
Combining ontology-enriched Domain-Specific
Languages?

Tobias Walter1,2 and Jürgen Ebert1

1 Institute for Software Technology, University of Koblenz-Landau
Universitätsstrasse 1, Koblenz 56070, Germany

{ebert, walter}@uni-koblenz.de
2 ISWeb — Information Systems and Semantic Web,

Institute for Computer Science, University of Koblenz-Landau
Universitätsstrasse 1, Koblenz 56070, Germany

Abstract. Domain-specific languages (DSLs) are high-level and should
provide abstractions and notations for a better understanding and easier
modeling of applications in a special domain. It is essential to combine
different DSLs while modeling a complete system. Hence the question
arises: How can we combine DSLs and in addition integrate their seman-
tics and constraints? Based on a case study from an industrial partner,
in this paper we first show how DSLs can be enriched by the ontology
language OWL to define additional constraints and semantics within the
DSL. Then we give an answer of how to combine these ontology-enriched
DSLs and present a solution of integrating constraints and semantics of
several languages.

1 Introduction

Today domain-specific languages (DSLs) are used to model and develop systems
of different application domains. Such languages are high-level and should pro-
vide abstractions and notations for better understanding and easier modeling of
applications of a special domain. A variety of different domain-specific languages
and fragmentations of their models may be used to develop one large software
system. Each domain-specific language focuses on different problem domains and
as far as possible on automatic code generation [1].

Besides different domain-specific modeling concepts there are different rules,
constraints and semantics. These rules and semantics have to be defined, too,
to provide different benefits like error prevention, guidance and consistency [1].
Here ontology languages come into play, because they support the definition of
constraints, rules and semantics by describing them by logic based concepts.

Description logics is a family of logics for concept definitions and are used to
describe domain knowledge and allow specifying concepts by rich, precise logical
definitions [2]. OWL2, the Web Ontology Language, is a W3C recommendation
with a very comprehensive set of constructs for concept definitions [3]. Advan-
tages of OWL2 are the support of other (domain-specific) languages by enabling
? This work is supported by EU STReP-216691 MOST.

validation or automated consistency checking. Furthermore ontology languages
provide a better support for reasoning than MOF-based languages [4], like OCL.

In this paper we use structural domain-specific languages, which are widely
used in domain modeling and are instantiable. It might be useful to combine
these structural domain-specific languages and ontology languages at the meta-
model layer [5] to allow usage of ontology languages together with DSLs. Having
this integration it is possible for the domain modeler to define different semantics
and rules at the model layer which have to be fulfilled at the instance layer.

It is essential to combine different DSLs while modeling a complete system,
for example to allow multi-viewpoint modeling or to check if the models defined
by using overlaping DSLs still are consistent. In this paper we want to show how
the semantics and constraints of several languages can be combined.

In this paper first we show how DSLs can be integrated with ontology lan-
guages to enrich their exprissiveness. The main contribution of this paper is to
consider already ontology-enriched DSLs with integrated constraints and seman-
tics and to combine these languages. In [5] we have proposed different metamodel
transformations that can be used for language integration. Now we reconsider
these transformations with strong regard to the constraints and semantics of the
languages that have to be handled by the transformation. The task is to define
the OWL-constraint part of the transformation in such a way that the resulting
constraints are compatible with OWL semantics.

Generally, our approach should be useable for integrating several domain-
specific languages and their models and in addition the combination of con-
straints and semantics the domain models contain, while the constraints could
be expressed by e.g. OCL or other constraint languages.

In section 2 of this paper we start with two different scenarios. The first
scenario considers the integration of DSLs and the ontology language OWL2
at the metamodel level. The second scenario considers the integration of two
ontology-enriched DSLs. Section 3 presents all languages used in this paper and
simultaneously provides a solution for the first scenario. Afterwards, section 4
considers the second scenario and presents a solution of integrating DSLs at the
metamodel layer and its semantics at the model layer. Finally, we present some
related work and give a conclusion.

2 Scenario

Comarch3, a polish IT company, specialized in software for telecommunica-
tion providers, uses different model-driven methods for software development
where different kinds of domain-specific languages (DSL) are deployed during
the modeling process. One of the languages Comarch uses is the Business Enti-
ties Domain-Specific Language (BEDSL). BEDSL is platform independent and
is used to model different business entities in the scope of the operation support
system that Comarch provides. A second language Comarch uses is the Physi-
cal Device Domain-Specific Language (PDDSL). The language provides concepts

3 http://www.comarch.com

of the domain of network devices, e.g. Chassis, Slot, Card or Port. In general
PDDSL defines the structure of physical network devices. Both languages, their
abstract syntax and examples in concrete syntax, are presented in section 3.2.

In the following we consider two different scenarios, schematically depicted
in figure 1. The first scenario deals with integrating ontology languages and one
of the two Comarch DSLs resulting in a new more expressive language. Us-
ing this we are able to create domain models and to define several constraints
within the domain models. An approach for handling this scenario was presented
in [5], its solution for BEDSL and PDDSL is given in section 3.2. The second
scenario is about the integration of two different DSLs which are already en-
riched by an ontology language. Here we consider the enriched BEDSL+OWL
and PDDSL+OWL and already existing domain models which conform to these
languages. An approach solving this scenario is presented in section 4.

BEDSL OWL

BEDSL+OWL

PDDSL OWL

PDDSL+OWL

BEDSL+PDDSL+OWL

S
cenario 1

S
cenario 2

integration

integration integration

Fig. 1. Overview and dependencies of scenarios considered in this paper

2.1 Integration of DSLs and Ontology Languages.

Studying the Comarch BEDSL and PDDSL presented in section 3.2 we ascer-
tain that the languages are very simple to use but therefore do not provide
much expressiveness. For instance, BEDSL is only focusing on business objects
represented by entities and their attributes. Thus it makes sense to allow an-
notations of model elements which are defined by simple OWL statements. For
example domain modelers may want to annotate model elements with very sim-
ple OWL text to define additional constraints and semantic annotations, if they
feel that the language is not expressive enough. Equally, PDDSL is not able to
define restrictions or special configurations of physical devices. For example it
is not possible to describe with PDDSL that a device is a Cisco7603 Router
if and only if it has a configuration with exactly three slots in which specific
cards are plugged in. Here again ontologies can be used and integrated within
PDDSL. Thus more complex concepts like the one of the Cisco7603 router can
be described.

In general it makes sense to integrate the DSLs and an ontology language
to provide advantages like constraint definition, formal semantics and reasoning.
In this scenario the question arises how a metamodel of a DSL and the one of
an ontology language can be integrated. We gave a first answer in [5]. There we

provide different transformations for integrating metamodels, which mainly con-
sider the relation between two classes/concepts of the two different metamodels
that are to be combined. The combination for example could be the merge of two
metaclasses, the creation of an inheritance relationship between them or only the
creation of an metaassociation. Thus we are able to create domain models with
model elements that can be annotated with simple OWL text. The adoption of
such an integration is presented in section 3.2.

Thus we realize our intention that a designer should use the language he is
familiar with as much as he can. If he recognizes that it is not expressive enough
he is able to use additional annotations. Furthermore a change of the existing
infrastructure is not necessary.

2.2 Merge of ontology-enriched DSLs.

An advantage of BEDSL is that there exists support for storing BEDSL models in
relational databases. Furthermore Comarch aims also to store models of physical
network devices in relational databases. Thus, it makes sense to integrate both
languages, the BEDSL with its capabilities for databases and the PDDSL with
its features for describing network devices.

During the integration existing semantics and constraints of each separate
domain model are also to be integrated. In most cases they overlap or depend
on each other. Here inconsistencies can occur, and existing semantics can be
changed and thus can lead to incorrect domain models.

Thus, in this scenario the question arises how domain models with additional,
embedded formal constraints and semantics can be merged. In section 4 we
present a first combination approach where the integration of models plus its
semantics and constraints is considered in the context of the new integrated
metamodel which contains a BEDSL-, a PDDSL- and an OWL-part.

3 Integration of DSLs and Ontology Languages

In this section we want to present three different languages. In section 3.1 we
present an example of using the axiom-based ontology language OWL2. A de-
tailed specification of OWL2 can be found in [3]. In section 3.2 we present the in-
tegrated metamodel of the Business Entity Domain-Specific Language (BEDSL)
extended by OWL2. Furthermore we show in section how the Physical Device
Domain-Specific Language (PDDSL) is extended by the OWL2 metamodel. For
all metamodels we also give an example in concrete syntax.

3.1 OWL2

In general description logics based ontology languages are used to define sets of
concepts that describe domain knowledge and allow specifying classes by rich,
precise logical definitions. Among different ontology languages, we use the W3C
standard OWL2 in this paper. OWL actually stands for a family of languages
with increasing expressiveness. OWL2, the current draft, is more expressive and

still allows for sound and complete reasoning that is decidable as well as prag-
matically efficient.

The difference between OWL and class-based modeling languages like UML
class diagrams is its capability to describe classes in many different ways and to
handle incomplete knowledge. These OWL features increase the expressiveness
of the metamodeling language, making OWL2 a suitable language to formally
define DSL models. Therefore, our intention is to integrate OWL2 with the DSL
such that domain models with additional, embedded constraints can be defined.

OWL2 is axiom-based and thus provides different constructs to restrict
classes or properties. The three important kinds of axioms are class axioms,
object property axioms and data property axioms. A detailed specification of
the ontology language OWL2 and its axioms is presented in [3].

Using a concrete syntax in Manchester Style [6], we only give an ex-
ample of using the OWL2 language in figure 2. Here we first define
the classes Device, Cisco7603 a subclass of Device, Configuration and
Configuration7603, a subclass of Configuration. Further, we define the
object property hasConfiguration with its domain Device and its range
Configuration. At last, using the SubClassOf axiom, we state, that a
Cisco7603 has exactly one Configuration7603.

Class : Device

Class : Cisco7603
SubClassOf :

Device ,
hasConf igurat ion exac t l y 1 Conf igurat ion7603

Class : Conf igurat ion

Class : Conf igurat ion7603
SubClassOf :

Conf igurat ion

ObjectProperty : hasConf igurat ion
Domain :

Device
Range :

Conf igurat ion

Fig. 2. Example of using the OWL2 metamodel

3.2 DSL Metamodels integrated with OWL2

In [5] we presented a way of how to extend domain-specific languages by on-
tologies. The general idea was to integrate the metamodels of a DSL and the
metamodel of an ontology language like OWL2. Hence we were able to adopt
OWL class axioms on classes and different OWL property restrictions on asso-
ciations at the model layer (M1 layer).

In this section we want to describe two integrated metamodels. The meta-
models come from our project partner Comarch and are precisely presented in [7].
In the following both metamodels are separately integrated with the metamodel

of the ontology language OWL2. Thus using them we are able to define DSL
models with embedded constraints and formal semantics defined using OWL2
statements.

Business Entities Domain-Specific Language. The Business Entities
Domain-Specific Language (BEDSL) is a domain-specific language intended to
model business entities. BEDSL is platform independent, abstracting from any
specific technology, focusing on representing business objects, like entities, their
attributes and relations. Thus it provides a good basis to save such domain
models in relational databases.

Figure 3 depicts an example in concrete syntax of using the enriched BEDSL.
In such a diagram all business entities of Cisco devices and in our case its spe-
cialization Cisco7603 can be defined. A Cisco device can contain CiscoSlots
and CiscoCards. In the example we have three specializations of Cisco cards,
namely HotSwappable card, SPAInterface card and Supervisor card.

The technical specification of a Cisco device requires that a Cisco has at
least a Supervisor card and has exactly 3 slots. These requirements are defined
in the annotation (1). Furthermore we define that if and only if a Cisco device
contains any Card then of course it contains a CiscoSlot (2).

Cisco

Cisco7603

CiscoCard

HotSwappable
SubClassOf:

(containsCard some Supervisor)

and (containsSlot some CiscoSlot)

Cisco and containsSlot some CiscoSlot

 EquivalentTo:

Cisco and containsCard some CiscoCard

(1)

(2)

CiscoSlot

SPAInterface

Supervisor

containsSlot

containsCardhasSupertype

hasSupertype

Fig. 3. Example of using the enriched BEDSL

Figure 4 presents the metamodel of BEDSL. Here we first have a Model
which is a container for entities. The purpose of an Entity is to col-
lect a set of attributes. Attributes can be either a SimpleAttribute or a
ReferenceAttribute. Simple attributes have a Datatype which defines the type
of values of the attribute. An Enumeration is a specific data type which defines
all values it can contain. Reference attributes are responsible for the connection
of two entities.

Furthermore the BEDSL language is integrated with the ontology language
OWL2 using the approach defined in [5]. Entity is a specialization of OWL
Class. Thus it is possible to adopt several OWL2 class axioms on entities. The
relations between entities and its attributes are extended by separate classes.
The class ReferenceProperty connects Entity with ReferenceAttribute and
simultaneously inherits from OWL ObjectProperty. Analogously we extend the

relation between Entity and SimpleAttribute by the class SimpleProperty
which inherits from OWL DataProperty. Thus we are able to adopt different
OWL object property and data property axioms on relations between entities
and its attributes. In the following we call the enriched language BEDSL+OWL.

Fig. 4. Integrated Metamodel of the Business Entities Domain-Specific Language
(BEDSL+OWL)

Physical Device Domain-Specific Language. To describe possible connec-
tions between physical device elements the Physical Device Domain-Specific Lan-
guage (PDDSL) is used.

Figure 5 depicts an example in concrete syntax of using the enriched
PDDSL. Here in general a Cisco7603 with its possible configurations is mod-
eled. Using simple OWL annotations we define that Cisco7603 is a subclass of
Cisco (1), Configuration7603 is a subclass of CiscoConfiguration (2) and
HotSwappable, SPAInterface and Supervisor are subclasses of CiscoCard (3).
Furthermore we define that each Cisco device has some CiscoConfiguration (4)
and each Cisco7603 only has exactly one Configuration7603 (5). Furthermore
by defining a global constraint, we state that if and only if a Configuration7603
contains a HotSwappable card it also has a SPAInterface card (6).

The metamodel of this language is presented in figure 6. PDDSL describes
physical devices and thus provides concepts like Shelfs, Chassis, Slots and
Cards. Shelfs and Chassis can be connected with other Cards through Slots.
Concrete configurations (a valid set of Slots with compatible Cards) are encap-
sulated in a Configuration. Every Shelf or Chassis contains many possible
configurations.

Analogously to the integration of BEDSL and OWL2 we have integrated an
ontology language with PDDSL. Here, Element inherits from OWL Class. Thus
it is possible to adopt several OWL class axioms on elements of a physical device.

hasConfig

EquivalentTo: hasConfig

exactly 1 Configuration7603

Cisco and hasConfig some (CiscoConfiguration and hasSlot some (CiscoSlot and hasCard some HotSwappable))

 EquivalentTo:

Cisco and hasConfig some (CiscoConfiguration and hasSlot some (CiscoSlot and hasCard some SPAInterface))

SubClassOf: hasConfig some

CiscoConfiguration

SubClassOf: Cisco

(5)

(6)

(3)
(1)

(2)

hasSlot hasCard

SubClassOf:

CiscoCard

SubClassOf:

CiscoConfiguration

(4)

Cisco CiscoConfiguration CiscoSlot CiscoCard

Cisco7603 Configuration7603 HotSwappable

SPAInterface

Supervisor

Fig. 5. Cisco Device Domain Model using the enriched PDDSL

Furthermore we materialize the relation between a SlotContainer and its con-
figurations by the separate class ConfigurationProperty, the relation between
Configuration and Slot by the separate class SlotProperty and the relation
between Slot and Card by the separate class CardProperty. All property classes
inherit from OWL object property. Hence it is allowed to adopt different OWL
object property axioms on these relations. In the following we call the enriched
language PDDSL+OWL.

Fig. 6. Integrated Metamodel of the Physical Device Domain-Specific Language
(PDDSL+OWL)

4 Merge of ontology-enriched DSLs

In this section we want to consider how the metamodels of BEDSL+OWL and
PDDSL+OWL can be integrated and how the constraints behave after the in-
tegration. At first we present the general approach of combining models and
additional constraints. Afterwards we give an example and concentrate on two
integration transformations, namely the Merge Transformation and the Special-
ization Transformation, presented in [5] and precisely described in section 4.4.
Here we first look at the definition of the transformation at the M2 layer, and
later we will examine how domain models and their constraints at the M1 layer,
which are part of the domain models, change after applying the transformation
on them.

4.1 General Approach

If two metamodels are combined, the integration transformations have to con-
sider the different semantics of the two languages. Model elements of two different
languages can only be combined, if the result conforms to the already existing
semantics of the two different languages.

To present an approach for solving the problem of merging semantic anno-
tations of model elements and constraints, we have to consider the integration
transformations on two different layers. First the transformation is defined at
the M2-layer where it defines which different classes of the different metamodels
are to be connected (e.g. merged).

Then we have to define at the domain model layer (M1-layer) which model
elements (instances of concepts in the metamodels) are considered by the trans-
formation (e.g. some of them can be merged). Here the domain knowledge of
a DSL expert is important, which leads to intensional semantics of concepts at
the M1-layer. These semantics later are represented by description logics axioms
and are used to decide which concepts are transformed. The result of the exe-
cution of the transformation at the M2-layer is an integrated metamodel and a
corresponding integration of the models.

The result of the execution of the transformation at the M1-layer is a modi-
fied abstract syntax graph of the domain model. This new abstract syntax graph
describes how the considered instances are connected corresponding to the ap-
plied transformation. It further must define how the abstract syntax parts of the
annotations and constraints are combined. This combination depends mainly on
the transformation and the kind of annotation (e.g. on the type of axiom used
in an annotation of a model element).

Considering the scenario of integrating BEDSL+OWL and PDDSL+OWL,
two model elements, both annotated with a constraint, that are selected by
a domain expert to be merged to one single element have to fulfill both con-
straints. In fact, the merged element has to keep the constraints given for the
origin BEDSL+OWL model and it has to keep the constraints for the origin
PDDSL+OWL model.

4.2 Integration Transformations

In the following we present two transformations that are used to combine dif-
ferent metamodels. The transformations themselves are defined at the M2 layer.
Furthermore we also depict how the instances at the M1 layer are changed and
define which instances at the M1 layer are considered by the transformation by
stating a pre-condition defined by OWL axioms.

Merge Transformation. Figure 7 depicts the merge transformation on the M2
and M1 layer. Generally the two meta-concepts MA and MB are identified to be
merged and are replaced by the meta-concept MC at the M2 layer. In addition the
model elements at the M1 layer, instances of the corresponding meta-concepts
at the M2 layer and visualized by a domain-specific concrete syntax, can be

merged, too. Furthermore, the concrete syntax model at the M1 layer acts as
new structural language which is able to be instantiated. Its instances lie at the
M0 layer (not depicted in figure 7).

instanceOf

B

transform

CA

M
2

(M
e

ta
-

M
o

d
e

l)

M
1

(c
o

n
c
re

te

in
s
ta

n
c
e

s
)

transform

Fig. 7. Merge Transformation

Based on intensional knowledge of domain experts we can assume that in-
stances A and B of MA and MB are identically if they have equal names (e.g. the
name attribute of the instance is equal). Furthermore if A and B are identically
we can assume that they have the same potential instances at the M0 layer.

We can describe this intensional knowledge by the following semantic de-
scription, which further acts as a pre-condition of the merge transformation:

Class : A EquivalentWith : B

The merge transformation can be applied on the M2 layer and in addition on
all identical instances, if the pre-condition holds for at least two instances A and
B. Constraints, which are annotated at the instances A and B are combined and
transformed to one single constraint of the target instance C. The new constraint
depends on the kind of axioms annotated at A and B and the pre-condition (cf.
section 4.3). Instances of type MA and MB which cannot be matched to identical
ones are transferred together with their constraints without any change. Their
new type is MC.

Specialization Transformation. Figure 8 depicts the specialization transfor-
mation on the M2 and M1 layer. Generally the two meta-concepts MA and MB are
identified to be connected by a specialization relationship. In addition the model
elements A and B at the M1 layer, instances of the corresponding meta-concepts
at the M2 layer can be transformed too.

instanceOf

B

transform

A

M
2

(M
e

ta
-

M
o

d
e

l)

M
1

(c
o

n
c
re

te

in
s
ta

n
c
e

s
)

transform A B

Fig. 8. Specialization Transformation

Based on intensional knowledge of domain experts we assume that an in-
stance A of MA is a super-concept of an instance B of MB, if the name of A is prefix
of the name of B (like Cisco of Cisco7603). Furthermore if A is a super-concept
of B we assume that the set of instances of B is a subset of instances of A at the
M0 layer.

As a consequence we can describe this intensional domain knowledge by
the following semantic description, which further acts as a pre-condition of the
specialization transformation:

Class : B SubClassOf : A

The specialization transformation can be applied on the M2 layer and in
addition on all instances A and B, which fulfill the pre-condition. Constraints,
which are annotated at the instance A are combined by the transformation with
the ones of B. Instances of MA and MB which do not match the sub-concept
condition are again together with its constraints transferred without any changes.

4.3 OWL Class Axioms

In the following we want to consider the two above presented integration transfor-
mations and consider the constraints and additional semantics, which are defined
by annotations. In fact using OWL as a constraint language these constraints
are OWL class axioms. Thus in the following we will consider the combination
of class axioms and transformations.

– The SubClassOf axiom allows to state that each instance of a subclass is also
an instance of the corresponding superclass. Table 1 depicts the resulting
constraints after one transformation is applied on two M1 concepts A and
B and its corresponding SubClassOf axiom. Here the pre-condition of the
transformation is taken into account.

Before any Transformation After Merge Transformation After Specialization Trans-
formation

Class: A SubClassOf:
ClassExpressionA

Class: B SubClassOf:
ClassExpressionB

Class: C
SubClassOf: (ClassExpressionA
and ClassExpressionB)

Class: A SubClassOf:
ClassExpressionA

Class: B SubClassOf: A
and (ClassExpressionA and
ClassExpressionB)

Table 1. Combination of SubClassOf Axioms

– The EquivalentClasses axiom allows to state that several class expressions
are equivalent to each other. Table 2 depicts the resulting constraints after
one transformation is applied on two M1 concepts A and B and its correspond-
ing EquivalentClasses axiom. Here the pre-condition of the transformation
is taken into account.

– The DisjointClasses axiom allows one to state that several class expres-
sions are pairwise disjoint. Table 3 depicts the resulting constraints after one
transformation is applied on two M1 concepts A and B and its corresponding

Before any Transformation After Merge Transformation After Specialization Trans-
formation

Class: A EquivalentTo:
ClassExpressionA

Class: B EquivalentTo:
ClassExpressionB

Class: C EquivalentTo:
ClassExpressionA

Class: A EquivalentTo:
ClassExpressionA

Class: B EquivalentTo:
ClassExpressionB
SubClassOf: A

Table 2. Combination of EquivalentClasses Axioms

DisjointClasses axiom. Here the pre-condition of the transformation is taken
into account.

Before any Transformation Merge Transformation Specialization Transforma-
tion

Class: A DisjointWith:
ClassExpressionA

Class: B DisjointWith:
ClassExpressionB

Class: C DisjointWith:
ClassExpressionA,
ClassExpressionB

Class: A DisjointWith:
ClassExpressionA

Class: B DisjointWith:
ClassExpressionB
SubClassOf: A

Table 3. Combination of DisjointClasses Axioms

– The DisjointUnion axiom allows to define a class as a disjoint union of
several class expressions and thus to express covering constraints. Table 4
depicts the resulting constraints after one transformation is applied on two
M1 concepts A and B and its corresponding DisjointUnion axiom. Here the
pre-condition of the transformation is taken into account.

Before any Transformation After Merge Transformation After Specialization Trans-
formation

Class: A DisjointUnionOf:
ClassExpressionA

Class: B DisjointUnionOf:
ClassExpressionB

Class: C DisjointUnion:
ClassExpressionA
DisjointUnion:
ClassExpressionB

Class: A DisjointUnionOf:
ClassExpressionA

Class: B DisjointUnionOf:
ClassExpressionB
SubClassOf: A

Table 4. Combination of DisjointUnion Axioms

If after a transformation two axioms of different types are connected to one
merged or specialized model element, they are not combined in our approach. For
example in table 5, after applying the merge transformation the EquivalentWith-
and the SubClassOf axiom are not combined. Although the transformed model
element C (resp. A and B) at the M1-layer fulfills both axioms/constraints because
the axiom-based OWL2 ontology, which later could be extracted from the merged
domain model, provides a conjunction of all axioms.

Before any Transformation After Merge Transformation After Specialization Trans-
formation

Class: A SubClassOf:
ClassExpressionA

Class: B EquivalentTo:
ClassExpressionB

Class: C SubClassOf:
ClassExpressionA
EquivalentTo: ClassExpressionB

Class: A SubClassOf:
ClassExpressionA

Class: B EquivalentTo:
ClassExpressionB

Table 5. Combination of different Axioms

4.4 Example: Merge Transformation

In the following we consider the merge transformation. At first we present its
definition at the M2 layer. Afterwards we give an idea of how to use it by
considering the domain models presented in section 3.2.

Transformation at the M2 layer. As presented in section 3.2, BEDSL+OWL
provides the concept Entity and PDDSL+OWL provides the concept Element.
Both concepts can be identified to be merged, because to apply the merge trans-
formation we require that some instance of Entity is identical with some in-
stance of Element. As later shown, this will be the Cisco element at the M1
layer. Figure 9 depicts an instance of the Merge Transformation on the M2 layer.
Result of the transformation is the new class EntityElement, which merges the
single concepts of Element and Entity. All OWL constructs which are connected
with Element and Entity at the M2 layer are combined by the transformation
as well.

transform

M
2

(M
e

ta
-

M
o

d
e

l)

Fig. 9. Merge Transformation at the M2-layer

Transformation at the M1 layer. After presenting the merge transformation
at the M2 layer we show in the following how it is adopted on the M1 layer. In
the left side of figure 10 we have excerpts of two domain models conforming
to the BEDSL+OWL and PDDSL+OWL metamodel. Both models contain the
concept Cisco and we assume that these concepts are equivalent. Thus the pre-
condition axiom for the merge transformation is fulfilled and we can merge both
to one single concept Cisco, which now is instance of EntityElement.

Because both Cisco concepts in the domain models on the left are restricted
by constraints, these constraints have to be considered by the transformation,
too. In the example the transformation at the M1 layer has to identify if the two
concepts to be merged both are annotated by a SubClassOf axiom. If so, the
transformation has to combine the two annotations automatically. In the exam-
ple in figure 10 the class expression (containsCard some Supervisor) and
(containsSlot some CiscoSlot) and the class expression hasConfig some

CiscoConfiguration are combined by using an and-operator. After the trans-
formation a valid Cisco still has to contain a Supervisor card and it still has
to be connected to at least one CiscoConfiguration.

Besides the constraints annotated directly at the Cisco model elements there
exists one global constraint in each of the domain models (not depicted in figure
10). These constraints are not merged because in our approach only the ones
with equal class expressions are merged. In fact, this is not the case here and
thus the global constraints are only transferred independently and without any
change to the integrated model.

SubClassOf:

hasConfig some

CiscoConfiguration

CiscoCisco

SubClassOf:

(containsCard some Supervisor)

and (containsSlot some CiscoSlot)

Cisco

SubClassOf:

((containsCard some Supervisor)

and (containsSlot some CiscoSlot))

and (hasConfig min 1 CiscoConfiguration)

PDDSL + OWL

Model

BEDSL + OWL

Model

BEDSL + PDDSL + OWL

Model (Integrated Model)

tra
n

s
fo

rm

M
1

(c
o

n
c
re

te
 i
n

s
ta

n
c
e

s
)

Fig. 10. Merge of the M1-concept Cisco presented in conrete syntax

5 Related Work
The approach presented in [8] defines references between elements of different
domain-specific models. References are modeled explicitly and connect elements
with same names. In our example we also have combined model elements by
name (the two Cisco elements were merged), but we consider the semantics
and constraints of both elements. Only if the pre-condition of the integration
transformation is fulfilled we can apply the merge.

In [9] an approach is presented where the semantics of domain models are con-
sidered during the integration. The general idea is to establish semantic connec-
tors between different models using an ontology knowledge base. This knowledge
base consists of different ontologies. An upper ontology defines concepts that are
applicable in most, perhaps all, domains. An application ontology specializes
the concepts from the upper ontology with domain-specific variants and maybe
adds additional constraints and semantics. The constructs of this ontology are
mapped to the metamodels of different domain-specific languages. In fact, in this
approach ontologies are not integrated within the modeling languages itself like
in our approach.

[10] present some issues on ontology integration. It considers problems of
how to integrate several existing ontologies within a new one that is being built.
One solution is the specification of a set of integration operations that tell how
knowledge in the ontology is going to be included and combined with the knowl-
edge in the resulting ontology. Instead of pure ontologies our approach considers
domain models with integrated ontologies. Although we also provide a set of
transformations/operations which define, how the ontology parts are combined.

6 Conclusion

In this paper we have presented an approach of combining constrained domain
models. In section 3 we presented two DSLs, namely BEDSL and PDDSL and

showed how they are integrated with the ontology language OWL2. Thus it is
possible to define several class axioms adopted on concepts of domain models
or property restrictions adopted on attributes of concepts. Because there is the
need to integrate the enriched BEDSL and PDDSL we presented the idea of
integrating the domain models and simultaneously combining the constraints of
each domain model in section 4. Therefore we extended our integration approach
presented in [5]. Each integration transformation has a pre-condition and can be
applied if it is fullfilled.

The transformation considers the additional constraints of enriched domain
models. If constraints exist the right combination of them has to be applied. We
have seen that these combinations are language dependent and thus have to be
defined by a DSL designer before integrating the languages.

Based on the user-defined pre-condition and existing constraints in the model
the transformation is able to compute the new constraints of the transformed
model elements. We have shown two transformations how the combination can be
derived from the pre-conditions of the transformations. Generally, our presented
approach would be useable for integrating other languages and their constrained
models (e.g using OCL instead of OWL2).

References

1. Kelly, S., Tolvanen, J.: Domain-Specific Modeling. John Wiley & Sons (2007)
2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The

description logic handbook: theory, implementation, and applications. Cambridge
University Press New York (2003)

3. Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. http://www.w3.org/TR/

2008/WD-owl2-syntax-20081202/ (December 2008)
4. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering.

In: International Workshop on Semantic Web Enabled Software Engineering
(SWESE’06), Athens, USA (November 2006)

5. Walter, T., Ebert, J.: Combining DSLs and Ontologies using Metamodel Integra-
tion. In: Domain-Specific Languages. Volume LNCS., Springer (2009) 148–169

6. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.:
The Manchester OWL Syntax. In: OWLED2006 Second Workshop on OWL Ex-
periences and Directions, Athens, GA, USA (2006)

7. Comarch: Case Study Design. MOST Project Deliverable (January 2009) www.

most-project.eu(restricted to specified group).
8. Warmer, J., Kleppe, A.: Building a Flexible Software Factory Using Partial Do-

main Specific Models. In: 6th OOPSLA Workshop on Domain-Specific Modeling
(DSM06). 15

9. Brauer, M., Lochmann, H.: Towards Semantic Integration of Multiple Domain-
Specific Languages Using Ontological Foundations. In: Proceedings of 4th Inter-
national Workshop on (Software) Language Engineering (ATEM 2007) co-located
with MoDELS. (2007)

10. Pinto, H., Gómez-Pérez, A., Martins, J.: Some issues on ontology integration. In:
IJCAI-99 workshop on Ontologies and Problem-Solving Methods (KRR5), Citeseer
(1999)

