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ABSTRACT need to know anything about the attributes that descrilesité\Ve
focus on the problem of determining the most appropriateigsie
to present to the user in order to accurately elicit theifgyemnces.
We do so in an interactive manner which focuses on the userexp
rience by utilising ontological information available dmetWorld
Wide Web through social web resources and expert libraBgso
doing we develop a complete system for personalisationctintt-
ions the user from having to know the formal details of howfere
be expressed in a vague manner and so vague results (intmefor encesare represented and hQW preference queries ovepas!atﬁ
irrelevant alternatives) are returned. On the other haraativent tems are formulated. We define fqur types of preferencétaiion .
of the world wide web has delivered an abundance of data at our 4Y€"€S and s_hpw h_OW the d_ynamlcs of these meth_ods are ddisign
fingertips. Information gathered from the web, reduced tocst to gather sufficient information from the user to quickly arau-

tured ontologies, can prove useful in focussing preferaticita- rately determine their preferences. This is the main cbullitbp of
tion mechanisms the paper. We also show how these processes can be achiered mo

In this paper we present a preference elicitation processhwh efficiently by clustering thg itfem space. Finally, we br.ieclllycuss
allows users to communicate their preferences in a simpteera how we use standard statistical methods together with tidess

through examples presented to them. The system then mades us'" order to establish the user preference _proflle._ .

of an ontology model, based on expert information and sooid Research on personalisation has prowdeq arich IltngU&c-

resources. It elicits the user’s preferences guided byathislogy ommen_dgﬂo_n systems [.1‘ 2, 3]'. In_ more direct relation tde_pfre

in an interactive and dynamic manner. We show that this léads ence el'c.'ti.it'o.n’ [4] provides a S|gn|f|capt framework forrhalis-

more effective recommendations. ing an elicitation process. However, this framework assuoser
We evaluate our work through empirical experiments andigisc familiarity with the domain which contradicts the assuroptiof

the results in terms of preference elicitation coverageealkasg the tk;}s' re;eargh. [r? » 6] model preference egpltatllon méeghetn:;yl
prediction accuracy of the preference model. elicitation but t eseé processes are not |_recty guide b)o_e
of the data. Previous work in supplementing user prefesendth

ontological information is limited. Ontology based sinnitg sys-

A challenge for preference based recommender systemslisito e
user preferences in an accurate and efficient manner.iggjgtef-
erences from the user in the form of a query that is then used to
filter items from a database can result in a coarse recommenda
tion with numerous results returned. The problem lies inuber’s
knowledge concerning the items among which they are seaaychi
Unless the user is a domain expert, their preferences aly lik

1. INTRODUCTION tems have been presented in [7, 8] but provide for only basie f
Modelling user preferences and exploiting preferentitdrima- tures. [9] provide methods for augmenting collaborativedpict
tion to assist users in searching for items has become arrtamgo recommendation with information derived from taxonomidew-
issue in product recommendation. Eliciting user prefegerinan ~ €Ver, none of these approaches have tackled the entireepratfl
accurate manner is a difficult and challenging task. In mases  ©liciting formal preferences from a user and enhancing thétim
the user lacks deeper, expert knowledge of the domain tev &tio ontological information in an interactive manner. It isstiproblem

a more discriminating recommendation to be determinedtmytt  that we address here in its entirety.
know what they like. Furthermore, even if they are aware ofiso . .
of their preferences, it may be difficult for them to expredssse 11 MOtlvatmg Example

explicitly in a formal language. One of the most obvious domains in which to evaluate the tech-
In this paper we develop techniques for eliciting formalfere niques developed here is that of user musical preferencégnW

ences from the user in a seamless fashion that hides theicathn it comes to music selection, people often express theiepates

details. In our work a crucial desiderata is that the uses dux in terms of individuals, either via their favourite artistssimply

by pointing to pieces of music which they prefer or do not pre-

fer. However, people seldom possess a deep understanding ab

the features and characteristics behind the music and thygind

it difficult to search for new music based on their personsiets
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Figure 1: An Example Ontological Concept Hierarchy of Music
Styles

sic domain. Through this service, users can input inforomaith a
structured manner from which it is relatively easy to inferoatol-
ogy.

For example, consider the concept hierarchy in Figure 1s Thi
information is composed by musical experts and describésra h
archy of musical styles. While information such as this il we-
derstood and formalised by domain experts, we do not assuene t
user has extensive knowledge of the domain at all. Stillitifizr-
mation can be readily exploited when reasoning with prefess.
Note that in reality these structures tend to be far richan tthis
example and often describe an attribute in the domain in gooem
hensive manner. In our work, we remedy this problem by @tigit
complex user preferences via simple queries which the usgr m
feel more comfortable answering. We illustrate our ideasiubh
examples from the music domain and provide experimentaltees
in music preference elicitation to evaluate our approaahwéver,
it is important to note that the techniques we develop areigén
and can be applied to a variety of domains.

2. BACKGROUND

We wish to express preferences formally and in a way thatvallo
us to query a database of items using these preferencess beth
tion we cover the necessary background to understand hovame c
query a database with preferences and, more specifically e
can query an ontology-based database with preferencesrtio-p
ular, we will see how we can utilise the structure of an orggltm
more accurately reason with preferences so as to providaestre
with a recommendation or an elicitation query.

2.1 Basic Preference Querying

In the context of database systems, [10] introduce thetlbdi
query with preferences using an extension of SQL. The user ca
express their preferences as soft constraints and wilivetaples
which best matctihose constraints. This approach is referred to as
the BMO (Best Match Onlyquery model in which a tuple will find
its way into the final result set if there does not exist angpthple
which dominatest, i.e. better satisfies the preference constraints.
Preference constraints in this framework can be expre$sedgh
standard operators in terms lifegdislikege.g. =, <>, IN) and
numeric constraints (e.g, >=, BETWEEN andAROUND). In order
to allow complex preference construction, two binary prefee
assembly operators are introduced, nhamelyPémetooperator for
considering two preference constructs as equally imptréaud the

Cascadeoperator for prioritising one preference constructor over
another.

The SPARQL query language is a W3C Recommendation and
considered to be a vital tool for querying ontological imf@tion.
[11] introduces an extended version of SPARQL (referrecst®-a
SPARQL) which follows the same ideas as [10] in introducirgfp
erences as soft constraints into the language. It formsdhis lof
the implementation of our approach.

2.2 Utilising Ontological Structure for Query-
ing with Preferences

In previous work [12] we extended P-SPARQL by exploiting
the information in an expert supplied ontology to furthefime
the results of preference queries. This work solves thelpnob
that plagues coarse preference queries, namely matchamofre
sufficiently distinguished. It also allows for the constian of
similarity-based queries. We only present the basic ideas and
refer the interested reader to [12] for a more extensive remeeof
these details.

In order to exploit the hierarchical structure of an ontgloge
developed a method for computing categorical similarityeen
concepts in & Box. We use this similarity method for perform-
ing preference querying over ontological information. \We&a-
duced a new Boolean operatStm(C1,C>) (is similar to) that
tells whether one binding resulbs) is preferred to anothem{)
w.r.t the user preference:

b1 <p(cy)b2 &
Sim(C(b1), Co) < Sim(C(b2), Co)

where Cy € Concepts is a user preference concept, b2 €
ResultBindings andC(b;) is the value bound to the relevant vari-
able in the result binding; w.r.t C. In other words result binding
bo is preferred to result bindingy, .

@)

ExAaMPLE 1. Suppose we would like to query music albums
while preferring albums of style similar to Alternative Ramu-
sic (as the highest priority) and then albums released atotire
year 2001. Our query hasRREFERRI NGsection as follows:

PREFERRI NG

?style~=nusic: Al ternati veRock
CASCADE

?year AROUND 2001

Where~= is the syntactic version of the above similarity operator
Sim(Cl, CQ)

Note that by introducing a new Boolean operator we do notghan
the notion of domination querying. We still have the abitiycom-
pare two result bindings to obtain the preference dominatita-
tionship between them. There are many ways to compute the sim
ilarity between concepts in an ontology, each reflectingferdint
rationale. In [12] we develop a novel similarity method, dd®n
[13], which has three interesting properties:

1. It considers two concepts more similar if they share more
specific information.

2. It respects théS-Arelation axiom which means that a con-
cept will always be considered more similar to any of its sub-
concepts than other concepts.

3. Within a sub-graph and given a preference concept, it will
consider a concept more similar to this preference concept
according to the communicated level of specificity desctibe
by this preference concept.



Property 3 means that when the user specifies a certain @neter
concept, the sub-concepts below this concept will be ocame
cording to their distance to this preference concept (tlosér’ the
distance, the more similar they are). The intuition behinid ts
to respect the user's communicated level of specificitygigiby
the depth of this preference concept in the ontology) camsid
concepts which are ‘closer’ to this level of specificity to fnere
similar. This is measured by the following similarity metuhich
determines the similarity of concepty andC;.

. 2 % N3
Sim(C1, Co) = Ni+Ns+2%Ns + AVG 2)
Where N1, N> are the distances from the concepts andC to
their MRCA (most recent common ancestor) respectively Apd
is the distance from this MRCA and the root of the ontology (as
suming the most general concept is the OWL con@étg), AV G
is the average distance 8f AX to the depth of the concepts,
andC; and M AX is the length of the longest path from the root
of the ontology to any of its leaf concepts. Note that in pcact
we then normalise the similarity measurement to be betweerd0
1 by dividing it by the similarity of the preference conceptit-
self. This way we ensure that the similarity between theguesfce
concept and itself will always be 1 (which accords with itian).

EXAMPLE 2. In our example (Figure 1), suppose we would like
to calculate the similarity values of music styles in redatito the
user preference concept Trance. The concept Ambient wik ha
the similarity valueSim (T rance, Ambient) = % =
0.47 while the concept class Techno will have the similarity ealu
Sim(Trance, Techno) = % = 0.67. Therefore, Techno
will be considered more similar to Trance than Ambient. Hosve
the similarity value between Trance and Techno will be senall

than the similarity value between Trance and any of its dabses,

e.g.0.84 for the similarity between Trance and ProgressiveTrance.

2.3 Querying with Complex Preferences

{Ambient,Breakbeat,Dance,Downbeat}
{other Electronic concepts

AlternativeRockand ProgRockperfectly match the first preference
and appear at the top of the total pre-order. Concepts arenthe
ordered according to their similarity to these preferencmoepts
until we reach a concept more similar to the second prefezetids

is the concepElectronic(which perfectly matches the second pref-
erence). Concepts are then ordered according to their girityl to
Electronicso as to complete the total pre-order.

Another very essential enhancement this work provideseisitil-

ity to query the topk elements in relation to the user preferences
(in addition to querying the best match only) while presegvihe
qualitative nature of our reasoning. An implementation hafsie
methods has been completed based onAR& SPARQL query
engine (alenabased query engine).

3. DYNAMIC PREFERENCE ELICITATION

The goal of our work is to provide users with personal recom-
mendations that accurately reflect their preferences. isnpéper,
we concentrate on thareference elicitation problen.e. the prob-
lem of selectingpreference elicitation querie® present the user
in order to elicit their preferences. The resulting prefiess are
subsequently used to query a database of items as explaitieel i
previous section. More accurately, we focus on the problegseo
lecting a series of such queries in an iterative and dynanaierer,
i.e. with respect to both the user response to the querisgipted
to them as well as the system aim to cover certain possible pre
erences during this process. The attribute space of theidpina
our case, is defined via a domain ontology provided by a domain
expert or social web resources which classify items in theaio
according to multiple attributes. It is also important tarpmut
that these items could be multiply classified to some atitefu.e.
have more than one value on certain attributes. This willigrfte
the type of P-SPARQL queries we will choose in order to select

This idea can be easily extended to the case where we haveand present items to the user (as opposed to more straightfbr

elicited the user preferences in terms of a partial preforalder
than a single concept [14]. We would still like to be able t@u
our database of items with these preferences. The idea igrio t
this partially specified preference ordering into a tota-prder by
“filling out” (or completing) the user preferences with infieation
from the ontology while utilising the notion of similaritythe po-
sition of every concept in the total pre-order will be detered by
looking at their maximal similarity to any of the user ordgiEn-
cepts. Concepts which are most similar to a user orderingegun
will be then ordered according to their similarity to it. Theu-
ition behind this is that we exploit the ordering given to ysthe
ontology (w.r.t a similarity measurement) without contcgitig the
preference ordering explicitly expressed by the user. Naethis
also allows expressing indifference between two concepts.

ExamMpPLE 3. The preference
{AlternativeRock, ProgRockFHEN {Electronic}

means that the user prefers a song with sfllé er nat i veRock

or Pr ogRock to one with styldEl ect r oni ¢. Given a similarity
method with the semantics mentioned above, and given tlé& ont
ogy of music styles above, the total pre-order created weill b

{AlternativeRock,ProgRock}
{Grunge,IndieRock}
{other rock concep}s
{Electronic}

query relaxation techniques).

3.1 User Interaction

As described above, a basic assumption in our work is thas use
do not possess the expert knowledge which allows them to pre-
cisely and explicitly communicate their preferences imtof the
attributes in a domain. However, they may well have prefezen
which it is our job to elicit from (and for) them. Since we can-
not query the users about those attributes directly, we limilit
our preference elicitation queries to ranking individuatdy and
collect the information associated with them, building efprence
model as we go. More specifically, the user is presented with i
viduals and asked to rate them as eitliled, disliked or neutral
With this feedback (see top-left of Figure 2) the user’s fuied
preference order is modified by combining the statisticatsand
confidence interval for how much an attribute value is likgdhe
user to produce a partial pre-order representing theirepeates.
This process continues again with the elicitation methodintp
betweerexplorationandexploitationphases in order to determine
which item to present to the user next for their considenatind
also to ensure that a sufficient cross-section of the itersespm
presented in order to obtain an accurate preference order.

We focus on the elicitation of user preferences by devetppim
elicitation technique that is itself guided by the expepied on-
tology. We will then show how this process can be made more
efficient by clustering the items in the ontology. In the reét
the paper we will present this preference elicitation psscand
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Figure 2: A High-Level Schema of the Preference ElicitationProcess: users express their preferences over individuatgesented
to them (‘Feedback’ box in the figure). The system will then uplate their preference profile consisting of a partial pre-oder over
certain attributes as well as the user ranking history. The gstem will then consult an ontology in order to guide the nexelicitation
query (in terms of a new individual to be ranked — ‘Next Item Sdection’ box). The system goal is to obtain confidence in prégusly
elicited preferences (exploitation) as well as to cover nepreferences (exploration).

its clustering-based extension. We also briefly discuséiiding
of a preference model on behalf of the user and its evaluation

3.2 Ontology Guided Preference Elicitation

As described above, the goal is to elicit implicit user prefees
over some predefined attribute space through the rankings of
stances that the system offers to the user. Once we haveleimeug
formation about the user’s rankings, we can start buildieguser
preference profile. The dynamics of this process are dedigoe
we can confidently elicit as many preferences as possiblatihe
same time allow for an interesting interaction between ge¥ and
the system. The idea here is to have a trade-off betweenvggtati
learn more about the current hypothesis regarding thesupesf-
erences and wanting to more widely explore the user preferen

Algorithm 1 Elicit Preferences
elicit()
window + {}
loop
query <+ nextPreferenceQuery()
response <— user Response(query)
window <+ window U {query, response}
update PreferenceOrdering(query, response)
end loop

of the ordered result set. We discuss the main ideas behasa th
decisions in the remainder of this section.

hypothesis space as well as keeping the user happy and engage 3.2.1 Similarity Queries

In the first case, we would like to become more confident atiwut t
user preferences in a particular area of the ontology whilthe
second case we would like to explore more areas in order to dis
cover more preferences. From the user perspective we oarthig
trade-off in terms okxploitationof previously elicited preferences
andexplorationof new (as yet unrevealed) user preferences. Algo-
rithm 1 shows the main interaction loop the system followsaiy
given stage, we will look at a fixed size window of the user&t la
interactions (via the global variableindow) in order to determine
the nextpreference elicitation query typ&\Ve define four types of
preference elicitation queries, namebimilarity queries queries
with controlled dissimilarity exploration querieand exploitation
queries Similarity querieswill search and offer the user an item
similar to those last seequeries with controlled dissimilaritwill
return an item which is less similar to these items (as deterun
by the ontology);exploration queriesvill return an item which is
classified to sufficiently different attribute values toniie last pre-
sented whileexploitation queriewvill return an unseen item which
holds a high value of information (see Section 3.2.3). At stage
the system has to make a decision in regard to the next pnefere
elicitation query (see Algorithm 2), which determines tlymain-

ics of the system. In each of these queries we call the fumctio
getItemRelated() to return items at the top, middle or bottom

When receiving a positive response from the user, it is quite
ural to form a hypothesis which entails that the informatioa
are encountering at the current stage of elicitation isstfiasl to
attribute values which will be highly ranked in the user pref
ence profile. Querying the user about similar informationles
sirable in order to either gain further confidence in this dthp
esis or alternatively contradict it in which case we will carde
that these high rankings were due to noise. The way we achieve
this is by executing similarity-based P-SPARQL querieschtre-
turn the topk individuals in relation to the current attribute values.
Due to the nature of these selections, the resulting indatgwill
be classified not only to the exact same attribute values ¢kee u
has ranked highly but also to values which are highly simitae
proceduregetItemsRelated(item,z,y) executes a P-SPARQL
query and returns items to y when ordered w.r.t the attributes
attr(1)...attr(n) associated with a giveftem wherex andy
specify an integer range of records. A simplified versionumfhsa
query is given below:

SELECT RECORDz TOy
PREFERRI NG

attr(1l) ~=itemattr(1)
AND



Algorithm 2 Next Item Selection

Algorithm 4 Select Items with High Value of Information

nextPreferenceQuery()
possible@QItems < {}

queryType <+ establishQueryType()

if queryT'ype = Similar then
possibleQItems < getItemsRelated(lastQItem,1, k)
else ifqueryType = Controlled Dissimilarity then
possibleQItems < getItemsRelated(lastQItem,k,1)
else ifqueryType = Explore then
possibleQItems < getItemsRelated(lastQItem,l, m)
else ifqueryType = Exploit Preferences then
possibleQItems < getltemsWithHVI()
end if
return rand(possible@QItems)

Algorithm 3 Establish Preference Query Type
establishQueryType()

1: if |Jwindow| < winSize or negResponse(window)
negT hr then

<

2. queryType < Similar
3: elseifglobal NegResponse() < global NegT hr then
4:  if previousQueryType = Similar then
5: queryType <— ControlledDissimilarity
6: else
7. queryType < Explore
8: endif
9:  window + {}
10: else
11:  queryType < Exploit Preferences
12:  window + {}
13: end if

14: return queryType

attr(2) ~=itemattr(2)
AND

attr(n) ~=itemattr(n)
We keep gathering preferential information about theseesalntil
a certain threshold is met. This threshold will also be infaed by
the number of negative responses we receive from the useewhe
in case this number is high, the number of iterations we \piirel
on the current values (e.g. current branch in the ontologhoe
reduced. Algorithm 3 shows the management of these paresnete
which will establish the type of preference elicitation guere will
use next. We adopt this type of query when the window of user

interactions has not yet reached its maximal size and thponsse
we get from the user is not negative enough (line 1).

EXAMPLE 4. Suppose the user has ranked an item classified
to music styleslouseand Technoand with the release year 2002.
The P-SPARQL query with respect to this item will then be:

SELECT RECORD 1 TOk

PREFERRI NG

?styl e ~=: House
AND

?styl e ~=:Techno
AND

?r el easeYear ~= 2002

getItemsWithHVI()

partial Preorder < collect Preferences()
total Preorder < computePreferences(partial Preorder)
value < null
1=0
while value = null do
if total Preorder(i] ¢ partial Preorder then
value « total Preorder]i|
end if
1+ +
end while
return getItems(value)

We will then randomly select an item from this result set aniedgnt

it to the user as the next elicitation query. We can assume tha
this elicitation query item will have similar attribute wads to the
previous one. For example, music stytésuseand Trip Hop and
with the release year 2003.

3.2.2 Querying Diverse Items

Let us consider now the case where we have elicited a sufficien
amount of information about a certain branch in the ontaldgfe
would like to change our preference elicitation querieshs tve
can elicit user preferences about other parts of the ongolbghe
reaction of the user was sufficiently positive in the presiphase,
in order to make the transition between items smoother afed of
a better user experience we select items within a limitethdee
from the previous items. In this casetablishQueryType will
return query type_ontrolled Dissimilarity which will modify
the call togetItemsRelated by selecting elements from the mid-
dle of the result set (controlled by the parameterand! pre-
determined as a function of the size of the item-space).

ExamMPLE 5. Consider the item ranked in Example 4 and sup-
pose we have now reached the stage where we would like to query
items with certain diversity to this item. We will execute ame
P-SPARQL query as before with the parametesnd . We can
assume that the next elicitation query item will have attréval-
ues which appear within a certain limited distance to thevipas
one. For example, music stylBsinceand Ambientand the release
year 2000.

However, if the user’s response to the previous phase wagsaset
itive, then eliciting preferences from that particularaane the on-
tology may no longer be desirable and we can try moving furthe
afield. Since we are dealing with hierarchical structureis, iiela-
tively easy to control the selection of preference eli@tagueries
and increase the level of dissimilarity our P-SPARQL quetyms.

In that case we will execute axploration querywvhich will select
items from the bottom of the similarity query’s result sed amill
return an item with greater distance than the last windowieXtat
once we have selected an item via these query types, we will go
back to querying with similarity (which means we will resbaet
window) until the threshold criteria will entail queryingitiv cer-
tain diversity again.

3.2.3 High Value of Information

In many domains, users may have preferences over more than
one type of individual. In ontological terminologies, thayy hold
preferences over different branches in the hierarchy. &fhes,
once we have gathered enough confidence in the preferenita-eli
tion for a particular part of the hierarchy, it is importaotte able to



explore different areas as well. In our work, preferentidbima-
tion with ahigh value of informatiorare those preferences the user
holds which we have not yet revealed. In order to discovesehe
preferences we need to be able to explore individuals filedsb
attribute values the system is uncertain about. Since weeskng
with hierarchical structures, here again we can controlstlec-
tion of preference elicitation queries. We will choose tesenew
attribute values about which we are uncertain of the usdepre
ences and which are highly similar to known preferences.\ilde
we achieve this is by computing the preferences we haverwatai
from the user up to this point as a partial pre-order and tearch-
ing for an attribute value which does not appear in this poeo
but is similar to an attribute value which is highly prefetia the
order. The obtaining of a partial pre-order over a certainbatte
from ranked individuals is briefly discussed in Section 33hce
we obtain the partial pre-order, we expand it to a total pdeo
(as described in Section 2.3) and select an attribute vathighvap-
pears highly ranked in the total pre-order but does not appe¢he
partial pre-order. Since this value did not appear in théigdgre-
order we can deduce that the user has not yet ranked suffjcient
enough items of this type. And since it appears highly rariked
the ordering, it satisfies our High Value of Information erion.
Algorithm 4 shows a simplified version of these ideas wheee th
getItems(value) procedure is assumed to execute a P-SPARQL
query selecting items with a certain attribute value whighads a
givenwvalue. In terms of user interaction, we will use this query
type in order to re-start the elicitation process when reguia re-
ceiving negative feedback from the user (line 3 in AlgoritBm
Note that this preference query type is also used at the hiegjof
every user session.

EXAMPLE 6. Suppose we have calculated the user preferences

as a partial pre-order in terms of music style and the resgitbr-
dering is:

{AlternativeRock, ProgRocKFHEN {Electronic}

Calculating the total pre-order, the music stytalieRockwill ap-
pear in a high position in the total pre-order and will be usted
select the next preference query item (see Figure 1).

3.2.4 Complexity and Performance Issues

The main difficulty when it comes to database querying with
preferences is the complexity of queries. Even though tlsécbha
ideas behind the Pareto and Cascade operators are single-th
ture of comparison queries makes them quadratic in the nuafbe
items. Since we are dealing with large item spaces and shee t
execution of such queries could be very frequent, it is edlycim-
portant to make these queries more efficient. Furthermoreuyi
case, when we wish to explore diverse items w.r.t a ranked, ite
it is unnecessarily expensive to compare all particulaividdals
to each other in order to get this desired effect. In ordenvtnch
that, it would be better to focus our attention on part of teen-
space. We do so by grouping our individuals into some higbtle
clusters and reason over these clusters before we divehatad-
tual selection of particular preference query items. Weudis this
enhancement in the next section.

3.3 Making Preference Elicitation Faster with
Clustered Ontologies

There are many ways to cluster categorical and numerical in-
formation. In our work, we make use of a particular structure
namelyexplicit semantic relationswhich is knowledge described
in the ontology by way of direct semantic associations betwie-
dividuals. This is usually done vieles which describe a direct

semantic relation between individuals of the same type ekam-
ple, similarTo : Artist — Artist to describe that one artist is
similar to another. These structures can be viewed as veslgirt
unweighted graphs in which elements of the item-space ateso
of the graph and the semantic relation determines the edggs (
sitmilarTo). We find that in many domains there exist classifi-
cations which form this kind of structure and induce a seiant
network and in some cases a similarity network. In our exampl
there exists a similarity network between artists, avédlabmusic
libraries etc., which can be viewed as a graph (in our casenpan
weighted graph) and allows us to generate a high level lulical
clustering structure.

3.3.1 Clustering Semantic Relatedness

The main idea behind clustering similarity graphs is to lémk
highly connected sub-graphs. The way this is done is througgh-
ods which are based gninimum cut treewvithin the graph. Given
a graphG(V, E), a cut is a set of edges whose removal will dis-
connect the graph. A minimum cut is a cut with a minimal num-
ber of edges. [15] presents a clustering algorithm whichpuates
minimal cuts iteratively and looks for sub-graphs with athigvel
of connectivity. At the end of this process, the graph willgze-
titioned into j clusters wherg is the number of clusters and is
unknown at the beginning of the process. In our work we adopt
this technique since it has a simple generalisation int@eahthi-
cal clustering method. This is a very desirable effect simeeare
dealing with ontologies which treat hierarchical struetustraight-
forwardly. The resulting cluster structure gives a higveleclassi-
fication of individuals with some similar characteristics.

3.3.2 Querying the Clustered Iltem Space

The basic idea behind our enhanced preference elicitagitin t
nigue is similar to what we have seen before. The main difieze
now that we have our items clustered, is that on every diioita
query, we will first determine which cluster we would like et
from and then execute the P-SPARQL query limiting the search
to that cluster (and thus limiting the complexity to the sifehe
cluster). Algorithm 5 (which now replaces Algorithm 2) stethe
revised preference query item selection procedure witktefing.
The selection of the particular cluster will depend on thefgnence
query type and the cluster of the item previously ranked @liog
to the same principles we discussed in 3.2.

3.4 Building the Preference Model

During the preference elicitation process, users encoante-
riety of different items whose attributes are describeceimts of
concept classes. These concept classes are used to rephnesen
preferences. We now build a partial pre-order prefereniztioa
over those classes on behalf of the user. The way we apprbisch t
is through standard statistical reasoning where we lodhkeatrtean
score of individuals classified to each class taking int@antthe
confidence of this score. For each concept class, we comjsute i
score and confidence. The score of a class is measured inaérms
the probability that if we draw an individual classified tasthblass,
it will be ranked positively, negatively or neutrally. A neigement
for a class to be included in the partial pre-order is thatdas-
fidence measure is at most equal to some predetermined wbnsta
which determines how sparsely ranked a concept might be to be
included in the partial pre-order. We will order the classethe
partial pre-order according to their score and confidenceretwo
classes will be ordered at the same level if they do not havg-a s
nificant statistical difference. This is computed in ralatio their
overlapping confidence interval ratio. This partial preeorpref-



Algorithm 5 Next Item Selection (revised)
nextPreferenceQuery()
possible@QItems < {}

queryType <+ establishQueryType()

if queryT'ype = Similar then
c + lastQItem.cluster
possibleQItems < getltemsRelated(lastQItem,c)
else ifqueryType = Controlled Dissimilarity then
¢ « getSimilarCluster(lastQItem.cluster)
possibleQItems < getItemsRelated(lastQItem,c)
else ifqueryType = Explore then
¢ « getDiverseCluster(lastQItem.cluster)
possibleQItems < getItemsRelated(lastQItem,c)
else ifqueryType = Exploit Preferences then
¢ < getClusterWithHV I (last@QItem.cluster)
possibleQItems < getItemsWithHV I(preference,c)
end if
return rand(possible@Items)
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Figure 3: Overlapping Confidence Intervals Example

erence model will be then expanded to a total pre-orderimggus
(Section 2.3). Due to lack of space, we do not present theanath
matical details of this method. However, this can be easiyedd
using standard statistical inference.

EXAMPLE 7. Consider the scoring statistics of four classes as
gathered by the system according to user responses in Figjure
given in terms of confidence intervdly 1]. Computing the over-
lapping confidence interval ratio of classdsand B, we can infer
that A and B should be considered at the same preference level.
On the other hand, clas§' will be strictly preferred over classl.
Similarly, we can compute the overlapping confidence ialenar
tio of classesB and C. The resulting partial preference pre-order
in this example will be&&' = {A, B} > D.

4. EXPERIMENTAL RESULTS

We evaluate our preference elicitation methods througlriase
of experiments in the domain of music. We have implemented a
music preference elicitation system we cHile Music Preference

electronic music. We created a hierarchy of 137 styles wisieln-
ranged as a DAG and classifies each album to at least oneatyle (
around four on average). We also collected similarity infation
between artists and clustered our data set into 26 diffelasters
arranged hierarchically according to the method describedi3.
The cornerstone for this dataset is MesicBrainzlibrary. How-
ever, since this is a new service, some classifications deedse
collected manually from other resources on the web.

4.2 User Trials

When a user logs into the system, they are presented witlta pie
of popular music and can specify their ranking as one of tie fo
lowing options: they can either say they like the music they a
listening to, they do not like it or that they are not sure altbair
preferences. The system then collects those rankings andajity
builds a preference model on behalf of the user in terms ofrire
sic style classified. The system executes the preferentieagbn
cycle we described in 3.2. If the user responds positivebettain
types of music, the system will suggest music which is sinatz
cording to its model. However, it will gradually select musiith
a different style and at some point explore styles which ariteq
different (and notify the user that it has done so0). If a usezga
negative response to a certain type of music, this procdbscgur
faster. We ran the trial on 22 users and present the resultein
following section.

4.3 Results

We measure the performance of our methods in terms of the pre-
diction accuracy of the elicited preference model as wethagov-
erage of different preference levels.

4.4 Preference Model Accuracy

Ouir first test measures the accuracy of the elicited modetyby t
ing to predict the user response on random tracks accorditiget
created preference model. Figure 4 shows the accuracy refatiyr
predicting whether a user will say they like a piece of musid a
when they say they will dislike it. We compute the mean rank of
track (according to its classified information) and computieresh-
old (depending on the number of preference levels the uddsho
to differentiate between predicting whether the track dlliked
or otherwise. In order to measure the growth in accuracyemer
ated the user ranking cycles by first building their prefeeamodel
using the first 20 tracks (in order) and gradually addingksamtil
we used all the tracks they had ranked. We have clearly shown a
growth in prediction accuracy and reached over 80 perceni-ac
racy on average from around 160 examples. Note that thegksres
were achieved by basically looking at a single (probably \en-
tral) attribute and performing well on average.

4.5 Preference Coverage

Finally, since we are dealing with a dynamic process where ou
methods are designed to cover different user preferenagiowe
by allowing the user to explore new preferences, we measefe p
erence coverage in terms of preference ordering and ciuster
ered. Figure 5 shows the growth in the number of differentepre

Explorer which selects and suggests music to users according to ence ordering levels we elicit over time. This includes thetipl

the preference elicitation methods described above. Weamaex-
periment with the system and several users.

4.1 Data Model

The data model we use is an ontology we collected from infor-
mation available on the web. The ontology consists of 134tart
and around 1200 tracks from 338 albums of popular rock, pop an

pre-order computed through the statistical analysis desttin 3.4

as well as the number of total pre-orders realised after angim

ing this pre-order with further information from the ontgio This

gives some idea about the dynamics of the system and shows the
growth in elicited information over time. In addition to thamber

of preference levels, we also measure the number of clusters
user has visited since this is a very central part of thetation



cycle. Note that when reaching over 180 ranked items, thebeum
of preference levels starts to drop. This is due to the oppitey
confidence interval matching we described in Section 3.4neso
ordering levels are merged when gathering more statistimafli-
dence. Note also that when reaching this number of rankmgs,
model prediction accuracy reaches around 85% (Figure 4)s Th
shows that the preference ordering matching was indeeifigast
and better reflected the user’s true preference.

Prediction Accuracy Progression
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Figure 4: Prediction accuracy progression: shows the accacy
of predicting whether the user will like/dislike a track accord-
ing to the elicited preference ordering
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Figure 5: Preference coverage progression: shows the progs-
sion of preference ordering levels (partial and total) as wikas
the number of clusters visited. Note that when reaching over
180 ranked items, the number of preference levels starts tordp
due to overlapping confidence interval matching as descritte
above, as the confidence grows

5. CONCLUSIONS

In this paper we have developed a preference elicitatiomodet
which caters for a large class of problems in preference ftioge
In particular, we would like to elicit a preference orderihgt can

rely on a complex model of the domain at hand; namely a domain
ontology created by experts. We presented an interaciiéagion
process which is dynamic and is able to elicit many prefezsty
covering large portions of the ontology. During this pragassers

are presented with examples which they are asked to rank and a
system collects this information and builds a preferenceehon
their behalf. The dynamics of the process relies mainly enitth
teraction between exploiting previously elicited preferes thus
suggesting similar examples and exploring new preferen¥és
evaluated our methods through experiments run with seusek

in the domain of music and show significant results in termthef
preference model prediction accuracy as well as the cogenfg
different preferences elicited during this process. Fariiwork,

we intend to investigate the elicitation of more complexX@rence
models, i.e., dependency structures over multiple ateias well

as a more advanced use of ontologies and semantic web fature
Another avenue for future work would be in the area of coltabo
tive filtering. We can aggregate the preference profiles roflar
users to provide a more accurate ‘collaborative’ prefezenc
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