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Abstract. Traditional object-oriented programming languages can be
difficult to use when working with ontologies, leading to the creation of
domain-specific languages designed specifically for ontology processing.
Prolog, with its logic-based, declarative semantics offers many advan-
tages as a host programming language for querying and processing OWL2
ontologies. The SWI-Prolog semweb library provides some support for
OWL but until now there has been a lack of any library providing direct
and comprehensive support for OWL2.
We have developed Thea, a library based directly on the OWL2 functional-
style syntax, allowing storage and manipulation of axioms as a Prolog
database. Thea can translate ontologies to Description Logic programs
but the emphasis is on using Prolog as an application programming and
processing language rather than a reasoning engine. Thea offers the abil-
ity to seamless connect to the java OWL API and OWLLink servers.
Thea also includes support for SWRL.
In this paper we provide examples of using Thea for processing ontolo-
gies, and compare the results to alternative methods. Thea is available
from GitHub: http://github.com/vangelisv/thea

1 Motivation

The OWL2 language provides a large variety of powerful constructs for building
and reasoning over ontologies. These ontologies are typically developed using
sophisticated editing environments by domain specialists rather than computer
scientists or programmers. However, there is frequently a need to access ontolo-
gies or knowledge bases programmatically - in order to perform scripting opera-
tions or to build applications. One popular approach is to use RDF toolchains,
which provide access at the triple level. There are a variety of such tools for
a variety of programming languages. This approach works well for lightly ax-
iomatized linked-data collections, but for working with the TBoxes of heavily
axiomatized OWL2 ontologies the triple view can be too low level.

The OWL API[5] is an example of an alternative approach in which the pro-
grammer works directly with OWL2 constructs from an axiom-oriented perspec-
tive. The API closely follows the OWL specification, making it a natural fit for
working with the TBox of complex ontologies. The OWL API is implemented in
Java, the language of choice for many enterprise applications. However, there is
something of an impedance mismatch between object-oriented (OO) languages
and logical axioms (similar to the well-known impedance mismatch between
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OO and relational databases). This has motivated the development of domain-
specific languages (DSLs)[9] for manipulating ontologies, including the Ontology
Pre-Processing Language (OPPL)[2].

However, the creation of a DSL is an onerous task, and it can be difficult to
get the balance between expressivity and simplicity correct. An alternative ap-
proach is to use an existing high-level declarative language. Ideally this language
should be Turing-complete, and should offer pattern-matching and querying ca-
pabilities. Here we explore the use of Prolog as one such language.

2 Prolog as an Ontology Processing Language

Prolog offers many advantages as a host programming language for working
with ontologies, due to it’s declarative features and pattern-matching styles of
programming[1].

A Prolog program is a collection of horn clauses, rules of the form Head
:- Body, where Head is a single goal and Body consists of a number of sub-
goals joined by conjunctions or disjunctions (written “,” or “;” respectively) . A
clause with an empty body is known as a fact. A collection of facts is called a
database. Each goal is a predicate combined with zero or more arguments, where
the arguments can be variables (which are written using a leading upper-case
character), atoms or compound terms. Prolog predicates are denoted Predi-
cate/Arity, where Arity is the number of arguments taken by the predicate.
Prolog programs make the closed world assumption and implement not using
negation-as-failure.

Prolog goals are typically resolved by chronological backtracking (although
other resolution strategies are possible). Prolog offers impure non-logical features
such as the cut predicate to prune the search tree, and meta-logical predicates
for performing aggregate operations such as finding all solutions to a goal.

Prolog belongs to a family of rule-oriented languages which have been ex-
plored as an alternative basis for the semantic web and reasoning, an approach
that has been criticised by some in the OWL community[7]. However, here we
are more concerned with Prolog as a programming language for working with
ontologies rather than a direct substrate for ontologies with logic programming
semantics.

There are a number of different Prolog implementations. When considering a
system for performing programmatic tasks on ontologies certain considerations
such as supporting libraries are important. The SWI-Prolog environment[18] has
the advantage of providing both RDF/XML parsers and an efficient in-memory
triplestore in the form of the semweb library[19].

3 Thea: a library for OWL2

3.1 Design Decisions

Our goal was to build a programming library that supports OWL2 directly
through the Prolog database, rather than indirectly via RDF triples. This was



the approach taken by the first version of Thea, developed in 2005 to support
OWL as a complement to the SWI-Prolog semweb library.

This first version took a frame-oriented approach, providing a small number
of predicates to support the basic entities - classes, properties and individuals. In
redesigning Thea to support OWL2 we decided to opt for an axiom-oriented ap-
proach, and in particular to follow the OWL2 structural syntax[11] specification
precisely. Here, every axiom in the ontology would correspond on a one-to-one
basis with facts in the Prolog database.

3.2 Model

Our model directly corresponds to the OWL2 structural syntax[11] specification,
with only minor variations between the two. For example, a simple subclass
axiom between two named classes (Human and Mammal) is written using a
subClassOf/2 fact:

subClassOf(’http://example.org#Human’,’http://example.org#Mammal’).

In contrast to many programming languages, there is no need for an exten-
sive API for interrogating these structures, as we can directly query the Prolog
database using goals with variables as arguments. For example, to find all as-
serted superclasses of Human we would use a variable in the second argument
position:

?- subClassOf(’http://example.org#Human’,X).

The system returns with:

X = ’http://example.org#Mammal’

This is a query over the facts in the asserted database and not a request to
a reasoning engine to find all entailed subclasses.

In the cases where arguments are not named entities, we use Prolog terms
corresponding to expressions, again with a direct correspondence between the
OWL2 specification and Prolog functors and arguments. See table 1 for a com-
parison of an axiom stated using both OWL2 structural syntax and in the native
Prolog form1.

Thea2 also allows an optional alternate style called plsyn, taking advantage of
the ability to define infix operators in Prolog syntax, yielding something similar
to Manchester syntax[6] yet native Prolog terms (see table 1).

Thea also allows for ontology interrogation using strongly-typed predicates
such as subOjectPropertyOf/2 and subDataPropertyOf/2. These are im-
plemented as Prolog rules.

Thea has support for the Semantic Web Rule Language (SWRL). SWRL
antecedent-consequent rules are represented in the Prolog database as facts using
a two-argument implies/2 predicate, rather than directly as Prolog rules.
1 From here on full length IRIs are truncated for brevity. See the documentation in
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OWL2

EquivalentClasses(
forebrain_neuron
intersectionOf(neuron

someValuesFrom(partOf forebrain)))

Prolog

equivalentClasses(
[ forebrain_neuron,
intersectionOf([ neuron,

someValuesFrom(partOf, forebrain) ]) ]).

Plsyn

forebrain_neuron == neuron and partOf some forebrain.

Table 1. Comparison of the representation of an OWL axiom in both OWL2 structural
syntax and the native form asserted in the Prolog database. Note the minor difference in
that where the OWL2 spec allows n-ary predicates to represent sets or lists of entities,
we use explicit Prolog list syntax (denoted by the square brackets). We also show a
more compact Prolog representation taking advantage of the ability to declare some
predicates as infix in Prolog.

3.3 Concrete Representations: Parsing and Serialization

The OWL2 language has a number of alternative concrete forms, the normative
one being RDF/XML, which can be parsed and serialized using the SWI-Prolog
semweb library. Thea includes Prolog rules for translating between these RDF
graphs and the axiom-oriented representation; these rules are based directly on
the OWL2 RDF Mapping[3]. There are also parsers and serializers for SWRL
and OWL2-XML[10].

Thea also provides a convenient and efficient native prolog representation,
in which the ontology is written to or read directly as prolog facts. This can be
compiled to an even more efficient binary representation.

3.4 Reasoning

With Thea it is possible to reason using either Logic Programming techniques,
or by bridging to external reasoners. Standard prolog queries operate on the
asserted axiom database, and the entailed/1 predicate is used to interrogate
the reasoned database.

Description Logic Programs The primary motivation for using Prolog is
the declarative programmatic style rather than an alternative fragment of first
order logic. However, certain logic programming engines offer useful reasoning
capabilities that complement description logic reasoning.



Thea is able to write a combination of OWL2 ontologies and SWRL rules
to Description Logic Programs (DLP)[4]. We extended the standard translation,
defined for OWL1 to include property chain axioms and SWRL. The resulting
logic programs can be evaluated by Prolog implementations that offer tabling
[15], such as XSB, Yap or B-Prolog.

Backward-chaining Standard Prolog engines use backward chaining with back-
tracking to evaluate goals (known as SLD resolution). Backtracking can be used
to traverse subclass hierarchies and property chains, provided there are no cycles,
as this would lead to non-termination.

External reasoners Thea also includes as an optional component a bridge
to the OWL API using the SWI JPL package. This allows seamless access to
the extensive capabilities of the OWL API, including access to powerful DL
reasoners such as Pellet[16] and FaCT++[17].

Thea also implements the OWLLink interface, which allows access to different
reasoners[8].

4 Applications of Logic Programming to Ontologies

The use of high level declarative programming languages can be advantageous
when working with rich and complex ontology models. Here we present some
examples of using Prolog plus Thea to perform different tasks.

4.1 Ontology Querying

As noted previously, there is no specific API for interrogating or manipulating
OWL2 ontologies using Thea2. The declarative pattern matching and symbol
manipulation features of Prolog suffice. In addition it is simple to create new
rules, effectively naming queries.

For example, we can define a predicate for determining the least common
ancestor (LCA) over the SubClassOf axiom:

common_ancestor(X,Y,A) :-
entailed(subClassOf(X,A)), entailed(subClassOf(Y,A)).

least_common_ancestor(X,Y,A) :-
common_ancestor(X,Y,A),
\+ ((common_ancestor(X,Y,A2), A2\=A,

entailed(subClassOf(A2,A)))).

The least common ancestor/3 predicate can then be re-used in subse-
quent queries.

Another powerful feature of Prolog is the ability to perform meta-logical
queries involving aggregation. For example, if we want to summarise all classes



by the number of instances asserted to be types of that class we can do this
using aggregate/4:

class(C),aggregate(count,I,classAssertion(C,I),Num).

This goal would succeed once for every class C, unifying Num with the
number of individuals in class C.

By combining the LCA predicate with aggregate queries it becomes very
simple to write semantic similarity applications, a popular use of biological on-
tologies[14]. The Thea distribution includes a sample application for calculating
semantic similarity between individuals in OWL knowledge bases based on the
information content of classes in common.

4.2 Ontology Processing

Ontologies are typically created and maintained using development environments
such as Protege[13], which provide a graphical user interface to allow domain
experts to view, create and edit axioms. In addition to these end-user oriented
tools, there is frequently a need to do programmatic processing or scripting of
ontologies for tasks that would be tedious and repetitive to do by hand.

Consider a hypothetical ontology that by default follows a strict jointly-
exhaustive pairwise-disjoint paradigm, but with occasional exceptions that are
explicitly declared using a specified annotation property. We can automate the
generation of these axioms using the following goal, which can be evaluated in
a failure-driven loop:

class(Y),
setof(X,(subClassOf(X,Y),

\+ annotationAssertion(status,X,unvetted)),
Xs),

assert_axiom(disjointUnion(Y,Xs))

Of course it is possible to write a program to do this in a language such
as java using the OWL API, which may be preferable in many circumstances.
However, if there is a need to perform multiple scripting tasks on an ad-hoc basis
then a declarative means of processing ontologies can be a useful complementary
technique.

The examples directory in the Thea distibution contains many recipes such
as this one.

4.3 Label generation

One of the challenges in ontology development is maintaining consistent class la-
bels that are intuitive to the targeted community of users. Given the appropriate
equivalence axioms it should be possible to auto-generate labels or suggestions
for labels.



For example, given a class expression length and qualityOf some (axon
and partOf some pyramidal neuron) we might want to generate a more
concise user-friendly label such as length of pyramidal neuron axon. This label
contains less information than the class expression, but is unambiguous enough
as a label intended for a domain expert. We might also want to generate alternate
labels for composite classes based on alternate labels of the composing classes.

Prolog Definite Clause Grammars (DCGs) allow for simple configuration of
community-specific class labeling rules using production rules such as the follow-
ing, which uses the preposition “of” in place of the more verbose ObjectProperty:

term(Q and qualityOf some A) --> quality(Q),[of],anatomical(A).

The same grammars can be used to parse controlled natural language expres-
sions. This technique has been used for both parsing and label generation in
many biological ontologies using Obol grammars[12].

The Thea distribution comes with some example grammars.

4.4 Translating to and from other sources

Ontologies can be constructed both manually and automatically. In the latter
case, the ontology may be constructed from some other data sources: flat files,
XML or relational data.

The pattern matching and rule-driven nature of Prolog make it a good match
for data translation tasks.

To take a biological example, given a two-column table mapping types of
cell to the markers expressed on the surface of that cell, we can specify the
translation to a complex OWL axiom using a single rule:

CellType < hasPart some (surface and hasPart some Marker) :-
cell_marker(CellType,Marker).

Many Prolog implementations also provide libraries for XML processing and
for database connectivity, which means that similar declarative rules such as
the above can be specified for these sources too. The Thea distribution includes
examples of both.

4.5 Ontology Web Applications and Web Services

In addition to providing an expressive means of querying, processing and per-
forming translations on ontologies, it is possible to write full blown applications
using Thea2 via the SWI-Prolog http library. The Thea distribution contains
some simple examples, including a basic web-based axiom browser.



5 Comparison with other systems

5.1 SPARQL

The SPARQL language is commonly used for querying ontology-centric linked
data, and sometimes for querying the ontology itself (TBox querying). Thus
there is some overlap with the querying capabilities of Prolog+Thea. However,
SPARQL suffers from certain limitations in certain circumstances:

– No means of updating data
– Too RDF-centric for querying complex TBoxes
– Lack of ability to name queries (as in relational views)
– Lack of aggregate queries
– Lack of programmability

There are various extensions to overcome these limitations: SPARUL for up-
dates, SPARQL-DL for OWL-level querying of TBoxes (there is now a W3C
working group formed to add other missing features in SPARQL). In addition
SPARQL enjoys the distinction of being a W3C standard and is supported by
most triplestores, and SPARQL engines may also provide efficient query opti-
mization. Nevertheless, sometimes SPARQL does not offer the requisite features
to perform certain kinds of queries or translations, such as the ones described in
this paper. In these cases the ability to perform queries via Prolog offers a useful
complementary tool in the semantic web developers arsenal.

5.2 OPPL

Another means of processing ontologies is using OPPL, a Domain Specific Lan-
guage designed specifically for this task. Table 2 shows an OPPL example for
asserted that all subclasses of gender are disjoint, together with the equivalent
Prolog:

OPPL Thea

?x:CLASS, ?y:CLASS
SELECT ?x subClassOf gender,
?y subClassOf gender
WHERE ?x!=?y
BEGIN
ADD ?x disjointWith ?y
END;

subClassOf(X,gender),
subClassOf(Y,gender),
X\=Y,
assert_axiom(disjointClasses([X,Y]))

Table 2. Comparison of ontology processing in OPPL versus a failure-driven prolog
loop using Thea. This example is taken from the OPPL online documentation



In this case we can see a close correspondence, with minor syntactic differ-
ences. OPPL is perhaps easier to teach, being smaller, and having a familiar
SQL-like syntax. OPPL also has the significant practical advantage of currently
being integrated with the Protege 4 environment.

However, Prolog offers many advantages such as higher expressivity, Tur-
ing completeness, named queries, meta-logical predicates and well-understood
semantics. Although we are not aware of a full formal specification of OPPL,
it appears from the grammar that there are many examples presented in this
document (e.g. the one in section 4.2) that would require some kind of extension
to OPPL.

5.3 The OWL API

The most fully featured programmatic interface to OWL2 is the Java OWL API.
Of course, Thea offers considerably less capabilities, and in addition the OWL
API is a better choice for many software developers, being implemented in Java.
However, we believe that for a certain subset of tasks, the declarative nature of
Prolog offers a number of advantages.

An alternative strategy is to use the OWL API in conjunction with a more
declarative JVM language. This is the approach taken by the Lisp Semantic Web
(LSW) library2, which runs on the JVM. In fact Thea also provides a bridge to
the OWL API, although this is optional, and the user can work directly with
axioms expressed natively in a Prolog database.

Benchmarks show that the performance of Thea is comparable with the OWL
API3.

6 Conclusions

Thea offers support for OWL2 within a Prolog environment. The full structural
syntax is supported. Thea can be used to simplify many programmatic tasks
associated with ontologies, including ontology querying and processing. In addi-
tion, Thea can be used to construct full applications that have dependencies on
complex ontologies.

Thea is available from GitHub (http://github.com/vangelisv/thea) and from
the Thea website (http://www.semanticweb.gr/thea). At this time use of the full
library requires SWI-Prolog, although we hope to soon offer full support for Yap
Prolog. A subset of features (excluding RDF/XML reading and writing) are
available to any ISO-compliant Prolog implementatin
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