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Abstract. In many data-centric applications, it is desirable to use OWL
as an expressive schema language with which one expresses constraints
that must be satisfied by instance data. However, specific aspects of
OWL’s standard semantics—i.e., the Open World Assumption (OWA)
and the absence of Unique Name Assumption (UNA)—make it difficult
to use OWL in this way. What triggers a constraint violation in closed
world systems leads to new inferences in standard OWL systems. In this
paper, we show how defining an Integrity Constraint (IC) semantics for
OWL axioms can overcome this problem and discuss possible semantics
for ICs. We examine IC semantics discussed in the deductive databases
literature, discuss how to adopt these approaches for OWL, and com-
pare it with existing proposals for ICs in OWL. We show IC validation
problem can be reduced to SPARQL query answering using off-the-shelf
reasoner and present our preliminary results with a prototype implemen-
tation using Pellet.

1 Introduction

Web Ontology Language (OWL) [13] is an expressive ontology language. The
foundations of OWL are based on Description Logics (DL) for which there are
sound and complete formal reasoning algorithms that can check the logical con-
sistency of data. The semantics of OWL addresses distributed knowledge rep-
resentation scenarios where complete knowledge about the domain cannot be
assumed. Specifically, the following two features of OWL semantics make it suit-
able for such use cases:

1. OWL adopts the Open World Assumption (OWA): a statement cannot be
inferred to be false on the basis of a failure to prove it.

2. OWL does not adopt the so-called Unique Names Assumption (UNA) which
would cause OWL tools to treat two resources with different identifiers as
distinct objects.

On the other hand, these features make it difficult to use OWL for data
validation in applications where complete knowledge can be assumed for some
or all parts of the domain. For example, for a knowledge base (KB) containing
information about products in a company’s inventory, it can be assumed that
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manufacturer of every product is known. We would like to detect (or prevent) the
case that a product is added to the KB without the manufacturer information.
It is possible in OWL to express the requirement that every product has a
manufacturer but due to OWA not having the manufacturer information for a
product in the KB would not cause a logical inconsistency and cannot be used
directly for detection.

To use OWL both as a knowledge representation language and as a con-
straint language for data validation, we must combine open world reasoning and
closed world constraint checking. It is possible to use a different formalism like
rules to express closed world constraints but this increases the cost of ontology
development and maintenance as users have to deal with different formalisms. It
is very desirable to use the same representation language to express axioms used
for reasoning and constraints. That is, in our ontology, we would like to have
the ability to turn on OWA for parts of the domain where we have incomplete
knowledge and turn it off for parts where we have complete knowledge.

In this paper, we describe an alternative Integrity Constraint (IC) semantics
for OWL axioms to enable closed world constraint validation. Our work is in
line with recent research by Motik et al. [9] where ICs are written as standard
OWL axioms but are interpreted with a different semantics for data validation
purposes. We start with some use cases and example ICs (Section 2), discuss
why we are not completely satisfied with existing solution (Section 3), examine
how to adopt the IC approach from deductive databases research and show that
with the IC semantics we propose we can reduce IC validation to SPARQL query
answering (Section 4). We also present our preliminary results with a prototype
IC validator implementation using Pellet (Section 5).

2 Use Cases and Motivation

There are several common use cases for closed world constraint checking that
have been identified in the relational and deductive databases literature [3].
We prepared a short and non-technical user survey to gather use cases and
requirements for ICs from the OWL community. The survey was published on
the Web3 and advertised on many relevant mailing lists. In addition to multiple-
choice questions some survey participants provided additional uses cases and
requirements for ICs. These use cases were very similar to what we consider to
be the canonical IC use cases and can be summarized under the following groups:

Typing constraints Typing constraints require that individuals that partici-
pate in a relation should be instances of certain types. For example, closed world
interpretation of domain and range axioms in OWL would fit into this category.
In DL syntax, domain and range axioms can be expressed as follows:

∃isManufacturedBy.� � Product

� � ∀isManufacturedBy.Manufacturer
(1)

3 https://clarkparsia.wufoo.com/forms/owl-integrity-constraints/



The following role assertion

isManufacturedBy(product1, manufacturer1) (2)

would violate these ICs since individuals product1 and manufacturer1 are not
explicitly know to be instances of Product and Manufacturer concepts respec-
tively. The data would be valid with the addition of following assertions:

Product(product1)
Manufacturer(manufacturer1)

(3)

Note that, when interpreted with the standard OWL semantics the assertion (2)
would not trigger a logical inconsistency w.r.t the axioms of (1) and would cause
the axioms of (3) to be inferred.

Domain and range axioms can be seen as global typing constraints; that is
they affect instances of every class that participates in a property assertion. OWL
also allows finer-grained typing constraints using AllValuesFrom restrictions.

Participation constraints Participation constraints require that instances of
the constrained class should have a role assertion. Given an IC semantics, the
SomeValuesFrom restrictions in OWL can be used for this purpose. For example,
consider the constraint

Product � ∃isManufacturedBy.Manufacturer (4)

that requires to know the corresponding Manufacturer for every Product in-
stance. With IC semantics, we expect the assertion

Product(product2) (5)

to be invalid w.r.t. this constraint since the manufacturer is not known. The
above assertion would be valid only when additional axioms in the following
form are added:

isManufacturedBy(product2, manufacturer2)
Manufacturer(manufacturer2)

(6)

Uniqueness constraints Uniqueness constraints require that an individual
cannot participate in multiple role assertions with the same role. The keys in
relational databases enforce such constraints. A similar restriction can be ex-
pressed in OWL with a FunctionalProperty declaration that corresponds to
the following DL axiom:

� � ≤ 1 isManufacturedBy (7)

The OWL interpretation of this axiom on the following instance data

isManufacturedBy(product3, manufacturerX)
isManufacturedBy(product3, manufacturerY)

(8)

would result in the inference that two mentioned manufacturers are the same:

manufacturerX = manufacturerY (9)



since there is no UNA and nothing contradicts the inference that these two
manufacturers are same. But, with IC semantics we expect this inference not to
exist and instead get an IC violation. However, we do not want to adopt UNA
strictly since that would prevent us ever asserting that two different identifiers
denote the same individual. We would like to retain the ability to assert equality
between identifiers but we do not want the cardinality constraints in ICs infer
such equalities.

3 Related Work

Existing proposals for integrating ICs into OWL typically require expressing ICs
in another formalism such as rules [8] or queries [2]. An exception to this is the
recent proposal by Motik et al. [9] that is motivated with same kind of use cases
we explained above. Motik et al. investigates several different possible semantics
for ICs in OWL and propose a semantics based on the satisfaction of ICs in
minimal Herbrand models (we refer the reader to [9] for details).

Even though we find the examples presented in [9] compelling, there are
several features of the proposed semantics we find to be unintuitive. In other
words, the results we get with this semantics do not completely meet our expec-
tations about ICs. For example, suppose we have the following assertions in our
ontology:

(∃isManufacturedBy.{manufacturer1, manufacturer2})(product4)
Product(product4)
Manufacturer(manufacturer1)
Manufacturer(manufacturer2)

(10)

The manufacturer of product4 is either manufacturer1 or manufacturer2 but
we don’t know exactly know which one. In this case, we expect the IC (4) to be
violated because intuitively this IC says that the manufacturer of every product
should be known. However, this IC is satisfied with the semantics of [9] because in
every minimal model of the given ontology there is a manufacturer for product4.

Another feature we find to be unsatisfying with [9] is how the disjunctions in
ICs are interpreted. For example, suppose we have the following standard OWL
axioms:

Product � Category1 � Category2

Product(product5)
(11)

The first axiom says that every product falls into one of two categories and
the next assertion declares a product instance. We do not know which category
product5 belongs to but this is fine since we are using standard OWL seman-
tics so far. Now, let’s suppose we define an IC on one (and only one) of these
categories as follows:

Category1 � ∃categoryType.� (12)



The IC is defined on a specific category and we do not know that product5
belongs to this category. So it is reasonable to assume that the IC will not
apply to product5 and thus it will not be violated. However, there is a minimal
model where product5 is an instance of Category1 and it does not have a
categoryType value so this IC will be violated according to the semantics of [9].

We believe these results do not satisfy our expectations of ICs and search an
alternative solution.

4 Semantics for Integrity Constraints

There has been significant amount of research to define the semantics of ICs for
relational databases, deductive databases, and knowledge representation systems
in general. Typically an ICs is considered to be a First Order Logic (FOL)
formula. In one view [6], an IC is satisfied by a knowledge base (KB) if the KB
augmented with the IC is consistent; that is there is a model of the KB where
IC is true. In another competing view [7], an IC is satisfied by a KB if the KB
entails the IC; that is, IC is true in all the models of the KB.

Reiter argued against both of these approaches in [11] and presented the
view that ICs are epistemic in nature and are about “what the knowledge base
knows”. Reiter proposes that ICs should be epistemic FOL queries that will be
asked to a standard KB that does not contain epistemic axioms.

We agree with Reiter in his assessment about epistemic nature of ICs and
believe this is the most appropriate semantics for ICs. However, we argue that
this viewpoint in not incompatible with the entailment-based semantics proposed
by Lloyd and Topor [7] in the context of providing semantics for ICs in OWL.
This is because Lloyd-Topor’s proposal uses a non-monotonic entailment relation
based on Negation-as-Failure (NAF) instead of FOL-entailment. In the following
section, we investigate how we can adopt Reiter’s epistemic view of ICs for
defining an alternative semantics for OWL axioms and show that this approach
aligns with Lloyd-Topor technique of translating FOL queries to Datalog rules.

4.1 From ICs to Epistemic Queries

Extending DLs with epistemic operator K has been studied [4] where K operator
can be used in front of a concept or a role. Intuitively, KC represents the set of
individuals that are known to be instances of C and KR represent the pair of
individuals that are known to be related with the role R. Our first attempt to
define the IC semantics for OWL axioms would be to translate an axiom such as
(4) into an epistemic axiom by adding the K operator in front of every predicate:

KProduct � ∃KisManufacturedBy.KManufacturer (13)

We can now define the satisfaction of ICs as the entailment of the epistemic axiom
by the standard axioms in the KB. We can equivalently reduce this entailment
problem to query answering using the Epistemic Query Language (EQL) [2].
EQL allows one to pose epistemic FOL queries (that contain K operator) against



standard FOL KBs which satisfies our requirement. Since every OWL axiom can
be represented as an FOL formula we can translate (4) to the following EQL
query:

KProduct(x) → ∃y.(KisManufacturedBy(x, y) ∧KManufacturer(y)) (14)

Answering this query over the KB would return the individuals that satisfy
the IC. The negated query will return the individuals that violate the IC. The
semantics of K operator in [4] and the semantics of EQL queries in [2] are given
in very similar terms and it can be shown that the entailment of subsumption
axiom (13) and the entailment of the epistemic query (14) is indeed equivalent.

There are couple of important points worth emphasizing regarding this ap-
proach. First, we could have turned axiom (4) into an epistemic axiom in a
different way as in:

KProduct � K(∃isManufacturedBy.Manufacturer) (15)

The axioms (13) and (15) have very different meanings and using (15) would
suffer from the problems discussed in Section 3 for the KB of (10). Furthermore,
if it is really the intention of the ontology modeler to express a constraint with
the meaning of (15) then it is possible to introduce a new concept name for the
existential restriction in the KB

C = ∃isManufacturedBy.Manufacturer (16)

and express the IC using this new name

Product � C (17)

Second, using the K operator for constraints limits us mostly to named indi-
viduals as pointed out in [9]. However, we do not think this is a major problem
because (1) nearly all of the use cases related to ICs are based on named indi-
viduals, (2) as the previous example shows, by introducing named concepts to
represent existential restrictions, we can have ICs (at least partially) interact
with unnamed (inferred) individuals.

Third, due to the way we translate OWL axioms to epistemic queries, the
classical negation operation used in an OWL axiom will turn into a NAF opera-
tor. This is because we simply replace every atomic concept C and every atomic
role R with KC and KR respectively. So if we have ¬C originally the final result
will contain ¬KC which is an encoding of NAF (any individual not proven to
be an instance of C will be an instance of ¬KC). As a result, the meaning of
the original concept is changed to have a closed world interpretation.

It is easy to verify that the semantics we get with epistemic queries satisfies
the use cases we discussed in Section 2 and 3. For example, when we translate
the uniqueness constraint of (7) into a negated epistemic query that will detect
violations, we get the following query:

KisManufacturedBy(x, y) ∧KisManufacturedBy(x, z) ∧ ¬K(y = z) (18)

With this query, we are asking to retrieve two values for isManufacturedBy
property and then test if two values are equivalent (via owl:sameAs inferences).



This example demonstrates that we are not adopting strict UNA because x and
y can bind to different individuals and the IC will not be violated as long as
they are inferred to be same.

4.2 From ICs to Datalog

The IC semantics proposed by Lloyd and Topor [7] is a commonly used technique
for handling integrity constraints in deductive databases [3, Chap. 11]. The idea
is to express ICs as regular first order logic (FOL) queries and execute the query
over a deductive database. Deductive databases cannot answer arbitrary FOL
queries but the transformation rules presented by Lloyd-Topor (which is now
famously known as the Lloyd-Topor transformation) can be used to convert a
FOL query to a general logic program interpreted with NAF. Such program can
be executed over a deductive database in a straight-forward and efficient manner
yielding a practical approach for validation of ICs expressed as FOL formula.

We illustrate the Lloyd-Topor approach using the example IC (4). We start
with defining a rule whose head is empty (denoted by the special symbol ⊥) and
whose body is the negation of the FOL formula representing IC (4):

⊥ :– not (Product(x) → ∃y.(isManufacturedBy(x, y) ∧ Manufacturer(y)))

If we can prove the negation of the IC from the deductive database, we infer the
empty head which indicates an IC violation. The Lloyd-Topor transformation is
applied to the above rule to first replace the negation of implication producing
the following rule

⊥ :– Product(x)∧not (∃y.(isManufacturedBy(x, y)∧Manufacturer(y))) (19)

After all transformation rules are applied, we have the following two Datalog
rules as the final result

⊥ :– Product(x) ∧ not P(x, y)
P(x, y) :– isManufacturedBy(x, y) ∧ Manufacturer(y)

(20)

where P is a new predicate generated by the transformation. It is easy to see
that these transformation rules will generate a nonrecursive Datalog program.

When the Datalog program is coupled with the standard OWL axioms from
the input ontology, we have a hybrid knowledge base (KB) that has an OWL
component (standard ABox and TBox axioms) and an LP component (con-
straints). Then, detection of constraint violation can be reduced to checking if
the special predicate ⊥ is entailed by the hybrid KB. But how to check this
entailment relation depends on the semantics chosen for the hybrid KB and
there are several different semantics proposed in the literature to combine OWL
ontologies with Datalog rules.

Given the close relationship between rules and queries4, it is not hard to see
that the epistemic query of (14) and the rules of (20) are very similar. We claim
that using the semantics given for DL-programs in [5] will ensure that original
4 Nonrecursive Datalog programs are known to be equivalent to unions of conjunctive

queries



ontology entails the epistemic query if and only if the corresponding hybrid KB
does not entail ⊥. We only provide an informal discussion about this equiva-
lence (formal proofs and descriptions will be included in an upcoming technical
report). In DL-programs, the DL atoms in rule bodies are evaluated as queries to
the OWL KB. The queries to the OWL KB contains only distinguished variables
so execution of a query atom C(x) (resp. R(x, y)) will return the same answers
as KC(x) (resp. KR(x, y)). The not operator in DL-programs is evaluated as
NAF which also aligns with the interpretation of epistemic queries.

The equivalence of IC semantics for OWL axioms using Reiter’s epistemic
query approach and Lloyd-Topor’s transformation to Datalog programs with
NAF is significant for several reasons. First of all, it shows that these two ap-
proaches are not necessarily incompatible with each other. Second, we reach the
same semantics starting from two different viewpoints of ICs which we take as
another validation point for the IC semantics we described. Finally, the equiva-
lence between two approaches provides different implementation possibilities.

4.3 From ICs to SPARQL queries

In the previous section, we showed how ICs can be translated to nonrecursive
Datalog programs for validation. It has been shown in [1] that SPARQL [10], is
the W3C’s query language for RDF, has the same expressive power as nonrecur-
sive Datalog programs. Therefore, we can also use SPARQL query answering to
validate ICs. SPARQL semantics [10] is defined in terms of pattern matching on
RDF graphs but the SPARQL specification allows different entailment regimes
to be “plugged-in” for querying more expressive KBs. SPARQL-DL [12] defines
such an entailment regime so answers to SPARQL queries will include OWL
inferencing results.

The representation of epistemic queries presented in Section 4.1 (or equiv-
alently representation of nonrecursive Datalog programs) in SPARQL is gen-
erally straight-forward but SPARQL does not directly provide an NAF opera-
tor. The well-known method for representing NAF 5 is based on a pattern of
OPTIONAL/FILTER/!BOUND operators. For example, using this pattern, the
SPARQL representation of IC (14) is:

ASK WHERE { ?x rdf : type Product.

OPTIONAL {
?x isManufacturedBy ?y.
?y rdf : type Manufacturer.}

FILTER(!BOUND(?y))}
In the above SPARQL query, the variable ?y in the filter expression should be
one of the variables that appear in the OPTIONAL graph pattern but not in {?x
rdf:type Product}. If such variable does not exist, we can add an additional
triple inside the OPTIONAL graph pattern such that the variable is always
5 http://www.w3.org/TR/rdf-sparql-query/#func-bound



bounded. We should also note that SPARQL WG at W3C is currently working
on revising the SPARQL specification and direct representation of NAF is one
of the new features that will be added to the language.6

5 Implementation

We have built a prototype IC validator7 by extending Pellet8. The prototype
includes a parser, a translator, and a validator for ICs that can read and val-
idate ICs written as OWL, OWL 2, or SWRL axioms. The IC validator can
be accessed either using a command-line program or the validation API that
programmatically returns validation results.

The prototype is implemented using the SPARQL translation described in
Section 4.3. Given an IC, it is translated to a SPARQL query and executed by
a SPARQL engine over the Pellet reasoner. Even tough this is only a proof-of-
concept implementation, it can still be used to validate relatively large datasets.
For example, we took the LUBM dataset and defined five ICs over the dataset.
We then used the validator to check for violations in LUBM(5) (100K instances,
800K assertions). Logical consistency checking takes 10s for this dataset whereas
validating one IC takes around 2s.

The prototype validates each IC separately by executing the corresponding
query. This approach would obviously not scale to thousands of ICs but there
are many optimization possibilities not utilized in our implementation. It is also
important to note that when an axiom is declared as an IC instead of a standard
OWL axiom, this potentially reduces the expressivity of the ontology and the
query answering over that ontology becomes easier. It is reasonable to expect
that the expressivity of an ontology without the ICs can fit into a tractable profile
(as OWL 2 QL or OWL 2 EL) which would allow efficient query answering and
consequently efficient IC validation.

6 Conclusions and Future Work

In this paper, we have discussed how to define semantics for ICs in OWL. We
examined IC semantics proposed in the deductive databases literature and dis-
cussed how to adopt these approaches for OWL. We showed that adopting both
the epistemic-query approach of Reiter and the Lloyd-Topor translation from
FOL ICs to Datalog rules with NAF give the same results when applied to ICs
expressed as OWL axioms. Based on these results, we showed that IC validation
can be reduced to SPARQL query answering using off-the-shelf reasoners. Our
preliminary results with a prototype IC validator implementation shows promis-
ing results for efficient IC validation. Our results show that the goal of using

6 http://www.w3.org/TR/sparql-features/
7 http://clarkparsia.com/pellet/oicv-0.1.2.zip
8 http://clarkparsia.com/pellet



OWL both as a knowledge representation and constraint language for data vali-
dation can be achieved without too much effort. We believe that adding integrity
constraints in OWL greatly facilitates automated reasoning and validation in
ontology-based applications.

There are several issues that will be addressed as part of our future work.
For example, we did not discuss the effect of using user-defined datatypes in
ICs which would require us to use built-in functions (e.g < or >) in rules or
comparable FILTER expressions in SPARQL queries. Interaction of cardinality
restrictions in ICs (especially when cardinality is greater than 1) and disjunctive
equality between individuals require more detailed analysis. As part of our future
work we will provide a more detailed and formal investigation of these issues.
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