
A platform for distributing and reasoning with

OWL-EL knowledge bases in a Peer-to-Peer

environment

Alexander De Leon1, Michel Dumontier1,2,3

1 School of Computer Science
2 Department of Biology

3 Instititute of Biochemistry
Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, Canada

adlbatti@scs.carleton.ca, michel dumontier@carleton.ca

Abstract. Memory exhaustion is a common problem in tableau-based
OWL reasoners, when reasoning with large ontologies. One possible solu-
tion is to distribute the reasoning task across multiple machines. In this
paper, we present, as preliminary work, a prototypical implementation
for distributing OWL-EL ontologies over a Peer-to-Peer network, and
reasoning with them in a distributed manner. The algorithms presented
are based on Distributed Hash Table (DHT), a common technique used
by Peer-to-Peer applications. The system implementation was developed
using the JXTA P2P platform and the Pellet OWL-DL reasoner. It re-
mains to demonstrate the efficiency of our method and implementation
with respect to stand alone reasoners and other distributed systems.

1 Introduction

Scalability is the main technological challenge faced by OWL-DL reasoners. This
issue is a natural consequence of the computational complexity of reasoning
problems. The tableau algorithm, used by most OWL-DL reasoners, is known to
be NExpTime-complete and can create data structures of double exponential
size of the input [6]. In other words, the algorithm is not only CPU intensive
but also requires a large amount of memory for the case of large ontologies.
This paper explores the idea of implementing a distributed OWL reasoner using
a peer-to-peer (P2P) approach. The goal is to distribute the tableau algorithm
such that it can utilize the combined resources of the P2P network, and therefore
mitigate the memory issues that arise when reasoning with large ontologies on
a single machine.

As part of the OWL 2 recommendation, different fragments are proposed
which trade expressivity in favor of efficient reasoning. These fragments have
been named OWL profiles and each of them defines a set of syntactic restrictions
of the full OWL 2 language. Each profile targets a different type of application.
The OWL-EL profile is a subset of OWL-DL based on the EL+ + light weight
description logic [4]. This profile is recommended for ontologies with a large

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

number of classes and properties and where classification and instance check-
ing are the primary reasoning task of interest. Reasoning problems in the EL
fragment become polynomial with respect to the size of the ontology [1] . The
implementation presented in this paper supports only ontologies in the OWL-
EL profile. The reason for choosing this profile is that the tableau algorithm
for EL is simpler than it would otherwise be if supporting the full OWL lan-
guage. This simplification arises from the fact that EL eliminates the sources
of non-determinism such as concept disjunction, negation of complex concepts,
and universal restrictions.

The system presented in this paper makes use of the JXTA4 P2P framework
and the Pellet5 reasoner. JXTA is used as the underlying platform for peer
discovery and communication. Pellet is a popular sound and complete reasoner
for OWL-DL [8]. The distributed algorithm presented was implemented as an
extension of Pellet. The reason for choosing these technologies is that they are
both publicly available as open source and they were both implemented in Java.

2 Software Architecture Overview

Fig. 1: Peer’s Software Layers

Each peer is implemented in Java using the JXTA framework. JXTA sits at
the bottom of the peer’s software stack (Fig. 1), and provides the infrastructure
for peers to discover themselves and establish communication channels. The next
layer is implemented with a modified version of the JXTA-SOAP6 library. This
4 https://jxta.dev.java.net/
5 http://clarkparsia.com/pellet
6 https://soap.dev.java.net/

layer allows publishing, discovery and invocation of SOAP services on top of the
JXTA network. The Distributed Knowledge Base Fragment component is respon-
sible for managing the subset of the knowledge base’s axioms that correspond to
this peer. Multiple of these fragments can co-exists inside a peer, given that the
peer can be a collaborator in the distribution of multiple independent knowl-
edge bases (Fig. 2). The Distributed Knowledge Base Fragment implements a
SOAP service interface which is advertised on the P2P network. The Distributed
Knowledge Base discovers the Distributed Knowledge Base Fragment of other
peers and uses their SOAP interface to communicate with them. This compo-
nent coordinates the distribution of the knowledge base across the participating
peers and the execution of reasoning tasks. The software interface of Distributed
Knowledge Base is identical to that of the Pellet’s KnowledgeBase7 class. There-
fore, higher-level components can interact with the Distributed Knowledge Base
in the same way they will do when using Pellet and without been aware of the
distributed nature of the reasoner. The user interface (UI) allows human users
to interact with the Distributed Knowledge Base component. Currently there is
a command line interface implemented, however an additional web based GUI
is envisioned for the next generations of the software.

3 Distributed Knowledge Base

In the P2P system described by this paper, each peer can act as a reasoner,
allowing users to use the peer to load an ontology and reason with it in the
same way they would do when using a non-distributed OWL reasoner. This peer
becomes responsible for coordinating the distribution of the knowledge base and
the reasoning task. To load an ontology, the coordinator peer will try to find a
specified number of peers which will be responsible for a subset of the knowledge
base. If after a specified amount time, not all the requested peers have been found
on the P2P network, the loading process continues using only those peers that
have been discovered so far. Each ontology is loaded within the context of a
session, allowing a peer to participate in multiple reasoning tasks independently
of each other (Fig. 2) .

Individual axioms from the ontology are distributed across the participating
peers following a distributed hash-table approach [9]. Each participating peer has
a unique identifier provided by the JXTA platform. This identifier is converted
into a numerical hash using the SHA1 algorithm [5]. Similarly, for a given class,
property or individual, a numerical hash can be constructed by applying the
SHA1 function to its URI. Each peer is responsible for a fragment of the entire
knowledge base. This fragment contains:

1. the subset of the base concepts whose URI hash is numerically closest to the
hash of the peer’s identifier;

2. the subset of terminological axioms of the form equivalentTo(C, D) and
subClassOf(C, D) for which the URI hash of C is numerically closest to

7 org.mindswap.pellet.KnowledgeBase

Fig. 2: Multiple users using the P2P reasoning services from different peers

the peer’s id hash (note that general inclusion axioms are not supported
therefore C is always a named concept);

3. all axioms about properties (e.g. transitiveProperty(P),
functionalProperty(P), ect);

4. all individual assertions of the form C(a) and R(a, b) where the URI hash of
a is numerically closest to the peer id hash.

Table 1 presents a small knowledge base about Vehicles. Using this as an
example and assuming a network of two peers, the knowledge base distribution
is shown in Table 2. Axioms about properties (RBox) are replicated in every
node. The number of these axioms is usually much smaller than the number of
axioms in the TBox and ABox. For this reason, it is preferable to have them
available locally at each peer to reduce the amount of peer messaging during the
execution of the reasoning algorithm.

Table 1: Complete Knowledge Base

Axiom Hash key

TBox

V ehicle � � Vehicle=50
Engine � � Engine=190
Bicycle � V ehicle Bicycle=220
Car � V ehicle � ∃hasPart(Engine) Car=120
Automobile ≡ Car Automobile=170

RBox

transitiveProperty(hasPart) hasPart=33
ABox

Automobile(a) a=99
Bicycle(b) b=280
Engine(e) e=201
hasPart(a, e) a=99

Table 2: Distributed Knowledge Base
(a) Peer 1

Peer 1 (hash key = 100)

TBox

V ehicle � �
Car � V ehicle � ∃hasPart(Engine)

RBox

transitiveProperty(hasPart)
ABox

Automobile(a)
hasPart(a, e)

(b) Peer2

Peer 2 (hash key = 200)

TBox

Engine � �
Bicycle � V ehicle
Automobile ≡ Car

RBox

transitiveProperty(hasPart)
ABox

Bicycle(b)
Engine(e)

4 Reasoning with a Distributed Knowledge Base

This section presents how the system presented in this paper performs two im-
portant reasoning tasks: concept satisfiability and ABox consistency. These rea-
soning problems form the base of other reasoning tasks such as subsumption and
instance checking.

4.1 Concept satisfiability

Usually we want to know if a concept C is satisfiable w.r.t. a TBox T . Unfolding
is a well known technique to allow satisfiability testing of concepts independent
from the TBox. The idea is to produce a new concept C �, such that C is satisfiable

w.r.t. T iff C � is satisfiable. The concept C � is called the expansion of C, and it
is obtained recursively from C by replacing each non base symbol A in C by the
concept D, where D is the expansion of A. A detailed definition of this technique
is given in [3].

For example, given the following TBox:

Female ≡ ¬Male

Parent ≡ ∃hasChild.Person

Mother ≡ Female � Parent

The expansion of Mother is ¬Male � ∃hasChild.Person. This expansion is
now expressed using only base symbols and, therefore, it is independent from the
TBox. The satisfiability of the expansion can be tested using traditional symbolic
refutation. In order to use unfolding with a TBox containing inclusion axioms,
like the TBox from Table 1, the TBox needs to be normalized to convert all
inclusions axioms to definition axioms. This normalization process is explained
in [3].

In the case of distributed knowledge bases, the procedure presented in Algo-
rithm 1 is used to obtain the expansion of a concept. When a concept needs to
be unfolded, the peer responsible for the concept will be asked. The responsible
peer will first unfold the concept locally (using the underlying Pellet system),
and then each remote concept in the result will be replaced by its expansion
provided by the remote peer.

Algorithm 1 DistributedUnfold(c)
Require: An concept name c.
Ensure: A list of concepts whose intersection form the expansion of c

1: if isRemote(c) then

2: peer = getResponsiblePeer(c)
3: return peer.DistributedUnfold(c)
4: else

5: unfolding = localUnfold(c)
6: for all d in unfolding do

7: if isRemote(d) then

8: unfolding.remove(d)
9: peer = getResponsiblePeer(d)

10: remoteUnfolding = peer.DistributedUnfold(d)
11: unfolding.addAll(remoteUnfolding)
12: end if

13: end for

14: return unfolding
15: end if

4.2 ABox consistency

An Abox A is consistent with respect to a TBox T iff there exists an interpre-
tation which is a model of A and T . Similarly with concept satisfiability, if all
concepts have been expanded (unfolded), then we can perform ABox consistency
checking without considering the full TBox.

In order to reason with the ABox, we need to consider two other cases where
peers need to exchange information: resolving the class membership of a remote
individual and obtaining the set of edges that are connected to a remote indi-
vidual. The former case is handled by asserting each remote individual to be a
member of the class REMOTE(i), where i is the name of the individual. When
the local Pellet algorithm tries to unfold REMOTE(i), our distributed unfold-
ing implementation handles this by going to the responsible peer for i and asking
it for the unfolded set of classes that i is a member of. Therefore, in the resulting
expanded ABox, REMOTE(i) will be replaced by the actual base concepts that
the individual belongs to. In order to handle the latter case, the implementa-
tion of the some-rule (i.e. the one that handles existential restrictions) of the
tableau algorithm has been modified. The modified part checks if the individual
is remote, and if it is so, then it requests information about its edges from the
remote peer.

By handling these two cases, the consistency of the entire distributed knowl-
edge base can be done by checking the consistency of each fragment simultane-
ously. This is true only under the assumption that we are dealing with ontolo-
gies in the OWL-EL profile. If we had more expressive ontologies, with universal
restrictions and inverse properties, for example, then the order in which the
fragments are checked matters, since the expansion of one peer’s fragment can
introduce changes to the fragments of other peers. Furthermore, more peer in-
teraction cases will need to be handled in addition to the two cases described
above.

5 Conclusion and Future Work

We described a basic P2P OWL reasoner implementation, which derives from
the integration of the JXTA platform and the Pellet reasoner. The techniques
presented in the paper target OWL ontologies within the OWL-EL profile, given
that the constructs in this subset of OWL 2 have simpler reasoning algorithms.
We described how the system deals with the distribution of two basic reasoning
problems: concept satisfiability and ABox consistency checking. The soundness
and completeness of these techniques are consequence to the fact that the sys-
tem reuses the tableau implementation of the Pellet reasoner, which has been
previously shown to sound and complete [8]. However, further theoretical and
experimental analysis of these techniques is desirable for future work. It remains
to evaluate the results of our prototypical implementation and compare them to
other systems such as the CEL reasoner [2] and KAON2 [7].

For the next steps of this project, we want to implement query answering
using the instance checking reasoning task. This allows for querying the dis-

tributed knowledge base by providing a new concept description and checking
at each peer which individuals can be classified as members of the query class.
An area of further study, is that of using ontology modularization techniques
for distributing the knowledge base such that axioms which are semantically
related can reside in the same peer. It is suspected that this kind of semantic
distribution will reduce the number of inter-peer messages during the executing
of the reasoning algorithms.

Handling peer failure is an important area which has not yet been addressed.
We suggest using a group of peers, instead of a single peer, to handle a particular
fragment of the ontology. Although this may not been considered a complete
solution, it greatly reduce the severity of the issue.

References

1. OWL 2 Web Ontology Language Profiles, http://www.w3.org/TR/owl2-profiles/.
2. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for

life science ontologies. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd

International Joint Conference on Automated Reasoning (IJCAR’06), volume 4130
of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-Verlag, 2006.

3. Franz Baader. The description logic handbook: theory, implementation, and appli-

cations. Cambridge University Press, Cambridge, 2nd ed edition, 2007.
4. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope further.

In OWLED08DC, 2008.
5. D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174

(Informational), September 2001. Updated by RFC 4634.
6. Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ. J.

Autom. Reason., 39(3):249–276, 2007.
7. B. Motik. Practical DL Reasoning over large ABoxes with KAON2. Available at:

http://kaon2.semanticweb.org/. (2006).
8. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical owl-dl reasoner. J. Web Sem., 5(2):51–53, 2007.
9. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technolo-

gies, architectures, and protocols for computer communications, pages 149–160, New
York, NY, USA, 2001. ACM.

