SQWRL: a Query Language for OWL

Martin O’Connor, Amar Das

Stanford Center for Biomedical Informatics Research
Stanford, CA 94305[martin.oconnor@stanford.edu|

The ability to extract information from OWL ontologies is a basic requirement.
While SPARQL and its extensions are being used as an OWL query language
in many applications, their understanding of OWL’s semantics is at best
incomplete. There is a pressing need for a concise, readable, and semantically
robust query language for OWL. We describe a query language called SQWRL
that we believe provides such a language. SQWRL is based on the SWRL rule
language and uses SWRL’s strong semantic foundation as its formal
underpinning. The resulting language provides a small but powerful array of
operators that allows users to construct queries on OWL ontologies. SQWRL
also contains novel set operators that can be used to perform closure operations
to allow limited forms of negation as failure, counting, and aggregation.

1 Introduction

A number of query languages have been developed to query RDF and OWL, the two
dominant Semantic Web languages. SPARQL [1] is currently the de facto standard
RDF query language. SPARQL has also been pressed in to service as an OWL query
language. Since OWL can be serialized as RDF, SPARQL can, in principle, be used
to query it. However, SPARQL has no native understanding of OWL. It operates only
on its RDF serialization and has no knowledge of the language constructs that those
serializations represent. As a result, it can not directly query entailments made using
those constructs. Moreover, there is no canonical RDF serialization of some OWL
constructs. Different tools can serialize the same OWL constructs in slightly different
ways so SPARQL queries may perform differently when applied to ontologies
produced by different tools. Custom variants of SPARQL have been developed to
facilitate its use with OWL [2], though its essentially syntactic focus means that it is
not a natural fit when used with complex OWL constructs. Fundamentally, basing an
OWL query language on a particular OWL serialization entails significant language
design compromises and unnecessary semantic complexity. A language design
approach that builds directly on OWL’s DL-based semantics can generally provide a
more sound solution. Two such languages, OWL-QL [3] and DIG’s ASK protocol
[4], are based directly on OWL and have well-defined DL-based semantics.
Unfortunately, no usable implementations of OWL-QL were produced and the ASK
protocol is too inexpressive to be used as a general OWL query language. There is
thus a need for an expressive OWL query language that is built solidly on its DL
semantics and that supports comprehensive querying of OWL.

Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

mailto:martin.oconnor@stanford.edu
Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

2 SQWRL

SQWRL (Semantic Query-enhanced Web Rule Language; pronounced squirrel) is
built on the SWRL rule language [5]. SQWRL takes a standard SWRL rule
antecedent and effectively treats it as a pattern specification for a query. It replaces
the rule consequent with a retrieval specification. SQWRL uses SWRL’s built-in
facility as an extension point [6]. Using built-ins, it defines a set of operators that that
can be used to construct retrieval specifications. The attractiveness of this approach is
that no syntactic extensions are required to SWRL. Thus, existing SWRL editors can
be used to generate and edit SQWRL queries. In addition, standard SWRL
serialization mechanisms can be used so queries can be stored in OWL ontologies.

Core Language Features: Basic Querying

The core SQWRL operator is squrl:select. It takes one or more arguments, which
are typically variables used in the pattern specification of the query, and builds a table
using the arguments as the columns of the table. For example, the following query
retrieves all persons in an ontology with a known age that is less than 9, together with
their ages:

Person(?p) "~ hasAge(?p, ?a) ~ swrlb:lessThan(?a, 9) — sqwrl:select(?p, ?a)

This query will return pairs of individuals and ages with one row for each pair.
Results can be ordered using the orderBy and orderByDescending built-ins. For
example, a query to return a list of persons ordered by age can be written:

Person(?p) ~ hasAge(?’p, ?a) — sqwrl:select(?p, ?a) ™ sqwrl:orderBy(?a)

The left hand side of a SQWRL query operates like a standard SWRL rule
antecedent with its associated semantics. So, for example, the atom Person (?p) will
match not only all OWL individuals that are directly of class person but will also
match individuals that are entailed by the ontology to be individuals of that class. In
effect, all variables that would be bound in a SWRL rules antecedent will also be
bound in a SQWRL pattern specification. SQWRL places no restrictions on the left
hand side of a query—any valid SWRL antecedent is a valid SQWRL pattern
specification.

Basic counting is also supported by SQWRL, provided by a built-in called
sqwrl:count. A query to, say, count of the number of known persons in an ontology
can be written:

Person(?p) — sqwrl:count(?p)

Grouped counts are also supported. For example, a query to count the number of cars
owned by each person in an ontology can be written:

Person(?p) ™ hasCar(?p, ?c) — sqwrl:select(?p) " sqwrl:count(?c)

This query returns a list of individuals and counts, with one row for each individual
together with a count of the number of cars that they own. Individuals that have no
cars are not matched by this query. Every person individual is effectively grouped and
the count built-in keeps track of the number of occurrences of each car associated
with each person. This process is analogous to SQL's GROUP BY clause—the only
difference being that grouping is implicit.

Basic aggregation is also supported, provided by four built-ins called min, max, sum,
and avg. Aggregation operators take a single argument which must represent a
numeric type. For example, a query to return the average age of persons in an
ontology (for which an age is known) can be written:

Person(?p) "~ hasAge(?p, ?age) — sqwrl:avg(?age)

It is important to note that SQWRL’s counting and aggregation built-ins operate
on the query result itself, not on the underlying ontology. The count built-in, for
example, keeps track of the number of relevant items matched in a query, not the
number of such items in the ontology being queried. For example, the earlier query
that determines the number of cars owned by each individual in an ontology will not
match individuals that do not own a car because the hasCar (?p, 2car) atom in the
rule will evaluate to false for those individuals. In other words, the count operator in
SQWRL will never return zero. OWL’s open world assumption is thus not violated.
Also, the result of this built-in is not accessible from within a rule so it can not be
used to violate OWL’s monotonicity property. A related restriction is that SQWRL
adopts the unique name assumption for matched individuals, so will count each
individual as distinct even though in the associated OWL ontology these multiple
names may refer to same underlying individual.

Like SWRL, SQWRL supports the use of OWL class descriptions. For example, a
query to retrieve all individuals in an ontology that are associated with a restriction on
an hasChild property specifying a cardinality greater than or equal to one can be
written:

(hasChild >= 1)(?i) — sqwrl:select(?i)

SQWRL queries can also operate in conjunction with SWRL rules in an ontology and
can be used to retrieve knowledge inferred by those rules. Assume, for example, that
an ontology contains the following rule to classify persons as adults if they are older
than 17:

Person(?p) ™ hasAge(?p, ?age) "~ swrib:greaterThan(?age, 17) -> Adult(?p)
A query to list all adults in an ontology can then be written:
Adult(?p) — sqwrl:select(?p)

The use of the intermediate inferences made by SWRL rules provides a mechanism to
decompose very complex queries. While subqueries are not possible in SQWRL, the
use of these intermediate inferences provides an effective equivalent. These
inferences can also be used by other rules and queries.

Set Operators: Closing the World

The core SQWRL built-ins support some degree of closure when querying without
violating OWL’s open world assumption. As shown, queries like List all patients in
an ontology and the number of drugs that they on can be expressive fairly directly.
However, queries with more complex closure requirements can not be expressed
using the core built-ins. For example, the query List all patients in an ontology that
are on more than two drugs can not be expressed. Queries with negation or complex
aggregation functionality are similarly not expressible. Disjunction is also an issue in
SQWRL: because it does not modify SWRL's syntax in any way, only conjunction is
allowed.

We have added set operators to SQWRL to support these additional requirements.
Operators to construct and manipulate sets are provided and are used to support the
closure operations necessary for these functionalities.

A built-in called sqwrl:makeset is provided to construct a set. Its basic form is:

sqwrl:makeSet(<set>, <element>)

The first argument of this set construction operator specifies the set to be constructed
and the second specifies the element to be added to the set. This built-in will construct
a single set for a particular query and will place all supplied elements into the set.
Operators like sqwrl:isEmpty and sqwrl:size can then be applied to these sets. A
new SQWRL pattern specification clause is provided to contain these set construction
and manipulation operators. This clause comes at the end of the standard pattern
specification and is separated from it using the ° character. For example, a query to
list the number of persons in an ontology can be written:

Person(?p) ° sqwri:makeSet(?s, ?p) " sqwrl:size(?size, ?s) — sqwrl:select(?size)

The new clause may only contain SQWRL set construction and manipulation
operators in addition to other built-ins that operate on the results of these operations.
It may not contain any other SWRL atom types. The introduction on the new °
separator character does not prevent the use of the standard SWRL serialization for
SQWRL queries that use it: the character itself does not have to be saved and its
display position can be inferred by tools when reading serialized queries.

Putting elements into sets provides a closure mechanism. Clearly, two phase
processing is required for these queries—a query cannot, say, determine how many
elements there are in a set until the set has been constructed. As mentioned, the
language restricts the atoms that are processed in the second phase to set built-ins and
other built-ins that operate on the results of these set built-ins. That is, the first phase
of query execution is analogous to standard rule execution. The second phase consists
of operations on the sets constructed as a result of that execution.

In addition to basic counting, query features such as negation as failure and
disjunction can also be provided by additional set operators. In SQWRL, these
operators include sgwrl:union, sgwrl:difference, sqwrl:intersection and so on.
Using these operators, queries can effectively examine the results of two or more
closure operations, permitting the writing of far more complex queries.

For example, in an ontology with a class prug and its subclass BetaBlocker, a query
to list the number of non beta-blocker drugs can be written:

Drug(?d) " BetaBlocker(?bbd) °
sqwrl:makeSet(?s1, ?d) ™ sqwrl:makeset(?s2, ?bbd) "
sqwrl:difference(?s3, ?sl, ?s2) " sqwrl:size(?n, ?s3)

— sqwrl:select(?n)

Using this set difference approach, SQWRL can effectively provide negation as
failure in queries. Again, the results of these operators can not be used in rules so
monotonicity is ensured.

Disjunction can be supported using the set union operator. For example, a query to
list the number of beta-blocker or anti-hypertensive drugs can be written:

AntiHypertensive(?htnd) ™ BetaBlocker(?bbd) °
sqwrl:makeSet(?s1, ?htnd) ™ sqwrl:makeSet(?s2, ?bbd) "
sqwrl:union(?s3, ?sl, ?s2) " sqwrl:size(?n, ?s3)

— sqwrl:select(?n)

This example assumes that the class AntiHypertensive is also a subclass of brug.

These types of sets support some fairly basic counting and aggregation operators.
For example, the earlier query to list all patients in an ontology on more than two
drugs is still not expressible using this approach. Additional set construction operators
are required to allow more complex queries that group related sets of entities. This
additional expressivity is supplied by sets that are partitioned by a group of
arguments. A built-in called sqwrl:groupBy provides this functionality. The general
form of this grouping is:

sqwrl:makeSet(<set>, <element>) "™ sqwrl:groupBy(<set>, <group>)

This group can contain one or more entities. The first argument to the sqwrl:groupBy
built-in the set and the second and (optional) subsequent arguments are the entities to
group by. Only one grouping can be applied to each set. This grouping mechanism is
again analogous to SQL’s GROUP BY clause.

Using this grouping mechanism, the construction of a set of drugs taken by each
patient can be written:

Patient(?p) ™ hasDrug(?p, ?d) °
sqwrl:makeSet(?s, ?d) " sqwrl:groupBy(?s, ?p)

Here, sets are built for each patient matched in the query and all the drugs for each
patient are added to their set. Using this grouped set, the query to list all patients on
more than two drugs can then be written:

Patient(?p) ™ hasDrug(?p, ?d) °
sqwrl:makeSet(?s, ?d) ~ sqwrl:groupBy(?s, ?p) *
sqwrl:size(?n, ?s) ™ swrlb:greaterThan(?n, 2)
— sqwrl:select(?p)

Here, the sqwrl:size operator will apply to each individual grouped set. In general,
operators applied to grouped sets will automatically consider the grouping.

More complex groupings will require multiple grouping entities. For example, to
build sets that contain the doses of each drug taken by each patient the sets must be
grouped by both patients and drugs:

Patient(?p) ™ hasDrug(?p,?d) " hasDose(?d, ?dose) °
sqwrl:makeSet(?s, ?dose) ™ sqwrl:groupBy(?s, ?p, ?d)

Here, sets will be constructed for each patient and drug combination and the all doses
for that combination will be added to them.

Aggregation operators can then be applied to these grouped sets if the elements
have a natural ordering. For example, a query to return the average dose of each drug
taken by each patient can be written:

Patient(?p) ™ hasDrug(?p,?d) ™ hasDose(?d, ?dose) °
sqwrl:makeSet(?s, ?dose) ™ sqwrl:groupBy(?s, ?p, ?d) "~ sqwrl:avg(?avg, ?s)
— sqwrl:select(?p, ?d, ?avg)

SQWRL'’s grouping mechanism dramatically expands the power of the language. This
mechanism effectively allows queries to perform closure by selectively partitioning
OWL entities into sets. It then supports an array of standard set operations on these
partitioned entities, which allow it to answer very complex queries.

More complex queries can then be constructed by combining these grouping and
aggregation mechanism with the earlier negation and disjunction mechanisms. For
example, a query to list the average doses of drugs taken by patients that are on more
than two drugs and where none of those drugs is a beta blocker or an anti-
hypertensive can be written:

Patient(?p) ™ hasDrug(?p,?d) ™ hasDose(?d, ?dose) "
BetaBlocker(?bb) ™ AntiHypertensive(?ahtn) °
sqwrl:makeSet(?s1, ?dose) " sqwrl:groupBy(?sl, ?p, ?d) "
sqwrl:makeSet(?s2, ?drug) ™ sqwrl:groupBy(?s2, ?p) *
sqwrl:makeSet(?s3, ?bb, ?ahtn) *
sqwrl:avg(?avg, ?sl)
sqwrl:size(?n, ?s2) ~ swrlb:greaterThan(?n, 2) *
sqwrl:intersection(?s4, ?s2, ?s3) ~ sqwrl:isEmpty(?s4)
— sqwrl:select(?p, ?d, ?avg)

This query illustrates the use of counting, aggregation, negation as failure and
disjunction. As can be seen from this query, set operations can be applied to grouped
and non grouped sets simultaneously and both types of sets can be used in the same
operator.

3 Implementation

An implementation of SQWRL has been developed in the SWRLTab plugin [7] in
Protégé-OWL. The implementation provides a graphical interface to edit and execute
SQWRL queries and also provides a JDBC-like Java interface to execute SQWRL
queries in Java applications. SQWRL queries also have access to all available SWRL
built-in libraries, which provides a means of continuously expanding the power of the
query language. A TBox built-in library, for example, has been developed and allows
direct querying of OWL classes and properties. Custom built-in libraries can also
provide functionality tailored to querying non OWL information sources. For
example, an XML built-in library has been developed to query an OWL
representation of XML documents. Built-in libraries for querying spreadsheets and
RDF ontologies are also available in the SWRLTab.

An OWL reasoner that wishes to support SQWRL must obviously implement its
built-in operators. These built-ins are somewhat unusual in that, unlike typical built-
ins, they do not examine their arguments and evaluate to true if their arguments
satisfy some predicate. Instead, these built-ins always evaluate to true. Their presence
in a SWRL rule thus has no effect on the semantics of the rule. However, their
behavior does not violate SWRL’s semantics.

Of course, an implementation must also provide access to the results generated by
each query. During query execution implementations of SQWRL built-ins must
effectively accumulate the information passed to them and place it in a table-based
data structure, with one table for each SQWRL query. Once a query has finished
executing an implementation must also provide mechanisms to access the query result
held in this data structure. An implementation is also responsible for SQWRL built-in
argument error checking.

SQWRL queries can be serialized using the standard SWRL serialization
mechanism. With the exception of the ° set antecedent separator, it also adopts a
relatively conventional presentation syntax. Standard editor tools can thus work with
it and may render the © separator as the standard conjunction symbol. With minor
modifications, tools can easily support this separator and can also ensure that set
built-ins and operators on them only occur after it in a SQWRL query.

4 Conclusion

We have described a SWRL-based query language called SQWRL that provides a
simple yet expressive language for performing queries on OWL ontologies. In
addition to basic ontology query functionality, it provides an array of powerful set
operators that support negation as failure, disjunction, counting, and aggregation
functionality. A free open-source implementation of the core language features is
included in Protégé-OWL 3.4.1 and the set operations will be available in an
upcoming release.

Acknowledgments

This research was supported in part by grant 1RO1LM009607 from the National
Library of Medicine.

References

[1] SPARQL:|http://www.w3.org/TR/rdf-spargl-query/|

[2] E. Sirin, B. Parsia (2007). SPARQL-DL: SPARQL query for OWL-DL. Third
OWL Experiences and Directions Workshop (OWLED-2007).

[3] R. Fikes, P. Hayes, I. Horrocks (2005). OWL-QL - a Language for Deductive
Query Answering on the Semantic Web. Journal of Web Semantics, 2(1).

[4] S. Bechhofer, R. Moller, P. Crowther (2003). The DIG Description Logic
Interface. Proceedings of the International Description Logics Workshop (DL 2003).

[5] SWRL Submission:|http://www.w3.org/Submission/SWRL |

[6] SWRL Built-ins:| http://www.daml.org/2004/04/swrl/builtins.html |

[7] SWRLTab Plugin:|http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab|

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SWRL
http://www.daml.org/2004/04/swrl/builtins.html
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab

