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Abstract. One of the challenges faced by network management systems
is the increasing need for consistent management of physical network
equipment. We propose a solution where equipment is modelled using
a dedicated Domain Specific Language (DSL) enriched with the power
of logic-based reasoning services. This enables us to define a rich layer
of semantics on top of the structural description of the devices. This
way, the configuration related constraints are expressed declaratively, in
a platform independent manner, and are managed in an integrated way
with the structural model. The information kept in the model can then
be used on runtime to give guidance to the system user.

1 Introduction

One of the challenges faced by Next Generation Operation Support Systems
(OSS) [1] is the increasing need for consistent management of physical network
equipment. In large companies the time consumed by maintaining thousands
of devices and finding solutions to possible problems is constantly on the rise.
State-of-the-art technologies enable vendor independent equipment type identifi-
cation and access to the attributes of the component types. Furthermore, current
solutions often provide the user with convenient graphical modelling of the phys-
ical elements structures, but are usually unable to provide consistent support to
the user, by answering questions that involve sophisticated configuration related
constraints.

In our approach, we propose a solution where equipment is modelled using
a dedicated domain specific language enriched with the power of logic-based
reasoning services. This enables us to define a rich layer of semantics on top
of the structural description of the devices. This way, the configuration related
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constraints are expressed declaratively, in a platform independent manner, and
are managed in an integrated way with the structural model. The information
kept in the model can then be used on runtime to give guidance to the system
user.

2 Problem description

Myriads of device types and their configurations can make user’s everyday work
a nightmare. For example, each time a card in some device is broken, the system
operator faces questions like, “what are the possible replacements for that card,
are some options better then others?” On the other hand, a system analyst
planning new services on a particular device wants to know what components
he can use with that device, if possible, from those available in the company’s
warehouse.

Similar questions may also arise while integrating manually maintained repos-
itories of physical network equipment. In such cases, automatic checking of de-
vice configuration correctness or even finding the exact device type using only
information about its configuration, would surely improve the integrity and cor-
rectness of existing data.

Let’s take an example of a usual situation in telecommunication companies
when one of the physical device cards is broken or not supported any longer and
requires replacement. Figure 1 presents an example configuration of the Cisco
7603 chassis. It contains two cards. The card in slot 1 is a supervisor card,
required by the device to work properly. In slot 2, a backup supervisor card
is inserted.

Fig. 1. Example instance of Cisco 7603 configuration in PDIDSL

Let’s suppose that the main supervisor card is broken and requires replace-
ment. The person responsible for this device receives a notification about the
problem and begins to resolve it. Current solutions of OSS systems require deep
knowledge about every sub-component of the physical device (what kind of cards
can be used as a replacement for a broken card, what kind of constraints a par-
ticular card has, etc.).
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Fig. 2. Cisco 7603 configuration in PDDSL

To limit the effort required to solve such problems, we designed a DSL that
describes the structure of the physical device and stores information about a
possible connection between physical device elements. In our example of a sim-
plified Cisco 7603 from Figure 2, we specify that it has three slots and that the
first slot is required (marked red in the diagram). The possible or required cards
are indicated in blue rectangles next to the respective slots. The description can
be enriched with the additional ontology axioms. One of the constraints that
occur, is that the Hot Swappable OSM card require a specific supervisor engine,
namely Supervisor engine 720 in the Cisco 7603 configuration.

As shown, there is clearly a need for tools providing advanced support helping
users make correct decisions, tools based on knowledge and semantics, able to
reason and bring meaningful answers for user questions. The problems to address
are much more broad than simply suggesting the replacements of a broken card:
1. Network planning - what components can I use with a given configuration

of a device to build my service?
2. Consistency checks - is my configuration valid?
3. Data quality - what is the exact type of device, given it’s configuration?
4. Explanations and guidance: Why the configuration is invalid? How can I fix

it?
Such tools, guiding and supporting users through tedious tasks by answer-

ing the questions mentioned, would generate substantial profit, and reduce the
number of potential errors in device configurations. It would also improve pro-
ductivity, and mitigate the time consumed studying the technical details of a
device’s documentation.

3 Integrating models and ontologies

To achieve these goals, we follow an approach proposed by our partner in the
MOST project, the University of Koblenz-Landau 3, based on the idea of in-
tegration of models and ontologies [2]. Modelling physical devices is a perfect
candidate to evaluate this idea, and for a reason. Firstly, a network of physical
3 http://isweb.uni-koblenz.de

3



devices can easily be described using a limited number of concepts that makes
it a subject of Physical Device Domain Specific Language (cf. section 4). On the
other hand, possible device configurations and connections build some kind of
knowledge base, which would be hard to express using structural models, but
are ideal for representing as an ontology.

Existing works that compare the ontological and metamodelling technology
spaces [3] reveal that hybrid approaches present significant advantages over tech-
nologies stemming purely from metamodelling space, such as OCL. In the scope
of Comarch 4 case study in the MOST project 5, our work goes toward ex-
tending the expressiveness of the domain specific language for the description
of the physical device structure. This is achieved through integration of Domain
Specific Languages with ontologies, and thus opening new spaces for modelling
structure and semantics together. The integrated models remain easy to edit,
process, and reasoned about using existing tools and approaches, being a struc-
tural and semantic model at the same time.

4 Prototype solution

A prototype implementation of a physical devices modelling tool was developed
using Eclipse Modelling Framework 6. The goal of the tool was to enable mod-
elling physical devices in a DSL and, at the same time, take advantage of formal
semantics and expressivity of OWL. In this early prototype, the integration of
the domains of models and ontologies was achieved by model transformations
specified in QVT Operational [4].

Fig. 3. Conceptual architecture of the prototype

As shown in Figure 3, the prototype consists of the following artefacts:

4 http://www.comarch.com
5 http://www.most-project.eu
6 http://www.eclipse.org/modeling/emf/
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Fig. 4. PDDSL metamodel excerpt

PDDSL The Physical Devices Domain Specific Language (PDDSL) enables
specification of possible configurations of device models. The language uses
concepts related to the structure of devices: Configuration, Slot, Card. Fig-
ure 2 gives an example of a model expressed in PDDSL. An excerpt of the
metamodel of PDDSL is given in Figure 4. The language has also a concrete
textual syntax which, for brevity, is not described in this document. Also, for
simplicity, we consider Configuration concept as the direct representation of
a physical device type, while in real scenario a device could have multiple
alternative configurations

PDIDSL The Physical Devices Instances Domain Specific Language (PDIDSL)
enables definitions of concrete instances of devices that conform to the
PDDSL specifications. An example of a PDIDSL model is given in Figure
1. As depicted in Figure 3 PDIDSL models conform to a metamodel which
is specified with PDDSL. However, since PDDSL is not a metamodelling
language we need an additional step, where some PDDSL model is mapped
to an Ecore metamodel. This transformation is not given here for the sake
of brievity. An excerpt of the metamodel of PDIDSL is given in Figure 5.

OWL We use OWL Manchester Syntax [5] to represent the OWL ontology.
Manchester Syntax was chosen because there already exists an Ecore meta-
model for it, and more importantly, generated OWL models can be serialized
into valid Manchester Syntax files without the need for another transforma-
tion (as in case of Ontology Data Model) using EMFText tool 7.

7 http://www.emftext.org
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Fig. 5. PDIDSL metamodel excerpt

OWL extensions Additional knowledge related to physical devices is defined
in OWL Manchester Syntax. Section 4.4 describes an example of such an
ontology.

Reasoner We use Pellet to perform reasoning in the prototype. Examples for
reasoning are given in Section 4.5.

PDDSL2OWL A QVT operational transformation transforms PDDSL models
into an OWL T-box. It is further described in Secion 4.1.

PDIDSL2OWL A QVT operational transformation transforms PDIDSL mod-
els into an OWL A-box. It is further described in Secion 4.2.

In the modeling domain the languages conceptually form the following hier-
archy:

M3 level Ecore metametamodel
M2 level PDDSL metamodel defining the language needed to describe possible

configurations of devices
M1 level PDDSL models describing the possible configurations of a device.

PDIDSL metamodel defining the language needed to describe concrete con-
figurations of devices

M0 level PDIDSL model represents concrete configurations

4.1 Transforming type model

The goal of the PDDSL2OWL transformation is to extract the OWL T-box from
the PDDSL models. The transformation maps the concepts of the PDDSL into
OWL classes and properties and, equally important, specifies formal semantics
of the concepts from PDDSL (e.g. formalization of configuration constraints).

Figure 6 shows an excerpt of the transformation where an object property
restriction is generated for the Configuration class. Each of the required slots
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-- configuration is mapped to subclass of Configuration

-- with equivalency axiom

mapping Configuration::toConfiguration() : OWL::Class {

equivalentClassesDescriptions += object Conjunction {

primaries += object ClassAtomic{clazz := ConfigurationClass};

-- condition on required cards

primaries += self.slots [cardRequired = true]

-> map toSlotRequiredRestriction();

-- Another restrictions (not listed here):

...

}

}

-- required cards - configuration has _some_ of the cards

-- specified in required slots

mapping Slot::toSlotRequiredRestriction() : OWL::NestedDescription {

description := object ObjectPropertySome {

feature := hasSlotProperty;

primary := object NestedDescription {

description := object Conjunction {

primaries += object ObjectPropertySome {

feature := hasCardProperty;

primary := object ClassAtomic{

clazz := self.cards

-> first().map toCardCategory()}

};

--slot number

primaries += object ObjectPropertyValue {

feature := idProperty;

_literal := object IntegerLiteral {

value := self.id.toInteger()

}

}

}

}

}

}

Fig. 6. Excerpt of T-box generation in PDDSL2OWL transformation
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in the Configuration is mapped to an ObjectPropertySome restriction on the
hasSlot property. The property is restricted to a conjunction of restrictions on
the hasCard property. Each of the restrictions in the conjunction specifies the
required card and value restriction on the id data property indicating the slot
number.

4.2 Transforming instance model

The PDIDSL2OWL transformation takes as input a model containing the in-
stances of physical devices expressed in PDIDSL and extracts the respective
OWL A-box. The transforation updates the ontology T-box produced by the
PDDSL2OWL transformation by adding individuals along with the respective
facts assertions. Figure 7 shows an excerpt from the transformation where an
instance of Configuration is transformed into an OWL individual. The type of
the individual is set to the corresponding OWL class, representing the configu-
ration, and the respective slots are related by the hasSlot property.

mapping Configuration::toConfigurationIndividual(): OWL::Individual {

iri := self.name;

types += object ClassAtomic {

clazz := classes[iri = self.metaClassName()]

-> asSequence() -> first();

};

self.hasSlot -> forEach (i) {

facts += object ObjectPropertyFact{

objectProperty := hasSlotProperty;

individual := i.map toSlotIndividual();

}

};

}

Fig. 7. Excerpt of A-box generation in PDIDSL2OWL transformation

4.3 Closing the world

The reasoning tasks performed on models, such as consistency checking, often
require non-monotonic reasoning [6] (e.g. Close World Assumption). In con-
trast, OWL adopts Open World Assumption. Therefore it is necessary to be
able to close the knowledge explicitly, e.g. by adding the respective axioms to
the ontology. which is done in our prototype automatically by PDIDSL2OWL
transformation.

One of the means of closing knowledge is to state that a class is equivalent
to an enumeration of all of its known individuals (domain closure). An update
mapping that closes the world of any class with known individuals, is specified
in Figure 8.
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mapping inout OWL::Class::updateClass() {

self.equivalentClassesDescriptions += object IndividualsAtomic {

individuals += PDmodel.objects() [metaClassName() = self.iri]

.resolve().oclAsType(OWL::Individual);

}

}

Fig. 8. Inout mapping closing an OWL class

4.4 Enriching with additional statements

The prototype allows for enriching the physical devices ontology with additional
axioms, not to limit the whole solution to the expressiveness of the DSLs. Cur-
rently these axioms are specified in a separate OWL file that references the
extracted ontology through a namespace declaration. As shown in Figure 3,
to perform the reasoning tasks both OWL files automatically generated from
models and manually written extension file are needed by the reasoner. The
files are kept separate in order to prevent overwriting manual changes after
rerunning the transformations. Figure 9 gives an example of an extension, by
specifying that HotSwappable OSM cards in Cisco7603 are only allowed with
Supervisor engine 720.

Namespace: pd <http://www.comarch.com/oss/pd.owl#>

Ontology: <http://www.comarch.com/oss/pd-ext.owl>

Class: pd:Cisco7603Configuration

SubClassOf:

((pd:containsCard some pd:Hot_Swappable_OSM)

and (pd:containsCard some pd:Supervisor_engine_720))

or (pd:containsCard only (not (pd:Hot_Swappable_OSM)))

Fig. 9. Additional axioms

4.5 Reasoning with the resulting ontology

The extracted ontology together with extensions are the artefacts that constitute
the input to the reasoner. The prototype allows for various types of reasoning, e.g.
classification and consistency checking. We use classification to detect the exact
type of a configuration individual, in order to support elaboration of partially
incomplete models, which is the often case in physical devices management.
Consistency checking was also successfully applied in order to detect and prevent
errors in devices configurations. In the remainder of this section we provide an
example of classification and consistency check in the physical devices ontology.
The examples differ in A-box axioms but use the same T-box. In Figure 10 the
basic concepts of the ontologies are defined: Configuration, Slot, Card classes.
A Configuration may contain multiple Slots (via the hasSlot property), while
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a Slot may contain only one Card (via the hasSlot property). Additionally, the
slots may be identified with an id property. Slot and Card classes are closed by
enumerating all of their individuals.

Class: Configuration

Class: Slot

EquivalentTo: {cisco1_slot_3, cisco1_slot_2, cisco1_slot_1}

Class: Card

EquivalentTo: {supervisor_2_2, HS_OSM_1, supervisor_720_1,

supervisor_720_3, H_OSM_2, supervisor_2_1,

supervisor_2_3, spa_1}

ObjectProperty: hasSlot

Domain: Configuration

Range: Slot

Characteristics: InverseFunctional

ObjectProperty: hasCard

Domain: Slot

Range: Card

Characteristics: InverseFunctional , Functional

DataProperty: id

Domain: Slot

Characteristics: Functional

Fig. 10. Basic concepts in the generated ontology

Figure 11 shows another part of the T-box where specific types of Cards
are defined. Each of the specific Card classes is closed by enumerating all of
its individuals. Additionally, the respective Card subclasses are declared disjoint
(not depicted in figure 11).

The class representing the allowed Cisco 7603 configuration is specified in
Figure 12. The class is generated as equivalent to an anonymous class that
brings together all of the restrictions generated from PDDSL model, i.e.:

1. Cardinality restriction on hasSlot property - the configuration has exactly
the number of slots specified in PDDSL.

2. Restriction on the required cards - the configuration has to contain cards
specified in the slots marked as required in PDDSL.

3. Restriction on the optional cards - the configuration cannot contain other
cards than those specified in PDDSL.

The mappings for the first and third constraint are given in Figure 6. E.g.
toSlotRequiredRestriction mapping generates restriction on the required
cards.
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Class: Supervisors

SubClassOf: Card

Class: Hot_Swappable_OSM

SubClassOf: Card

EquivalentTo: { HS_OSM_1 , H_OSM_2 }

Class: SPA_interface_processors

SubClassOf: Card

EquivalentTo: { spa_1 }

Class: Supervisor_engine_2

SubClassOf: Supervisors

EquivalentTo: {supervisor_2_1, supervisor_2_2, supervisor_2_3}

Class: Supervisor_engine_720

SubClassOf: Supervisors

EquivalentTo: {supervisor_720_1, supervisor_720_3}

Fig. 11. Card types in the generated ontology

Class: Cisco7603Configuration

EquivalentTo: Configuration and

# cardinality restriction on slots:

hasSlot exactly 3 Slot and

# required cards restriction:

(hasSlot some (hasCard some Supervisors and id value 1)) and

#optional card restriction:

(hasSlot only (((hasCard some Supervisors and id value 1)) or

((hasCard some Supervisors and id value 2) or

(hasCard some Hot_Swappable_OSM and id value 2)) or

((hasCard some Hot_Swappable_OSM and id value 3) or

(hasCard some SPA_interface_processors and id value 3))))

Fig. 12. Allowed Cisco 7603 configuration in the generated ontology
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Let us now consider the example of a configuration depicted in Figure 13.
The model contains a configuration with three slots. Each of the slots contains a
card. The model does not specify the specific type of the configuration (cisco1
is an instance of the generic class Configuration). As a consequence, it is not
clear what is the specific type of the device.

Fig. 13. Example instance of configuration in PDIDSL

In the generated ontology A-box, this model is represented by the set of
individuals, specified in Figure 14. The A-box excerpts in this section omit the
declarations of each card individuals for the sake of brevity, since all of them are
listed in the EquivalentTo axioms of the respective classes in Figure 11.

Using the definitions from the T-box the cisco1 individual can be classified
as Cisco7603Configuration (see Figure 12 for the relevant constraints). Then,
this inference could be used to provide guidance to the user of PDIDSL, i.e.
suggest to change the type of cisco1 to Cisco7603Configuration.

Let us now consider an example where we use consistency check-
ing to prevent illegal configurations. Figure 15 depicts an example of
Cisco7603Configuration. The configuration is invalid since the required
Supervisors card is missing in slot 1.

The A-box axioms generated from this model are listed in Figure 16. Given
the restrictions specified in Figure 12, the reasoner can detect the inconsistency
(i.e the required card restriction does not hold). This fact then could be reported
to the user by marking the inconsistent elements in the model and providing ex-
planation of the reason of inconsistency. Moreover, employing more sophisticated
reasoning services, the user could also get some guidance in form of suggestions
what to change in the model in order to fix it.

5 Related Work

In [7], a transformation from UML+OCL to Alloy is proposed. The approach
shows how Alloy can be adopted for consistency checking of UML models. F-

12



Individual: cisco1

Types: Configuration

Facts: hasSlot slot_1, hasSlot cslot_2, hasSlot slot_3

Individual: slot_1

Types: Slot

Facts: hasCard supervisor_2_1, id 1

Individual: slot_2

Types: Slot

Facts: hasCard supervisor_2_3, id 2

Individual: slot_3

Types: Slot

Facts: hasCard spa_1, id 3

Fig. 14. Individuals representing an instance of device configuration

Fig. 15. Example of inconsistent instance of configuration in PDIDSL

Logic is a further prominent rule language that combines logical formulas with
object oriented and frame-based description features. Different works (e.g. [8,
9]) have explored the usage of F-Logic to describe configurations of devices or
the semantics of MOF models. In general, the above approaches only provide
the expressiveness of MOF+OCL because its conforming models are directly
transformed into a knowledge representation like Alloy or F-Logic. Our approach
provides also a transformation from domain models to OWL ontologies but in
addition allows enriching the OWL ontology by additional statements. Thus we
can enhance the expressiveness of constraints to be checked.

[10] and [11] present combined approaches. In [11] a methodology to com-
bine DSLs and ontology languages using metamodel integration is presented.
Result is an integrated metamodel which allows building domain models and
simultaneously annotating model elements with OWL statements, which are di-
rectly embedded into the model. In [10] a technical space is presented which
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Individual: cisco1

Types: Cisco7603Configuration

Facts: hasSlot slot_1, hasSlot slot_2, hasSlot slot_3

Individual: slot_1

Types: Slot

Facts: hasCard HS_OSM_1, id 1

Individual: slot_2

Types: Slot

Facts: hasCard supervisor_2_3, id 2

Individual: slot_3

Types: Slot

Facts: hasCard spa_1, id 3

Fig. 16. Individuals representing an inconsistent instance of device configuration

allows developing EMOF based metamodels with integrated constraints using
the ontology language OWL2.

[12] explains characteristics of configurations with description logics (DLs)
that make DLs well suited for defining configurations. Our approach and the pro-
totype comply some of the defined requirements of a configuration application.
For instance, we provide based on the exported ontology inferencing and knowl-
edge completion, explanations, inconsistency detection, error handling and some
more features. Furthermore we support object-oriented modeling and extensible
schemas, which is possible by using and extending the PDDSL metamodels. In
[12] the representation of rules is desired, which leads us to the idea to improve
our approach and prototype (e.g. taking benefits of SWRL).

6 Summary and Outlook

Even though ontologies in computer science have been used for a long time,
integration with domain specific languages is a early innovation in the field
of data modelling. The problems described and appearing in everyday tasks
are of an abstract nature and cannot easily be solved using existing tools and
approaches. Introducing integrated models containing structure and semantic
information will surely be a great advantage, and will lead to the improvement of
existing systems, making them more user-friendly. The presented usage scenario
serves as a proof of concept for ontology enriched prmodelling. Initial results
have already proved its usefulness.

However, the prototype implementation presented in this paper does not
fully take advantage of the integrated approach. The ontology is fully extracted
by the means of model transformation, and only then it can be extended with
additional constraints. This means that models and additional axioms have to be
managed separately. In our future work in the MOST project, we will investigate
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how we can use the language integration approach to mitigate this shortcoming.
The idea is to take profit from both approaches described in Section 5, and to
allow an integrated modelling of additional OWL axioms within PDDSL models.

This would not only solve the problem of effective management of the models,
but also improve the understanding of the relationship between the concepts
from the two worlds. In general, it is assumed that large majority of models
can be described using pure PDDSL constructs, while only limited number of
uncommon cases require use of OWL extensions, thus OWL expertise would be
required only for some of the users. When this extensions come into play in
the integrated modelling could provide such users with understanding about the
OWL meaning of PDDSL concepts without knowing the details of PDDSL2OWL
transformations.
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