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ABSTRACT
A challenge for preference based recommender systems is to elicit
user preferences in an accurate and efficient manner. Eliciting pref-
erences from the user in the form of a query that is then used to
filter items from a database can result in a coarse recommenda-
tion with numerous results returned. The problem lies in theuser’s
knowledge concerning the items among which they are searching.
Unless the user is a domain expert, their preferences are likely to
be expressed in a vague manner and so vague results (in the form of
irrelevant alternatives) are returned. On the other hand, the advent
of the world wide web has delivered an abundance of data at our
fingertips. Information gathered from the web, reduced to struc-
tured ontologies, can prove useful in focussing preferenceelicita-
tion mechanisms.

In this paper we present a preference elicitation process which
allows users to communicate their preferences in a simple manner,
through examples presented to them. The system then makes use
of an ontology model, based on expert information and socialweb
resources. It elicits the user’s preferences guided by thisontology
in an interactive and dynamic manner. We show that this leadsto
more effective recommendations.

We evaluate our work through empirical experiments and discuss
the results in terms of preference elicitation coverage as well as the
prediction accuracy of the preference model.

1. INTRODUCTION
Modelling user preferences and exploiting preferential informa-

tion to assist users in searching for items has become an important
issue in product recommendation. Eliciting user preferences in an
accurate manner is a difficult and challenging task. In most cases
the user lacks deeper, expert knowledge of the domain to allow for
a more discriminating recommendation to be determined but they
know what they like. Furthermore, even if they are aware of some
of their preferences, it may be difficult for them to express these
explicitly in a formal language.

In this paper we develop techniques for eliciting formal prefer-
ences from the user in a seamless fashion that hides the technical
details. In our work a crucial desiderata is that the user does not
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need to know anything about the attributes that describe items. We
focus on the problem of determining the most appropriate queries
to present to the user in order to accurately elicit their preferences.
We do so in an interactive manner which focuses on the user expe-
rience by utilising ontological information available on the World
Wide Web through social web resources and expert libraries.By so
doing we develop a complete system for personalisation thatcush-
ions the user from having to know the formal details of how prefer-
ences are represented and how preference queries over a database of
items are formulated. We define four types of preference elicitation
queries and show how the dynamics of these methods are designed
to gather sufficient information from the user to quickly andaccu-
rately determine their preferences. This is the main contribution of
the paper. We also show how these processes can be achieved more
efficiently by clustering the item space. Finally, we brieflydiscuss
how we use standard statistical methods together with theseideas
in order to establish the user preference profile.

Research on personalisation has provided a rich literaturein rec-
ommendation systems [1, 2, 3]. In more direct relation to prefer-
ence elicitation, [4] provides a significant framework for formalis-
ing an elicitation process. However, this framework assumes user
familiarity with the domain which contradicts the assumption of
this research. [5, 6] model preference elicitation in termsof utility
elicitation but these processes are not directly guided by amodel
of the data. Previous work in supplementing user preferences with
ontological information is limited. Ontology based similarity sys-
tems have been presented in [7, 8] but provide for only basic fea-
tures. [9] provide methods for augmenting collaborative product
recommendation with information derived from taxonomies.How-
ever, none of these approaches have tackled the entire problem of
eliciting formal preferences from a user and enhancing themwith
ontological information in an interactive manner. It is this problem
that we address here in its entirety.

1.1 Motivating Example
One of the most obvious domains in which to evaluate the tech-

niques developed here is that of user musical preferences. When
it comes to music selection, people often express their preferences
in terms of individuals, either via their favourite artistsor simply
by pointing to pieces of music which they prefer or do not pre-
fer. However, people seldom possess a deep understanding about
the features and characteristics behind the music and thus may find
it difficult to search for new music based on their personal tastes.
Fortunately, in the World Wide Web there exist digital libraries
which contain information composed by experts in this domain or
by users with special interests. One such major public library is
MusicBrainz1 which is essentially a social web service in the mu-

1http://musicbrainz.org/
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Figure 1: An Example Ontological Concept Hierarchy of Music
Styles

sic domain. Through this service, users can input information in a
structured manner from which it is relatively easy to infer an ontol-
ogy.

For example, consider the concept hierarchy in Figure 1. This
information is composed by musical experts and describes a hier-
archy of musical styles. While information such as this is well un-
derstood and formalised by domain experts, we do not assume the
user has extensive knowledge of the domain at all. Still thisinfor-
mation can be readily exploited when reasoning with preferences.
Note that in reality these structures tend to be far richer than this
example and often describe an attribute in the domain in a compre-
hensive manner. In our work, we remedy this problem by eliciting
complex user preferences via simple queries which the user may
feel more comfortable answering. We illustrate our ideas through
examples from the music domain and provide experimental results
in music preference elicitation to evaluate our approach. However,
it is important to note that the techniques we develop are general
and can be applied to a variety of domains.

2. BACKGROUND
We wish to express preferences formally and in a way that allows

us to query a database of items using these preferences. In this sec-
tion we cover the necessary background to understand how we can
query a database with preferences and, more specifically, how we
can query an ontology-based database with preferences. In partic-
ular, we will see how we can utilise the structure of an ontology to
more accurately reason with preferences so as to provide theuser
with a recommendation or an elicitation query.

2.1 Basic Preference Querying
In the context of database systems, [10] introduce the ability to

query with preferences using an extension of SQL. The user can
express their preferences as soft constraints and will receive tuples
which best matchthose constraints. This approach is referred to as
the BMO (Best Match Only) query model in which a tuple will find
its way into the final result set if there does not exist any other tuple
which dominatesit, i.e. better satisfies the preference constraints.
Preference constraints in this framework can be expressed through
standard operators in terms oflikes/dislikes(e.g. =, <>, IN) and
numeric constraints (e.g.<, >=, BETWEEN andAROUND). In order
to allow complex preference construction, two binary preference
assembly operators are introduced, namely, theParetooperator for
considering two preference constructs as equally important, and the

Cascadeoperator for prioritising one preference constructor over
another.

The SPARQL query language is a W3C Recommendation and
considered to be a vital tool for querying ontological information.
[11] introduces an extended version of SPARQL (referred to as P-
SPARQL) which follows the same ideas as [10] in introducing pref-
erences as soft constraints into the language. It forms the basis of
the implementation of our approach.

2.2 Utilising Ontological Structure for Query-
ing with Preferences

In previous work [12] we extended P-SPARQL by exploiting
the information in an expert supplied ontology to further refine
the results of preference queries. This work solves the problem
that plagues coarse preference queries, namely matches arenot
sufficiently distinguished. It also allows for the construction of
similarity-based queries. We only present the basic ideas here and
refer the interested reader to [12] for a more extensive coverage of
these details.

In order to exploit the hierarchical structure of an ontology, we
developed a method for computing categorical similarity between
concepts in aTBox. We use this similarity method for perform-
ing preference querying over ontological information. We intro-
duced a new Boolean operatorSim(C1, C2) (is similar to) that
tells whether one binding result (b2) is preferred to another (b1)
w.r.t the user preferenceP :

b1 ≺P (C0)b2 ⇔

Sim(C(b1), C0) < Sim(C(b2), C0)
(1)

whereC0 ∈ Concepts is a user preference concept,b1, b2 ∈
ResultBindings andC(bi) is the value bound to the relevant vari-
able in the result bindingbi w.r.t C. In other words result binding
b2 is preferred to result bindingb1.

EXAMPLE 1. Suppose we would like to query music albums
while preferring albums of style similar to Alternative Rock mu-
sic (as the highest priority) and then albums released around the
year 2001. Our query has aPREFERRING section as follows:

PREFERRING
?style∼= music:AlternativeRock

CASCADE
?year AROUND 2001

Where∼= is the syntactic version of the above similarity operator
Sim(C1, C2).

Note that by introducing a new Boolean operator we do not change
the notion of domination querying. We still have the abilityto com-
pare two result bindings to obtain the preference domination rela-
tionship between them. There are many ways to compute the sim-
ilarity between concepts in an ontology, each reflecting a different
rationale. In [12] we develop a novel similarity method, based on
[13], which has three interesting properties:

1. It considers two concepts more similar if they share more
specific information.

2. It respects theIS-A relation axiom which means that a con-
cept will always be considered more similar to any of its sub-
concepts than other concepts.

3. Within a sub-graph and given a preference concept, it will
consider a concept more similar to this preference concept
according to the communicated level of specificity described
by this preference concept.



Property 3 means that when the user specifies a certain preference
concept, the sub-concepts below this concept will be ordered ac-
cording to their distance to this preference concept (the ‘closer’ the
distance, the more similar they are). The intuition behind this is
to respect the user’s communicated level of specificity (given by
the depth of this preference concept in the ontology) considering
concepts which are ‘closer’ to this level of specificity to bemore
similar. This is measured by the following similarity metric which
determines the similarity of conceptsC0 andC1.

Sim(C1, C0) =
2 ∗N3

N1 +N2 + 2 ∗N3 + AV G
(2)

WhereN1, N2 are the distances from the conceptsC0 andC1 to
their MRCA (most recent common ancestor) respectively andN3

is the distance from this MRCA and the root of the ontology (as-
suming the most general concept is the OWL conceptThing),AV G
is the average distance ofMAX to the depth of the conceptsC0

andC1 andMAX is the length of the longest path from the root
of the ontology to any of its leaf concepts. Note that in practice
we then normalise the similarity measurement to be between 0and
1 by dividing it by the similarity of the preference concept to it-
self. This way we ensure that the similarity between the preference
concept and itself will always be 1 (which accords with intuition).

EXAMPLE 2. In our example (Figure 1), suppose we would like
to calculate the similarity values of music styles in relation to the
user preference concept Trance. The concept Ambient will have
the similarity valueSim(Trance,Ambient) = 2∗2

2+1+2∗2+1.5
=

0.47 while the concept class Techno will have the similarity value
Sim(Trance, T ecℎno) = 2∗3

1+1+2∗3+1
= 0.67. Therefore, Techno

will be considered more similar to Trance than Ambient. However,
the similarity value between Trance and Techno will be smaller
than the similarity value between Trance and any of its sub-classes,
e.g.0.84 for the similarity between Trance and ProgressiveTrance.

2.3 Querying with Complex Preferences
This idea can be easily extended to the case where we have

elicited the user preferences in terms of a partial pre-order rather
than a single concept [14]. We would still like to be able to query
our database of items with these preferences. The idea is to turn
this partially specified preference ordering into a total pre-order by
“filling out” (or completing) the user preferences with information
from the ontology while utilising the notion of similarity.The po-
sition of every concept in the total pre-order will be determined by
looking at their maximal similarity to any of the user ordered con-
cepts. Concepts which are most similar to a user ordering concept
will be then ordered according to their similarity to it. Theintu-
ition behind this is that we exploit the ordering given to us by the
ontology (w.r.t a similarity measurement) without contradicting the
preference ordering explicitly expressed by the user. Notethat this
also allows expressing indifference between two concepts.

EXAMPLE 3. The preference

{AlternativeRock, ProgRock}THEN {Electronic}

means that the user prefers a song with styleAlternativeRock
or ProgRock to one with styleElectronic. Given a similarity
method with the semantics mentioned above, and given the ontol-
ogy of music styles above, the total pre-order created will be:

{AlternativeRock,ProgRock}
{Grunge,IndieRock}
{other rock concepts}

{Electronic}

{Ambient,Breakbeat,Dance,Downbeat}
{other Electronic concepts}

AlternativeRockandProgRockperfectly match the first preference
and appear at the top of the total pre-order. Concepts are then
ordered according to their similarity to these preference concepts
until we reach a concept more similar to the second preference: this
is the conceptElectronic(which perfectly matches the second pref-
erence). Concepts are then ordered according to their similarity to
Electronicso as to complete the total pre-order.

Another very essential enhancement this work provides is the abil-
ity to query the top-k elements in relation to the user preferences
(in addition to querying the best match only) while preserving the
qualitative nature of our reasoning. An implementation of these
methods has been completed based on theARQ SPARQL query
engine (aJenabased query engine).

3. DYNAMIC PREFERENCE ELICITATION
The goal of our work is to provide users with personal recom-

mendations that accurately reflect their preferences. In this paper,
we concentrate on thepreference elicitation problem, i.e. the prob-
lem of selectingpreference elicitation queriesto present the user
in order to elicit their preferences. The resulting preferences are
subsequently used to query a database of items as explained in the
previous section. More accurately, we focus on the problem of se-
lecting a series of such queries in an iterative and dynamic manner,
i.e. with respect to both the user response to the queries presented
to them as well as the system aim to cover certain possible pref-
erences during this process. The attribute space of the domain, in
our case, is defined via a domain ontology provided by a domain
expert or social web resources which classify items in the domain
according to multiple attributes. It is also important to point out
that these items could be multiply classified to some attributes, i.e.
have more than one value on certain attributes. This will influence
the type of P-SPARQL queries we will choose in order to select
and present items to the user (as opposed to more straightforward
query relaxation techniques).

3.1 User Interaction
As described above, a basic assumption in our work is that users

do not possess the expert knowledge which allows them to pre-
cisely and explicitly communicate their preferences in terms of the
attributes in a domain. However, they may well have preferences
which it is our job to elicit from (and for) them. Since we can-
not query the users about those attributes directly, we willlimit
our preference elicitation queries to ranking individualsonly and
collect the information associated with them, building a preference
model as we go. More specifically, the user is presented with indi-
viduals and asked to rate them as eitherliked, dislikedor neutral.
With this feedback (see top-left of Figure 2) the user’s predicted
preference order is modified by combining the statistical score and
confidence interval for how much an attribute value is liked by the
user to produce a partial pre-order representing their preferences.
This process continues again with the elicitation method moving
betweenexplorationandexploitationphases in order to determine
which item to present to the user next for their consideration and
also to ensure that a sufficient cross-section of the item space is
presented in order to obtain an accurate preference order.

We focus on the elicitation of user preferences by developing an
elicitation technique that is itself guided by the expert supplied on-
tology. We will then show how this process can be made more
efficient by clustering the items in the ontology. In the restof
the paper we will present this preference elicitation process and



Figure 2: A High-Level Schema of the Preference ElicitationProcess: users express their preferences over individualspresented
to them (‘Feedback’ box in the figure). The system will then update their preference profile consisting of a partial pre-order over
certain attributes as well as the user ranking history. The system will then consult an ontology in order to guide the nextelicitation
query (in terms of a new individual to be ranked – ‘Next Item Selection’ box). The system goal is to obtain confidence in previously
elicited preferences (exploitation) as well as to cover newpreferences (exploration).

its clustering-based extension. We also briefly discuss thebuilding
of a preference model on behalf of the user and its evaluation.

3.2 Ontology Guided Preference Elicitation
As described above, the goal is to elicit implicit user preferences

over some predefined attribute space through the rankings ofin-
stances that the system offers to the user. Once we have enough in-
formation about the user’s rankings, we can start building the user
preference profile. The dynamics of this process are designed so
we can confidently elicit as many preferences as possible andat the
same time allow for an interesting interaction between the user and
the system. The idea here is to have a trade-off between wanting to
learn more about the current hypothesis regarding the user’s pref-
erences and wanting to more widely explore the user preference
hypothesis space as well as keeping the user happy and engaged.
In the first case, we would like to become more confident about the
user preferences in a particular area of the ontology while in the
second case we would like to explore more areas in order to dis-
cover more preferences. From the user perspective we can view this
trade-off in terms ofexploitationof previously elicited preferences
andexplorationof new (as yet unrevealed) user preferences. Algo-
rithm 1 shows the main interaction loop the system follows. At any
given stage, we will look at a fixed size window of the user’s last
interactions (via the global variablewindow) in order to determine
the nextpreference elicitation query type. We define four types of
preference elicitation queries, namely:similarity queries, queries
with controlled dissimilarity, exploration queriesandexploitation
queries. Similarity querieswill search and offer the user an item
similar to those last seen;queries with controlled dissimilaritywill
return an item which is less similar to these items (as determined
by the ontology);exploration querieswill return an item which is
classified to sufficiently different attribute values to items last pre-
sented whileexploitation querieswill return an unseen item which
holds a high value of information (see Section 3.2.3). At anystage
the system has to make a decision in regard to the next preference
elicitation query (see Algorithm 2), which determines the dynam-
ics of the system. In each of these queries we call the function
getItemRelated() to return items at the top, middle or bottom

Algorithm 1 Elicit Preferences

elicit()

window ← {}
loop

query ← nextPreferenceQuery()
response← userResponse(query)
window ← window ∪ {query, response}
updatePreferenceOrdering(query,response)

end loop

of the ordered result set. We discuss the main ideas behind these
decisions in the remainder of this section.

3.2.1 Similarity Queries
When receiving a positive response from the user, it is quitenat-

ural to form a hypothesis which entails that the informationwe
are encountering at the current stage of elicitation is classified to
attribute values which will be highly ranked in the user prefer-
ence profile. Querying the user about similar information isde-
sirable in order to either gain further confidence in this hypoth-
esis or alternatively contradict it in which case we will conclude
that these high rankings were due to noise. The way we achieve
this is by executing similarity-based P-SPARQL queries which re-
turn the top-k individuals in relation to the current attribute values.
Due to the nature of these selections, the resulting individuals will
be classified not only to the exact same attribute values the user
has ranked highly but also to values which are highly similar: the
proceduregetItemsRelated(item,x, y) executes a P-SPARQL
query and returns itemsx to y when ordered w.r.t the attributes
attr(1) . . . attr(n) associated with a givenitem wherex andy
specify an integer range of records. A simplified version of such a
query is given below:

SELECT RECORD x TO y
PREFERRING

attr(1)∼= item.attr(1)
AND



Algorithm 2 Next Item Selection

nextPreferenceQuery()

possibleQItems← {}

queryType← establisℎQueryType()

if queryType = Similar then
possibleQItems← getItemsRelated(lastQItem,1, k)

else ifqueryType = ControlledDissimilarity then
possibleQItems← getItemsRelated(lastQItem,k, l)

else ifqueryType = Explore then
possibleQItems← getItemsRelated(lastQItem,l,m)

else ifqueryType = ExploitPreferences then
possibleQItems← getItemsWitℎHV I()

end if
return rand(possibleQItems)

Algorithm 3 Establish Preference Query Type

establisℎQueryType()

1: if ∣window∣ < winSize or negResponse(window) ≤
negTℎr then

2: queryType← Similar
3: else ifglobalNegResponse() ≤ globalNegTℎr then
4: if previousQueryType = Similar then
5: queryType← ControlledDissimilarity
6: else
7: queryType← Explore
8: end if
9: window ← {}

10: else
11: queryType← ExploitPreferences
12: window ← {}
13: end if
14: return queryType

attr(2)∼= item.attr(2)
. . .
AND

attr(n)∼= item.attr(n)

We keep gathering preferential information about these values until
a certain threshold is met. This threshold will also be influenced by
the number of negative responses we receive from the user where
in case this number is high, the number of iterations we will spend
on the current values (e.g. current branch in the ontology) will be
reduced. Algorithm 3 shows the management of these parameters
which will establish the type of preference elicitation query we will
use next. We adopt this type of query when the window of user
interactions has not yet reached its maximal size and the response
we get from the user is not negative enough (line 1).

EXAMPLE 4. Suppose the user has ranked an item classified
to music stylesHouseand Technoand with the release year 2002.
The P-SPARQL query with respect to this item will then be:

SELECT RECORD 1 TO k
PREFERRING

?style ∼= :House
AND

?style ∼= :Techno
AND

?releaseYear∼= 2002

Algorithm 4 Select Items with High Value of Information

getItemsWitℎHV I()

partialPreorder← collectPreferences()
totalPreorder← computePreferences(partialPreorder)
value← null
i = 0
while value = null do

if totalPreorder[i] /∈ partialPreorder then
value← totalPreorder[i]

end if
i++

end while
return getItems(value)

We will then randomly select an item from this result set and present
it to the user as the next elicitation query. We can assume that
this elicitation query item will have similar attribute values to the
previous one. For example, music stylesHouseand Trip Hop and
with the release year 2003.

3.2.2 Querying Diverse Items
Let us consider now the case where we have elicited a sufficient

amount of information about a certain branch in the ontology. We
would like to change our preference elicitation queries so that we
can elicit user preferences about other parts of the ontology. If the
reaction of the user was sufficiently positive in the previous phase,
in order to make the transition between items smoother and offer
a better user experience we select items within a limited distance
from the previous items. In this caseestablisℎQueryType will
return query typeControlledDissimilarity which will modify
the call togetItemsRelated by selecting elements from the mid-
dle of the result set (controlled by the parametersk and l pre-
determined as a function of the size of the item-space).

EXAMPLE 5. Consider the item ranked in Example 4 and sup-
pose we have now reached the stage where we would like to query
items with certain diversity to this item. We will execute the same
P-SPARQL query as before with the parametersk and l. We can
assume that the next elicitation query item will have attribute val-
ues which appear within a certain limited distance to the previous
one. For example, music stylesDanceandAmbientand the release
year 2000.

However, if the user’s response to the previous phase was notpos-
itive, then eliciting preferences from that particular area in the on-
tology may no longer be desirable and we can try moving further
afield. Since we are dealing with hierarchical structures, it is rela-
tively easy to control the selection of preference elicitation queries
and increase the level of dissimilarity our P-SPARQL query returns.
In that case we will execute anexploration querywhich will select
items from the bottom of the similarity query’s result set and will
return an item with greater distance than the last window. Note that
once we have selected an item via these query types, we will go
back to querying with similarity (which means we will reset the
window) until the threshold criteria will entail querying with cer-
tain diversity again.

3.2.3 High Value of Information
In many domains, users may have preferences over more than

one type of individual. In ontological terminologies, theymay hold
preferences over different branches in the hierarchy. Therefore,
once we have gathered enough confidence in the preference elicita-
tion for a particular part of the hierarchy, it is important to be able to



explore different areas as well. In our work, preferential informa-
tion with ahigh value of informationare those preferences the user
holds which we have not yet revealed. In order to discover these
preferences we need to be able to explore individuals classified to
attribute values the system is uncertain about. Since we aredealing
with hierarchical structures, here again we can control theselec-
tion of preference elicitation queries. We will choose to select new
attribute values about which we are uncertain of the user prefer-
ences and which are highly similar to known preferences. Theway
we achieve this is by computing the preferences we have obtained
from the user up to this point as a partial pre-order and then search-
ing for an attribute value which does not appear in this pre-order
but is similar to an attribute value which is highly preferred in the
order. The obtaining of a partial pre-order over a certain attribute
from ranked individuals is briefly discussed in Section 3.4.Once
we obtain the partial pre-order, we expand it to a total pre-order
(as described in Section 2.3) and select an attribute value which ap-
pears highly ranked in the total pre-order but does not appear in the
partial pre-order. Since this value did not appear in the partial pre-
order we can deduce that the user has not yet ranked sufficiently
enough items of this type. And since it appears highly rankedin
the ordering, it satisfies our High Value of Information criterion.
Algorithm 4 shows a simplified version of these ideas where the
getItems(value) procedure is assumed to execute a P-SPARQL
query selecting items with a certain attribute value which equals a
given value. In terms of user interaction, we will use this query
type in order to re-start the elicitation process when repeatedly re-
ceiving negative feedback from the user (line 3 in Algorithm3).
Note that this preference query type is also used at the beginning of
every user session.

EXAMPLE 6. Suppose we have calculated the user preferences
as a partial pre-order in terms of music style and the resulting or-
dering is:

{AlternativeRock, ProgRock}THEN {Electronic}

Calculating the total pre-order, the music styleIndieRockwill ap-
pear in a high position in the total pre-order and will be usedto
select the next preference query item (see Figure 1).

3.2.4 Complexity and Performance Issues
The main difficulty when it comes to database querying with

preferences is the complexity of queries. Even though the basic
ideas behind the Pareto and Cascade operators are simple, the na-
ture of comparison queries makes them quadratic in the number of
items. Since we are dealing with large item spaces and since the
execution of such queries could be very frequent, it is crucially im-
portant to make these queries more efficient. Furthermore, in our
case, when we wish to explore diverse items w.r.t a ranked item,
it is unnecessarily expensive to compare all particular individuals
to each other in order to get this desired effect. In order to avoid
that, it would be better to focus our attention on part of the item-
space. We do so by grouping our individuals into some high-level
clusters and reason over these clusters before we dive into the ac-
tual selection of particular preference query items. We discuss this
enhancement in the next section.

3.3 Making Preference Elicitation Faster with
Clustered Ontologies

There are many ways to cluster categorical and numerical in-
formation. In our work, we make use of a particular structure,
namelyexplicit semantic relations, which is knowledge described
in the ontology by way of direct semantic associations between in-
dividuals. This is usually done viaroles which describe a direct

semantic relation between individuals of the same type. Forexam-
ple, similarTo : Artist 7→ Artist to describe that one artist is
similar to another. These structures can be viewed as weighted or
unweighted graphs in which elements of the item-space are nodes
of the graph and the semantic relation determines the edges (e.g.
similarTo). We find that in many domains there exist classifi-
cations which form this kind of structure and induce a semantic
network and in some cases a similarity network. In our example,
there exists a similarity network between artists, available in music
libraries etc., which can be viewed as a graph (in our case, anun-
weighted graph) and allows us to generate a high level hierarchical
clustering structure.

3.3.1 Clustering Semantic Relatedness
The main idea behind clustering similarity graphs is to lookfor

highly connected sub-graphs. The way this is done is throughmeth-
ods which are based onminimum cut treeswithin the graph. Given
a graphG(V,E), a cut is a set of edges whose removal will dis-
connect the graph. A minimum cut is a cut with a minimal num-
ber of edges. [15] presents a clustering algorithm which computes
minimal cuts iteratively and looks for sub-graphs with a high level
of connectivity. At the end of this process, the graph will bepar-
titioned into j clusters wherej is the number of clusters and is
unknown at the beginning of the process. In our work we adopt
this technique since it has a simple generalisation into a hierarchi-
cal clustering method. This is a very desirable effect sincewe are
dealing with ontologies which treat hierarchical structures straight-
forwardly. The resulting cluster structure gives a high-level classi-
fication of individuals with some similar characteristics.

3.3.2 Querying the Clustered Item Space
The basic idea behind our enhanced preference elicitation tech-

nique is similar to what we have seen before. The main difference,
now that we have our items clustered, is that on every elicitation
query, we will first determine which cluster we would like to select
from and then execute the P-SPARQL query limiting the search
to that cluster (and thus limiting the complexity to the sizeof the
cluster). Algorithm 5 (which now replaces Algorithm 2) shows the
revised preference query item selection procedure with clustering.
The selection of the particular cluster will depend on the preference
query type and the cluster of the item previously ranked according
to the same principles we discussed in 3.2.

3.4 Building the Preference Model
During the preference elicitation process, users encounter a va-

riety of different items whose attributes are described in terms of
concept classes. These concept classes are used to represent their
preferences. We now build a partial pre-order preference relation
over those classes on behalf of the user. The way we approach this
is through standard statistical reasoning where we look at the mean
score of individuals classified to each class taking into account the
confidence of this score. For each concept class, we compute its
score and confidence. The score of a class is measured in termsof
the probability that if we draw an individual classified to this class,
it will be ranked positively, negatively or neutrally. A requirement
for a class to be included in the partial pre-order is that itscon-
fidence measure is at most equal to some predetermined constant
which determines how sparsely ranked a concept might be to be
included in the partial pre-order. We will order the classesin the
partial pre-order according to their score and confidence where two
classes will be ordered at the same level if they do not have a sig-
nificant statistical difference. This is computed in relation to their
overlapping confidence interval ratio. This partial pre-order pref-



Algorithm 5 Next Item Selection (revised)

nextPreferenceQuery()

possibleQItems← {}

queryType← establisℎQueryType()

if queryType = Similar then
c← lastQItem.cluster
possibleQItems← getItemsRelated(lastQItem,c)

else ifqueryType = ControlledDissimilarity then
c← getSimilarCluster(lastQItem.cluster)
possibleQItems← getItemsRelated(lastQItem,c)

else ifqueryType = Explore then
c← getDiverseCluster(lastQItem.cluster)
possibleQItems← getItemsRelated(lastQItem,c)

else ifqueryType = ExploitPreferences then
c← getClusterWitℎHV I(lastQItem.cluster)
possibleQItems← getItemsWitℎHV I(preference, c)

end if
return rand(possibleQItems)

Figure 3: Overlapping Confidence Intervals Example

erence model will be then expanded to a total pre-ordering using
(Section 2.3). Due to lack of space, we do not present the mathe-
matical details of this method. However, this can be easily derived
using standard statistical inference.

EXAMPLE 7. Consider the scoring statistics of four classes as
gathered by the system according to user responses in Figure3
given in terms of confidence intervals[0, 1]. Computing the over-
lapping confidence interval ratio of classesA andB, we can infer
that A andB should be considered at the same preference level.
On the other hand, classC will be strictly preferred over classA.
Similarly, we can compute the overlapping confidence interval ra-
tio of classesB andC. The resulting partial preference pre-order
in this example will beC ર {A,B} ર D.

4. EXPERIMENTAL RESULTS
We evaluate our preference elicitation methods through a series

of experiments in the domain of music. We have implemented a
music preference elicitation system we callThe Music Preference
Explorer which selects and suggests music to users according to
the preference elicitation methods described above. We ranan ex-
periment with the system and several users.

4.1 Data Model
The data model we use is an ontology we collected from infor-

mation available on the web. The ontology consists of 134 artists
and around 1200 tracks from 338 albums of popular rock, pop and

electronic music. We created a hierarchy of 137 styles whichis ar-
ranged as a DAG and classifies each album to at least one style (and
around four on average). We also collected similarity information
between artists and clustered our data set into 26 differentclusters
arranged hierarchically according to the method describedin 3.3.
The cornerstone for this dataset is theMusicBrainzlibrary. How-
ever, since this is a new service, some classifications needed to be
collected manually from other resources on the web.

4.2 User Trials
When a user logs into the system, they are presented with a piece

of popular music and can specify their ranking as one of the fol-
lowing options: they can either say they like the music they are
listening to, they do not like it or that they are not sure about their
preferences. The system then collects those rankings and gradually
builds a preference model on behalf of the user in terms of themu-
sic style classified. The system executes the preference elicitation
cycle we described in 3.2. If the user responds positively tocertain
types of music, the system will suggest music which is similar ac-
cording to its model. However, it will gradually select music with
a different style and at some point explore styles which are quite
different (and notify the user that it has done so). If a user gives a
negative response to a certain type of music, this process will occur
faster. We ran the trial on 22 users and present the results inthe
following section.

4.3 Results
We measure the performance of our methods in terms of the pre-

diction accuracy of the elicited preference model as well asthe cov-
erage of different preference levels.

4.4 Preference Model Accuracy
Our first test measures the accuracy of the elicited model by try-

ing to predict the user response on random tracks according to the
created preference model. Figure 4 shows the accuracy of correctly
predicting whether a user will say they like a piece of music and
when they say they will dislike it. We compute the mean rank ofa
track (according to its classified information) and computea thresh-
old (depending on the number of preference levels the user holds)
to differentiate between predicting whether the track willbe liked
or otherwise. In order to measure the growth in accuracy, we recre-
ated the user ranking cycles by first building their preference model
using the first 20 tracks (in order) and gradually adding tracks until
we used all the tracks they had ranked. We have clearly shown a
growth in prediction accuracy and reached over 80 percent accu-
racy on average from around 160 examples. Note that these results
were achieved by basically looking at a single (probably very cen-
tral) attribute and performing well on average.

4.5 Preference Coverage
Finally, since we are dealing with a dynamic process where our

methods are designed to cover different user preferences over time
by allowing the user to explore new preferences, we measure pref-
erence coverage in terms of preference ordering and clusters cov-
ered. Figure 5 shows the growth in the number of different prefer-
ence ordering levels we elicit over time. This includes the partial
pre-order computed through the statistical analysis described in 3.4
as well as the number of total pre-orders realised after augment-
ing this pre-order with further information from the ontology. This
gives some idea about the dynamics of the system and shows the
growth in elicited information over time. In addition to thenumber
of preference levels, we also measure the number of clustersthe
user has visited since this is a very central part of the elicitation



cycle. Note that when reaching over 180 ranked items, the number
of preference levels starts to drop. This is due to the overlapping
confidence interval matching we described in Section 3.4: some
ordering levels are merged when gathering more statisticalconfi-
dence. Note also that when reaching this number of rankings,our
model prediction accuracy reaches around 85% (Figure 4). This
shows that the preference ordering matching was indeed justified
and better reflected the user’s true preference.
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Figure 4: Prediction accuracy progression: shows the accuracy
of predicting whether the user will like/dislike a track accord-
ing to the elicited preference ordering
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Figure 5: Preference coverage progression: shows the progres-
sion of preference ordering levels (partial and total) as well as
the number of clusters visited. Note that when reaching over
180 ranked items, the number of preference levels starts to drop
due to overlapping confidence interval matching as described
above, as the confidence grows

5. CONCLUSIONS
In this paper we have developed a preference elicitation method

which caters for a large class of problems in preference modelling.
In particular, we would like to elicit a preference orderingthat can
be used as the basis of a formal preference query to a databaseof
items. However, on the one hand user’s are not adept at making
explicit their preferences and on the other, even those preferences
that could be made explicit, may be difficult for the non-expert user
to specify in a formal query language. The technique we developed
here provides a formal solution to this problem while at the same
time hiding the technical detail from the user. In our method, we

rely on a complex model of the domain at hand; namely a domain
ontology created by experts. We presented an interactive elicitation
process which is dynamic and is able to elicit many preferences by
covering large portions of the ontology. During this process, users
are presented with examples which they are asked to rank and a
system collects this information and builds a preference model on
their behalf. The dynamics of the process relies mainly on the in-
teraction between exploiting previously elicited preferences thus
suggesting similar examples and exploring new preferences. We
evaluated our methods through experiments run with severalusers
in the domain of music and show significant results in terms ofthe
preference model prediction accuracy as well as the coverage of
different preferences elicited during this process. For future work,
we intend to investigate the elicitation of more complex preference
models, i.e., dependency structures over multiple attributes as well
as a more advanced use of ontologies and semantic web features.
Another avenue for future work would be in the area of collabora-
tive filtering. We can aggregate the preference profiles of similar
users to provide a more accurate ‘collaborative’ preference.
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