
Conceptualizing Service-Based Information System Evolution as a Complex
Adaptive System

Ghada Alaa

British University in Egypt
Misr Ismalia Desert Road, El-Shorouk City, PO Box 11837, Egypt

ghada.alaa@bue.edu.eg

Service-based information systems are considered a cornerstone in architecting modern
enterprise applications. Service-oriented architecture (SOA) is designed to enable dynamic
integration of heterogeneous application elements, and thus improve enterprise agility. This is
achieved by publishing reusable services on a common registry or enterprise service bus to
become available to users who will request and invoke them according to their business needs.
In this paper it is argued that service-based information systems are different from component-
based systems. SOA relies on the concept of contracting services to become invoked by users
through service matching and binding, beside a middleware interface that integrates
heterogeneous components (as supported by component-based architecture principles). In order
to enable service evolution it is suggested to conceptualize service-based information systems as
a complex adaptive system. Complexity science seeks to theorize the phenomenon of emergence
of new properties and the spontaneous creation of new order, and thus provides elements to
realize adaptability and evolution. By mapping complexity principles to SOA features factors
that would facilitate information service evolution can be derived. It is concluded that in order to
enable sustainable evolution of information services controlling factors, such as contracting,
licensing, provenance, reliability and sustainability are paramount beside component-based
development principles that include reusability, loose coupling, inter-operability, scalability and
platform-independence. New programming discipline practices are also concluded, that include
service choreography model, BPEL specifications, meta-data specifications, SLA specifications,
service semantics and service tests. These ensure fast development balanced with discipline and
quality, beside extensive collaboration and interactions facilitated by conventional agile
development practices like JAD sessions and prototyping.

Key words: SOA, service evolution, factors, complex adaptive system

Service-Oriented Architecture (SOA) Standards

Service-based Information Systems and Service-Oriented Architectures (SOAs) are considered
as cornerstone framework and standards in architecting modern enterprise applications. SOA
applications are composed of reusable services, well-defined and autonomous, that are published
on open repositories and interlinked by standards-compliant interfaces (Zimmermann et al.,
2004). In this regard, service-based information systems are argued to offer an effective way to
realize business agility as they provide a mechanism for integrating existing legacy applications
regardless of their platform (Ren & Lyytinen, 2008).

mailto:ghada.alaa@bue.edu.eg

According to Mohan (2002) Webservices provide the technology required realizing SOA, he
defines Webservices as self-contained, self-describing and modular Web elements that can be
published, located and invoked by users or enterprises across the Internet. Web services
standards formulated by W3C have outlined architecture, protocols and language specifications
to realize generic SOA implementations. These include according to Weske (2007) and Ren &
Lyytinen (2008):

ο XML, markup language for data structuring
ο SOAP or REST, Web protocol for communicating service calls and messaging over

HTTP or SMTP/email protocol
ο UDDI (Universal Description, Discovery, and Integration), a universal application

programming interface (API) that facilitates service registration and searching
ο WSDL (Web Service Description Language) for service description that include

information on data structure types returned or invoked by the service, transport protocol
used, physical service endpoint, etc. (see Figure 1 for more elaborations)

4) Bind/Invoke
SOAP

Service Requestor Service Provider

Figure 1: The SOA Framework adopted from Weske (2007)

Business processes typically encompass multiple service invocations and in this regard WS-
BPEL (Web Services Business Process Execution Language) introduced by OASIS describes
language syntax to compose and execute Web services. These include operation commands, such
as invoke, receive, reply, wait, assign, throw and terminate, as well as control flow commands
that include sequence, switch, pick, while, flow and link (www.oasis-open.org). Once a system
architect finalizes the required service composition using a BPEL editor, the relevant BPEL file
is generated. The service can then be made available by storing the respective WSDL file in
UDDI. When the service is invoked by a user the BPEL engine reads the stored BPEL
specifications in order to execute the sequence of required services (Weske, 2007). The
sequencing, selection, and execution of services is termed service choreography that evolve as
response to a certain business need (Zimmermann et al., 2004).

2) Request

1) Register
WSDL

3) Reply
WSDL

Service Registry

UDDI

Issues in Modeling Service-Oriented Architectures (SOAs)

Zimmermann et al. (2004) specify quality attributes for SOA that cover reusable (well-crafted
services), loosely coupled, cohesive abstractions, stateless, meaningful to business and
standardized to comply with enterprise architecture patterns and underlying technologies. Major
modeling activities will concentrate on service discovery, service composition, and service
granularity, defining Service Level Agreements (SLAs) or in other words standards-compliant
interfaces between the services. In addition, semantic brokering is an important issue in SOA
modelling. This refers to semantic interpretation of related service invocation parameters and
underlying domain ontology (descriptive domain key words) that are paramount for dynamic
service discovery and binding.

According to Ravichandran et al. (2007) IT architectural design features for SOA include
reusable components, modular, autonomous, i.e. capable of interaction and adaptability without
human intervention, interoperable, and re-configured flexibly in run time through service
matching and dynamic binding. Ren & Lyytinen (2008) specifically distinguish between
reusability, agility and scalability as quality attributes for IT architectures. They explain that OO
concepts support reusability factors, client-server architecture supports agility and scalability,
whereas SOA supports reusability, agility and scalability as it combines OO and component-
based development features with the client-server architecture advantages.

In addition, Ren & Lyytinen (2008) classify design features for service-based information
systems as system features (that include platform-independence, loose coupling, re-usability and
interoperability), service features (that include encapsulation, autonomy, deceivability and
designed for contracting) and business features (that include meaningful to business, comply
with business process and suitable for enterprise integration).

Reflecting on a real-case technical practice of SOA, a Learning Resource Recommendation
System for universities, Shabir & Clarke (2009) suggest that key elements in designing service-
based information systems are sustainability, provenance, licensing and reliability. By reliability
they mean to ensure that service-based information systems will manage cases when linked
sources become temporarily or permanently unavailable by providing a feedback message
instead of encountering an error, whereas sustainability will find contingency plans to recover
data sources that become unavailable or find substitutes if the original host shuts down
permanently. Provenance refers to the possibility to trace data published on a linked repository
back to its original source which will ensure its provenance/correctness and originality, and
licensing is to provide governance to retrieval, processing and storage of data on open linked
registries.

Similarly, Lin et al. (2009) emphasize workflow monitoring and management, provenance
management and data quality management as core building blocks for SOAs. Provenance
module will cover Querying, Exception handling, RDF-to-Relational data mapping, OWL (Web
Ontology Language)-to-Relational Schema mapping and Relational Provenance repository.
Whereas the data quality module will cover XML-to-Relational data mapping and the workflow

management module will cover workflow scheduling, removing redundancy, orchestration and
breakdown into discrete, autonomous task activities.

Development Approaches for Service-Oriented Architectures (SOAs)

According to Zimmermann et al. (2004) service-oriented information systems analysis and
design (they refer to as SOAD) have roots in three major existing disciplines; Object-Oriented
Analysis and Design (OOAD), Enterprise Architecture (EA) frameworks, and Business Process
Modeling (BPM) techniques. They suggest a hybrid approach that collates suitable elements
from OOAD, EA, and BPM to come up with a three layers SOAD approach to include
component, software service & business service layers. In the business service layer the
approach suggests the use of BPM techniques, such as workflow diagrams, as well as UML
Sequence and Interaction diagrams to model the interaction between the different components
across the enterprise service bus. In the software service layer the approach suggests the
encapsulation and granularity of services. In this regard, integration of existing legacy
applications can be decomposed into stateless services, where reusable business processes and
rules are abstracted into autonomous services managed by a business choreography model
represented by BPEL specifications. In addition the CRUDS (Create, Read, Update, Delete and
Search) metaphor would also help in service modeling and abstractions. In the component layer
the elementary components that constitute the service will be represented as UML class
diagrams.

Bell (2008) suggests a three phase approach for service-oriented modeling that includes service
abstraction, service analysis and design activities. In the abstraction phase service discovery
and conceptualization (high-level abstractions of business logic and re-usable processes) will be
carried out, in the analysis phase service descriptions will be carried out along with business
integration, enterprise architecture and meta-data specifications, whereas in the design phase
component and architecture logical and physical designs will be outlined.

Bitzer & Schumann (2009) interpret the development approach of SOA and the interplay
between the Functional & IT department during this process. They emphasize appropriate
interactions between both departments in order to overcome the Business/IT gap in modeling
service-based information systems. The development process starts with a business analysis and
service conceptualizations by the Functional department. Then both departments collaborate in
designing the SOA by producing the corresponding BPM models and BPEL specifications
supported by BPEL editors. Then orchestration of the different services will be carried out by
the IT department in order to form the service choreography supported by BPEL editors. Finally
execution and governance of services within the required SOA will be undertaken by the IT
department.

Niemann et al. (2008) suggest a generic governance model for SOA based on a survey of several
approaches suggested in literature to govern development, provisioning and operation of service-
based information systems. They specify an SOA Governance Control Cycle to include four
phases; planning, design, realization and operation. The planning phase will cover SOA
preliminary specifications along with organizational governance issues such as staffing,
competences, streamlining cross department processes, migration of legacy systems &

processes, enterprise-wide consolidation, as well as policy and metrics planning. The design
phase will address detailed business and technical requirements, SOA topology and detailed
service specifications. The realization phase will target implementation issues, such as realizing
the service registry and semantics, SLA implementations, continuous service tests and reviews.
Whereas the operation phase will cover the major governance activities that will include
business service registry management, business service evolution management, architecture
evolution and management, SLA management, etc. The several SOA stakeholders will contribute
to outline Best Practices for SOA governance that will in turn define SOA governance policies
and relevant metrics & SOA maturity measurement. This is an iterative and continuous process
that will cover several feedback loops, adjustments and improvements.

Baskerville et al. (2005) investigate development activities acquired by banks in order to set up
their SOA topology. They have studied the implementation of SOA at a Scandinavian bank and a
Swiss bank. The Scandinavian bank adopted a more agile approach implementing the bank’s IT
architecture as network-centric, where a service integration layer facilitated the integration of the
many legacy systems in the bank. This enhanced the internal enterprise application integration,
extensibility to other bank’s SOAs and different outside services, as well as made continuous
redevelopment and re-configurations easier. The implementation has been accomplished as
incremental steps while a service integration layer facilitates the integration of the many legacy
systems in the bank. On the other hand the Swiss Bank faced problems in aligning the SOA
technologies to their business processes and legacy systems. This required extensive training of
operations and technical staff in SOA standards, as well as an enterprise-wide consolidation in order to
streamline cross-departmental processes. Both cases had partnerships with external vendors that
fuelled the organisational learning process in acquiring SOA standards and best practices.
Collaboration with the vendor encountered extensive prototyping activities in order to
incrementally review and test parts of the system, and also to discuss and negotiate new
requirements. SOA development and deployment life cycle also witnesses extensive
collaborative modelling and evaluation activities facilitated by JAD (Joint Application Design)
sessions as implied by Abraham et al. (2008).

Complex Adaptive Systems Theory (CAS)

Complexity science seeks to explain the process of self-organisation, emergence of new
properties and the spontaneous creation of new order. CAS theory originated in the natural
sciences and articulates how interacting agents in systems adapt and co-evolve over time in
creative and spontaneous ways (Dooley, 1997). According to Kaufman (1993) the behaviour of
complex adaptive systems (CAS) is typically unpredictable, but exhibits various forms of order
and regulation. Heylighen (2001) defines CAS as a system composed of interacting agents,
which undergo constant change, both autonomously and in interaction with their environment.
Heterogeneous agents exhibit various agent behaviours that can be defined in terms of “simple
rules” where they adapt and evolve through their interactions and by changing their rules through
learning as experience accumulates (Holland, 1996).

Complexity principles emphasize that emergence of properties and creation of new order are not
explicable from a purely reductionist viewpoint, but the whole is greater than the sum of the
parts (Kaufman, 1993). This means the focus of attention shifted from understanding the parts

or entities of which the whole was composed to the interaction of subsystems (agents) to form a
system. The emergence of order from heterogeneous local interactions is formed when feedback
from environment and interacting agents informs the circular dynamics of the system. Thus
local interactions will influence the formation of global structures and the stability of their
mutual reproduction(Küppers, 1999) (see Figure 2).

Feedback
Regularities

Feedback

Agents

Global Pattern

Interactions

Figure 2: CAS Evolutionary Process

While a uniform description or interpretation of CAS is still not provided, several key aspects
that characterise CAS were suggested in the literature. After reviewing several CAS literature
Alaa (2009) concluded twelve CAS principles that facilitate emergence and evolution of business
ecosystems; these include:

(P1) Large number of components:
CAS consists of a large number of components that undergo continuous change processes
and re-arrangements, that in turn will define new identity of the system (Wulf, 1996).

(P2) Variation & diversity:
CASs are made up of heterogeneous agents (Holland, 1995); each agent is different from
the others (diversity), and its performance depends on the other agents and the system
itself (Benbya & McKelvey, 2006).

(P3) Space of possibilities/ adaptation to environment:

Tendency to adapt to a particular situation depends on the context and the influence of
environment; this will determine the possibilities and alternatives available for change
(Keller, 1996).

(P4) Connectivity & interdependence of components:
Structural coupling emphasizes the analysis of systems and their evolution in terms of
their form, structure & degree of interconnectivity (Küppers, 1999).

(P5) Far-from equilibrium state/edge of chaos:
In order to harness change with no anarchy CAS strives to maintain a balance between
the completely ordered, “frozen” regime and the completely disordered, chaotic regime,
which is known as operating on “edge of chaos” (McKelvey, 1999).

(P6) Non-linearity:
Nonlinearity principle emphasizes that emergence of properties and new order are not
explicable from a purely reductionist viewpoint, but the whole is greater than the sum of
the parts (Kaufman, 1993).

(P7) Interactions:
Agents in a CAS undergo constant interactions, both autonomously and with their
environment (Heylighen, 2001).

(P8) Feedback loops:
Inter-relations between the system parts result in feedback loops where components in the
output stage inform components in the input stage (Andriani, 2003).

(P9) Pattern recognition & learning:
As a result of feedback loops adjustment in CAS takes place through the learning
experience exhibited by its agents. This will change the agents’ effect to realise the
required outcome (Webb & Lettice, 2005).

(P10) Historicity & path dependence:
The behavior of the system in one period of time feeds back and informs to determine
behavior in the next time; this gives the system ‘historical dimension’ (Stacey et al.,
2000).

(P11) Self-organization:
Kant (1970) introduced the notion of self-organization as a mechanism to explain the
emergence of order in CAS where external influences, e.g. natural forces or social
contracts do not govern the internal dynamic of an entity/organization.

(P12) Co-evolution:
Agents rarely are partitioned into non-overlapping groups; they rather participate in
multiple neighborhoods/undertakings simultaneously, where their various activities co-
evolve (Anderson, 1999).

Information Systems Evolution from Complex Adaptive Systems Theory (CAS)
Perspective

There is great interest in understanding modern organizations and systems in terms of theories of
complexity (McKelevey, 1997, Stacey et al., 2000 and Mitleton-Kelly, 2003). This would
provide a new way of thinking and reasoning on how adaptability and emergence can be realized
in organizations, and similarly information systems development and evolution can be
interpreted using complexity principles.

In order to operationalize CAS principles, Alaa (2009) provides a classification of underlying
concepts and theoretical representation of CAS evolutionary process by categorizing CAS
factors of emergence into (a) dynamics of emergence, i.e. factors that realise emergent properties
such as flexibility of subcomponents, diversity, simplicity, high level abstractions, short-term
orientation and rapidity in response and operation, (b) enabling infrastructure, i.e. factors that
enable the dynamic properties to become effective, such as systems architecture with re-usable
and loosely coupled components, organization structure and management style & culture, etc.
and (c) controlling factors, i.e. factors that will balance excessive change with stability and thus
sustain the business ecosystem to operate at the edge of chaos without descent into anarchy;
these include feedback loops, continuous reflection and adjustment, non-restrictive/generic rules
and discipline for operations and management.

It is found that social construction elements, such as communication, collaboration, interaction,
etc. are argued to be critical drivers of human empowerment and self-organisation, whereas
mechanistic, adaptive dynamics like flexibility, short-term orientation, small scale approaches,
simplicity and rapidity will ensure fast response and quick adaptation to the problem situation.
However, evolutionary properties cannot be fully realised without the necessary enabling
infrastructure that will allow the dynamics of emergence to become effective. Also appropriate
control mechanisms, such as feedback, reflection, learning, discipline frameworks and
methodologies for management and operation, as well as embracing quality control factors need
to be in place in order to ensure emergence to happen without descent into anarchy (edge of
chaos). The elements or factors in each category have been identified and related in a
framework, to help understand and analyse the phenomenon of emergence and facilitating
evolutionary properties in social organisations in general, and information systems development
in particular (Table 1).

 DDyynnaammiiccss

EEnnaabblliinngg IInnffrraassttrruuccttuurree CCoonnttrroollss

II nn
tt aa

nn gg
ii bb

ll ee
ss

Communication
Collaboration
Interaction

Management style
Culture

Reflection
Learning

TT
aa nn

gg ii
bb ll

ee ss

Short-term orientation
Small-scale
Rapidity
Flexibility
Simplicity

Organisation structure
Technical architecture

Feedback
Continuous re-adjustment
Quality controls
Discipline in programming
Minimal development
methods

Supports the principles of degree
of interdependence, connectivity,
quick mechanistic adaptation,
interactions, diversity, self-
organization and non-linearity.
CAS P2, P4, P6, P7, P11

These enable or allow the dynamics
of emergence to either be effective or
inhibited, as well as adaptation to the
environment & co-evolution
CAS P1, P3. P12

These operationalize feedback &
learning to ensure a balance
between excessive change and
stability and thus sustaining the
edge of chaos and also giving rise
to historical dimension while
enterprise knowledge
accumulates.
CAS P5, P8, P9. P10

Table 1: Facilitating Evolutionary Properties in Information Systems Development Supported by CAS

Service-Based Information Systems Evolution from Complex Adaptive Systems Theory
(CAS) Perspective

By mapping factors facilitating ISD evolution as implied by CAS (Table 1) to elements and
features of service-based information systems development, factors of service systems evolution
can be derived. In previous sections specific characteristics of SOA were outlined as compared
to component-based systems, along with issues in modelling SOA and development
methodologies targeted at successful development, operation and governance of SOA. In doing
so, several key elements characterizing SOA implementation have been identified (represented in
italic). Mapping such elements to different aspects of the evolutionary process (dynamics,
enabling infrastructure, controls) yields the suggested framework for service-based information
system evolution represented in Table 2.

For the enabling infrastructure factors like reusable components, loose coupling, interoperability
(based on WSDL and application programming interfaces/APIs), platform independence,
enterprise service bus and linked-open registries (repositories) have been identified under
technical architecture. Under organization structure elements such as enterprise-wide
consolidation, streamlining cross departmental processes, migration of legacy processes, etc.

For the dynamics of service evolution attributes like autonomous, encapsulation (service
discovery & conceptualization), abstraction, stateless, meaningful and standardized to business
(Business/IT alignment), designed for contracting, service matching, linking and binding are
suggested. Rapidity is also important in SOA implementations in order to cope with the rapid
change in current business environments, and increase the enterprise competitive advantage.
Collaborations and interactions are also paramount represented in interactions with the vendors,
users and between the different departments (for example during JAD sessions).

Controlling factors for service-based information systems evolution is different from component-
based development, due to the fact that SOA relies on the concept of contracting and brokering.
Therefore, quality control factors such as licensing, provenance, reliability and sustainability
become necessary to govern the process of contracting and service matching & binding. This is
because a licence should be provided before contracting, as well as a provenance process is
required to trace back sources of data for correctness, and a process to ensure that the link to be
invoked is reliable (not to disappear or shut down) and sustainable, i.e. other relevant links are
provided in case of shut down of the primary link. This is beside the usual quality control factors
for component-based development that include security and redundancy removal.

In order to ensure the successful implementation of SOAs several development
methodologies/approaches have been suggested in literature as discussed before. These also
provide controlling elements for SOA evolution, as they govern the process of service
development and evolution life cycle. But these approaches need to be not restrictive in order to
facilitate rapidity and quick adaptation; i.e. provide minimal guiding instructions without being
cumbersome as supported by CAS principles. Agile development rationale to emphasize light
weight development is rush into coding but governed with discipline in programming that will
ensure quality of programming outcome. In case of SOA new programming disciplines can be
concluded; service choreography model, BPEL specifications, meta-data specifications, SLA
specifications, service semantics and service tests.

According to Baskerville et al. (2005) IS development in modern enterprises requires efforts of
application integration to incorporate new functionalities in existing legacy systems, as well as improving
the strategic value of enterprise by including new innovative, value-added services. Both application
integration and value added services improve enterprise agility and thus require an agile development
approach. They witnessed in their field analysis of SOA implementations agile practices, such as
prototyping, break down of concerns, and extensive collaboration and interactions with vendors and users.
But they also noted a possible conflict between the conventional mindset of enterprise IT development
weighted with regulation and security concerns, as well as tendencies to long-term orientations
that would counteract agile development principles. This might give an explanation why there
was no mention in surveyed literature about short-term orientation and small scale development
for SOA, in contrast to pure agile development projects.

In this regard, Zimmermann et al. (2004) emphasize that the Rational Unified Process (RUP)
should be suitable for SOA development as it supports iterative development, but with emphasis
on architecture design. Thus RUP will balance the pure agile development approach. Though for
RUP the system architecture is the structure of its components interacting via defined interfaces,
but for SOA the architecture compromises of stateless, self-describing services that satisfy a
generic business use. Another difference is that RUP is use-case oriented and grounded in the
UML approach, but BPM compromises event-driven process models, thus SOA implementations
will emphasize in first stages BPM techniques such as workflow diagrams and BPEL
representations.

 DDyynnaammiiccss

EEnnaabblliinngg IInnffrraassttrruuccttuurree CCoonnttrroollss

II nn
tt aa

nn gg
ii bb

ll ee
ss

Collaboration &
Interaction for SOA

ο Cross-company
ο IT vendors
ο Users
ο JAD (Joint Application

Design) sessions

Management style & Culture
for SOA

ο SOA Best Practices
ο SOA Governance

Policies
ο SOA Metrics & Maturity

Measurement

Reflection & Learning for
SOA

ο Continuous refection
& governance

TT
aa nn

gg ii
bb ll

ee ss

Flexibility for SOA
ο Encapsulation &

Abstraction (Service
discovery,
conceptualization &
abstractions)

ο Meaningful and
standardized to business
(Business/IT alignment)

ο Stateless
ο Designed for contracting,

service matching, linking
and binding

ο Autonomous

Rapidity for SOA
ο Faster time to service

Short-term orientation,
Small-scale & Simplicity for SOA
They have not been addressed
directly in current literature.

Short-term orientation and small
scale development counteracts
enterprise integration principles,
but still need to be embraced in a
balanced way due to that fact of
rapid technological obsolescence.

Simplicity is an important agile
principle that needs to be more
exploited in SOA
implementations.

Evolutionary Technical
Architecture for SOA

ο Reusable components
ο Loose coupling
ο Interoperability (based

on WSDL and
application programming
interfaces/APIs)

ο Platform independence
ο SOA topology &

Enterprise service bus
ο Linked-open registries

(repositories)

Organization structure for SOA

ο Enterprise-wide
consolidation

ο Cross department process
streamlining

ο Migration of legacy
processes

Feedback & Continuous re-
adjustment for SOA

ο Extensive
prototyping

ο Continuous
improvement

Quality controls for SOA

ο Licensing
ο Provenance
ο Reliability
ο Sustainability
ο Security
ο Remove redundancy

Discipline in programming
for SOA

ο Service choreography
model

ο BPEL specifications
ο Enterprise

Integration & meta
data specifications

ο Service registry and
semantics

ο Service tests
ο Review of SLA for

semantic correctness

Minimal development
methods for SOA

ο SOAD
(Zimmermann et al.,
2004)

ο Service-oriented
Modelling
Framework (Bell,
2008)

ο Generic Governance
Model for SOA
(Niemann et al.,
2008)

Table 2: Facilitating Evolutionary Properties in Service-Based Information Systems Development Supported by CAS

Conclusion

Complex adaptive systems theory conceptualizes the phenomenon of emergence, self-
organization and spontaneous creation of order. Several generic complexity principles have been
suggested in literature, such as diversity, large number of agents, interconnectivity, interactions,
feedback, edge of chaos, etc. that refer to evolutionary characteristics. In this paper it is
suggested to conceptualize service-based information systems as a complex adaptive system and
in that way derive factors that would facilitate information system service evolution.

After surveying several elements related to service-based information system development, such
as specific characteristics of SOA as compared to component-based development, issues in
modeling SOA, as well as development approaches suggested in literature to govern service life
cycle and evolution, it is concluded that service-based information systems are different from
component-based systems. As implied by Zimmermann et al. (2004), although SOA put forth
reusable software architecture principles represented in information hiding, modularization, and
separation of concerns, it also embraces new concepts such as service choreography, service
repositories, and the service bus middleware in enterprise integration. Thus SOA relies on the
concept of brokering or registry of open services to become available for enterprises to search
and invoke (bind or link), as well as provide a middleware interface to integrate heterogeneous
components.

By mapping service-based information system development elements to CAS principles several
factors that would facilitate evolutionary properties of SOA have been derived. It is concluded
that in order to enable sustainable evolution of information system services licensing,
provenance, reliability and sustainability are paramount beside object-oriented and component-
based development principles that include reusability, loose coupling, inter-operability,
scalability and platform-independence. New programming discipline practices are also
concluded, such as service choreography model, BPEL specifications, meta-data specifications,
SLA specifications, service semantics and service tests. JAD and prototyping are also
appropriate for SOA development, BUT more attention should be paid to the architecture design
as implied by RUP, and also maintenance and governance process is of great importance, as
SOAs have more longevity and deployment element than simple information systems that are
small scale and short-term oriented.

It is suggested that the introduced framework guides system and IT architects, as well as
management teams with factors or strategies that will enhance service-based information system
evolution supported by CAS principles. These are preliminary findings and future work will
focus on a more detailed mapping of the different factors, as well as application on a real-case
study in order to evaluate the proposed framework and put forth metrics for SOA evolution
based on identified factors.

References

Abraham C., Junglas I., Willis M., 2008, Enabling an Agile Information Supply Chain in Service
Oriented Architectures with Web Services, AMCIS 2008 (American Conference on
Information Systems)

Alaa G., 2009, Derivation of Factors Facilitating Organizational Emergence based on Complex
Adaptive Systems & Social Autopoiesis Theories, Emergence: Complexity & Organization
Journal, Vol 11 No. 1, pp. 19-34

Anderson, P., 1999, “Complexity theory and organization science”, Organization Science, Vol.
10 No. 3, pp. 216-33

Andriani P., 2003, Evolutionary Dynamics of Industrial Clusters, in Mitleton-Kelly (ed.),
Complex Systems and Evolutionary Perspectives on Organisations: The Application of
Complexity Theory to Organizations, Elsevier, 2003

Baskerville R. et al., 2005, Extensible Architectures: The Strategic Value of Service-Oriented
Architecture in Banking, Proceedings of ECIS 2005 (European Conference on
Information Systems)

Bell, M., 2008, Service-Oriented Modeling: Service Analysis, Design, and Architecture, John
Wiley and Sons, New York

Benbya H. & McKelvey B., 2006, Toward a Complexity Theory of Information Systems
Development, Information Technology & People, Vol. 19 No. 1, 2006, pp. 12-34

Bitzer, S., Schumann, M., 2009, Mashups: An Approach to Overcoming the Business/IT Gap in
Service-Oriented Architectures, Proceedings of AMCIS 2009 (Americas Conference on
Information Systems)

Dooley, K. (1997), “A complex adaptive systems model of organization change”, Nonlinear
Dynamics, Psychology, & Life Science, Vol. 1 No. 1, pp. 69-97.Goldman, Steven. L., Roger
N. Nagel and Kenneth Preiss, 1995, Agile Competitors and Virtual Organizations: Strategies
for Enriching the Customer, New York: Van Nostrand Reinhold, 1995

Heylighen F., 2001, "The Science of Self-organization and Adaptivity", in: Knowledge
Management, Organizational Intelligence and Learning, and Complexity, in: The
Encyclopedia of Life Support Systems (EOLSS), Publishers Co. Ltd, pp. 253--280

Holland, J.H., 1996, "Hidden Order: How Adaptation Build Complexity", Basic Books, ISBN:
0201442302, 978-0201442304

Kant, I., 1970, Universal natural history and theory of the heavens. In: Kant: Cosmogony
(original: Allgemeine Naturgeschichte und Theorie des Himmels (1755)).

Kauffman, S.A., 1993, The Origins of Order, Oxford University Press, New York, NY
Keller K., 1996, Socio-technical systems and self-organization, ACM SIGOIS Bulletin Volume

17, Issue 1 (April 1996)
Küppers. G., 1999, Self-organisation - the emergence of order from local interactions to global

structures. University of Bielefeld- SEIN (Simulating Self-organizing Innovation Networks)
project, Germany, July 1999, http://www.uni-bielefeld.de/iwt/sein/paperno2.pdf

Lin et al., 2009, A Reference Architecture fpr Scientific Workflow management Systems and the
View SOA Solution, IEEE Transactions on Service Computing, Vol. 2, No. 1.

McKelvey, 1997, Quasi-natural Organization Science,” Organization Science, 8, 1997, 351–381.

 Mitleton-Kelly E., 2003, Ten Principles of Complexity and Enabling Infrastructures, in
Mitleton-Kelly (ed.), Complex Systems and Evolutionary Perspectives on Organisations: The
Application of Complexity Theory to Organizations, Elsevier, 2003

http://www.uni-bielefeld.de/iwt/sein/paperno2.pdf
http://www.billmckelvey.org/docs/QUASI-NATURAL%20ORGANIZATION%20SCIENCE,%20Organization%20Science%201997.pdf

Mohan C., 2002, Dynamic e-business: Trends in Webservices. In Buchmann et al. (2002), pp. 1-
5

Niemann M., Eckert J., Repp N., Steinmetz R., 2008, Towards a Generic Governance Model for
Service-Oriented Architectures, Proceedings of AMCIS 2008 (Americas Conference on
Information Systems)

Ravichandran T., Leong Y., Teo H., Oh L., 2007, Service-Oriented Architecture and
Organizational Integration: An Empirical Study of IT-Enabled Sustained Competitive
Advantage, Proceedings of ICIS 2007 (International Conference on Information Systems)

Ren M., Lyytinen K., 2008, Building Enterprise Architecture Agility and Sustenenace with SOA,
The Communications of the Association for Information Systems (CAIS), Volume 22,
Article 4, pp. 75-86, January 2008

Shabir N., Clarke C., 2009, A Resource List Management Tool for Undergraduate Students
Based on Linked Open Data Principles, Proceedings of the European Conference on
Technology Enhanced Learning (ECTEC 2009)

Stacey R., Griffin D. & Shaw P., 2000, Complexity and Management, FAD or Radical Challenge
to Systems Thinking?, Routledge

Webb C., Lettice F., 2005, Facilitating Learning & Sense-Making with Complexity Science
Principles in Organisations by Means of a Complexity Starter Kit, Proceedings of the
Complexity, Science and Society Conference, 11th-14th September, 2005, Centre for
Complexity Research, University of Liverpool, UK

Weske M., 2007, Business Process Management: Concepts, Languages, Architectures, Springer-
Verlag

Wulf V., 1996, The autopoietic turn in organization science and its relevance for CSCW, ACM
SIGOIS Bulletin Volume 17, Issue 1 (April 1996)

Zimmerman, O., Krogdahl, P, and C. Gee (2004) Elements of Service-Oriented Analysis and
Design: An interdisciplinary modeling approach for SOA projects,
www.ibm.com/devloperworks/library/ws-soad1/index.html

http://www.ibm.com/devloperworks/library/ws-soad1/index.html

