.

5 Conclusion

In this paper we discuss how to represent the pre- and post-condition of tasks
in a modelling system with OWL 2 EL ontologies and how to retrieve the tasks
with ontology reasoning and query answering. We illustrate our solution with an
example of process modelling and refinement and further give principles about
generalization.

In the future, we will integrate the task ontology presented in this paper with
different domain ontologies and implement a prototype of the ontology-guided
modelling system.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05,
Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

2. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope fur-
ther. In Kendall Clark and Peter F. Patel-Schneider, editors, In Proceedings of the
OWLED 2008 DC Workshop on OWL: Experiences and Directions, 2008.

3. Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Is tractable reasoning
in extensions of the description logic el useful in practice? In Proceedings of the 2005
International Workshop on Methods for Modalities (M4M-05), 2005.

4. Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert
Stevens, and Hai Wang. The manchester owl syntax. In Bernardo C. Grau, Pascal
Hitzler, Conor Shankey, Evan Wallace, Bernardo C. Grau, Pascal Hitzler, Conor
Shankey, and Evan Wallace, editors, OWLED, volume 216 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2006.

5. Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for
a tractable fragment of owl 1.1. In ISWC/ASWC, pages 310–323, 2007.

6. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and
Carsten Lutz. Owl 2 web ontology language: Profiles. W3c working draft, W3C,
October 2008.

7. Yuan Ren, Gerd Gröner, Jens Lemcke, Tirdad Rahmani, Andreas Friesen, Yuting
Zhao, Jeff Z. Pan, and Steffen Staab. Validating process refinement with ontologies.
In Proceedings of the 22nd International Workshop on Description Logics (DL2009),
2009.

8. Yuting Zhao, Jeff Z. Pan, and Yuan Ren. Implementing and evaluating a rule-
based approach to querying regular el+ ontologies. In In Proc. of the International
Conference on Hybrid Intelligent Systems (HIS2009), 2009.

