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ABSTRACT 
In many web communities, users are assigned a reputation based 
on ratings on their past contributions, and this reputation in turn 
influences the recommendation level of their future contributions. 
In this type of system, there is potentially an incentive for authors 
to copy highly-rated content in order to boost their reputation and 
influence within the system.  We describe this strategy as a 
copied-item injection attack. We conduct an empirical study of 
this attack on the online news discussion forum Slashdot.  We find 
evidence of its use and demonstrate its effectiveness in eliciting 
high ratings. We explore variants of this attack in other domains 
and discuss potential countermeasures.. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information Filtering 

General Terms 
Reliability, Security. 

Keywords 
Manipulation, Recommender System, Online Discussion, User-
Contributed Content 

1. INTRODUCTION 
Numerous online communities offer the ability to post and view 
user-contributed content, but participants can suffer from 
information overload in high-traffic environments. Often, rating 
and filtering systems are used to promote content that has been 
created or rated highly by leading users in the community. With 
these systems, an item’s initial prominence is often based on the 
reputation of the content creator. This reputation is based (at least 
in part) on feedback on items that user has created in the past, and 
serves as a signal of quality as well as an incentive to improve 
quality.  For example, reviews by ‘Top Reviewers’ on ePinions 
[5] and ‘Elite Members’ on Yelp [22] are prominently displayed, 
and comments by Slashdot [21] members with higher ‘Karma’ 
start at a higher level than other comments. 

 
For these systems, as with other recommender systems, there is 
increasing concern about manipulation by users with a vested 
interest in promoting or burying certain target items. There is a 
growing literature on addressing the threat posed by attackers who 
create multiple shill or sybil accounts, and then use them to rate 
items in patterns (perhaps randomized) that will lead to 
collaborative filtering algorithms boosting or burying the target 
items. Defense techniques that have been developed include 
detecting and removing anomalous user profiles [2, 17, 12, 20,13], 
limiting the influence of user profiles until they have made 
contributions [19], and providing monetary incentives for honest 
rating [14, 1]. In this paper, we identify a new class of attacks that 
user-contributed content recommenders may be vulnerable to: the 
injection of duplicated or plagiarized items. We study the 
prevalence and effectiveness of this attack using a corpus of over 
20 million comments from the technology news website Slashdot, 
and propose countermeasures against this attack. 
 
Execution of a copied-item injection attack involves a two-step 
process for the attacker: First, she must find old items (comments, 
on Slashdot) that have been rated very highly by the community. 
She can then duplicate the entire item, or a portion of the item, 
and post this to the site as a new item (i.e., a new comment on a 
different story), claiming to be the creator.  Site moderators do not 
always recognize this as a recycled item, and so rate it highly 
based on the quality of the original item. In turn, this leads to the 
reputation of the attacker being increased, as she is the purported 
author of high-quality content. Subsequently, she can exploit this 
higher reputation, and the improved visibility it brings, to attract 
attention to subsequent original (and possibly inferior) items she 
creates. 
 
The first question raised by attacks of this form is: Are they 
harmful to the site or the rest of the community? This is not 
obvious, because in some contexts it may be a useful contribution 
to redirect the community’s attention to valuable information that 
was known in the past, but has been forgotten. For any given 
domain, this will need to be weighed in comparison to the harm 
caused by the attack. In section 5, we argue that, for the Slashdot 
domain, the potential damage caused by this attack outweighs the 
potential benefit.   
 
Existing techniques to prevent or limit manipulation in 
recommenders do not protect against copied-item injection 
attacks. This attack does not require the attacker to change her 
rating profile, so procedures that detect and filter anomalous 
ratings would not work. The influence-limiting approach also is 
not effective: Creating a good duplicate, or rating it highly, will be 
counted as a contribution by the attacker, but in this context, the 
attacker is merely reusing earlier information from raters on the 
original item to infer that the copy will be well-liked, but is not 



actually contributing new information. Existing mechanisms that 
prescribe monetary incentives to rate honestly do not address this 
problem, as the raters who rate the copies highly are being honest 
about their perceptions of its quality. In section 6 we discuss some 
techniques that could be used to combat copied-item injection 
attacks. 
 
The rest of this paper is structured as follows. In section 2, we 
review the related literature. In section 3, we formalize our 
definition of copied-item injection attacks. Section 4 describes our 
empirical analysis of this attack on the Slashdot dataset, and our 
measurements of the current prevalence and effectiveness of this 
attack in the Slashdot domain; we discuss the consequences of 
these results in Section 5. In section 6, we discuss 
countermeasures against this threat. We conclude and identify 
directions for future work in section 7. 

2. RELATED WORK 
Recently, there has been a rich literature centering on the 
vulnerability of collaborative filtering recommender systems to 
attack, as well as defenses against those attacks. This was initially 
observed by Lam and Riedl [8] and O’Mahony et al. [16]. This 
literature has focused on a particular class of threats: attackers can 
create “shill” or “sybil” user profiles, and use these to promote or 
bury items they have a vested interest in. A number of authors 
have studied variants of this attack, as well as defenses against 
them; we refer readers to recent surveys by Mobasher et al [15] 
and Mehta and Nejdl [13]. Techniques to defend against this 
attack include methods to detect and remove anomalous user 
profiles [2,17, 12, 20, 13], limiting the influence of user profiles 
until they have made contributions [19], and providing monetary 
incentives for honest rating [14, 1]. The chief difference with our 
current work is that we consider a different class of attack: we 
study settings in which, in addition to potentially injecting shill 
user profiles, the attacker can inject items with known quality 
(derived by copying existing items).  
 
There has also been prior research on the Slashdot moderation 
system. Lampe and Resnick [11] analyze the performance of the 
moderation system in identifying high-quality comments, and 
show that it is largely effective. Lampe and Johnston [9] report 
that new users of the site use the moderation feedback they 
receive as a cue to learn the norms of the community. Lampe et al. 
[10] propose to use a second level of collaborative filtering to 
adapt users’ interface views of the moderated comments. Poor 
[18] argues that Slashdot is an archetypical public sphere on the 
Internet, and describes the role of the Slashdot moderation system 
in fulfilling this function. 
 
David and Pinch [3] conducted a qualitative study of strategic 
reviewing on Amazon.com. They document several cases of 
plagiarized reviews; one of the motives they identify for 
plagiarizing is to build up a long profile of ratings with low effort. 
This is similar to the modus operandi of our copied-item injection 
attack, except that the community’s ratings on the content are 
more important than the raw number of comments in our setting.  

3. MODEL AND TERMINOLOGY 
In this section, we introduce terminology to clarify our discussion 
of the copied-item injection attack. 

There is a set U of users; we use h to denote an honest 
contributor, and a to denote the attacker. A set of items I; each 

item i ∈ I has two characteristic features: creator(i) denotes the 
user who is listed as the creator of the item, and content(i) is a 
description of its content (text, image features, etc.). The attacker 
has some target content T that she would like to promote. At any 
point in time, an item has a recommendation level rec(i). For 
simplicity, we assume that the recommendation level is not 
personalized; for personalized recommenders, rec(i) could denote 
the average recommendation level among the target community, 
or another summary statistic.  

Each user u has a reputation R(u). Item recommendation level 
rec(i) is assumed to depend on its creator’s current reputation 
R(creator(i)) as well as the corpus of ratings on the item set I. The 
user reputation R(u) is assumed to be computed based on the 
corpus of ratings; we assume that, other things being equal, R(u) 
is higher if a particular item i with creator(i)=u has higher 
recommendation level rec(i). We assume that two items i,j with 
content(i)=content(j) have positively correlated recommendation 
levels, because the raters cannot consistently identify the later 
item as having duplicated content.  This is realistic in a system 
with a large number of items and users. 

A copied-item injection attack involves the attacker copying 
a genuine item i, with a high rec(i), to create a new item c, with 
content(c)=content(i), but creator(c)=a while creator(i)=h. The 
attacker then waits for c to collect a sufficient number of ratings, 
so that rec(c) increases towards the high level of rec(i). Finally, 
attacker a creates a new item t with creator(t)=a and content(t)=T. 

The simplest measure of the success of an attack is the 
difference between rec(t) after this attack then it would have been 
if item c was not created. A slightly more nuanced measure, 
which is natural is the context of analyzing a’s incentives, is the 
increase in a’s net benefit, accounting for the cost of creating the 
copy c and the opportunity cost of not creating an original posting 
instead. We explore this idea further in section 6. 
 

4. ANALYSIS OF SLASHDOT 
Slashdot is a high traffic online news site and an active forum that 
receives several thousand user-contributed comments and over a 
million pageviews every day [20].  To help the users navigate 
among the large amount of user-contributed material, it uses a 
rating/moderation system that lets them filter comments based on 
a score from -1 to 5.  This system has elaborate controls to detect 
and discourage abuse, including rules on who can moderate, how 
often they can moderate, and how much they influence the 
score[11].  
 

4.1 Slashdot’s Moderation System 
The system revolves around two scores assigned to user accounts: 
karma, which is accrued by contributing comments and receiving 
positive moderations on those comments, and mod points, which 
allows users to rate other users comments up or down.  In this 
system, the users and items are linked by authorship, so that each 
item's rating is aggregated into karma for the user.  A user’s 
karma then determines both the probability of acquiring mod 
points and the starting score for their posted comments.  Because 
positive ratings on an authors comments gives the author 
additional influence within the system, there is clear incentive to 
manipulate the system if a users goal is to gain influence or 
prominence in these discussions. 



Additionally, users can meta-moderate and judge whether a users 
mod points have been spent appropriately.  In this process, users 
can view comment moderation pairs and give a up/down feedback 
on if each moderation was appropriate.  Users who frequently are 
evaluated as having rated inappropriately become less likely to 
receive mod points.  This was designed to defend against simple 
manipulations where mod points were traded or spent on inferior 
comments for the express purpose of improving another users 
karma. 

While this system has some algorithmic checks for basic profile-
injection strategies such as detection of high-traffic cyclical 
moderation patterns between users, there are some manipulation 
strategies that can be used to gain undue influence within the 
system.   The online comic WellingtonGrey has humorously 
documented a few of these in flowchart form [6].  This chart 
identifies tactics for accruing karma including profile-injection ("a 
second account with mod points"), strategically expressing 
popular sentiments in comment text ("Is it about Microsoft? Say 
they suck.  Is it about Apple?  Say they rule.").  It also advises 
recycling of old material.  ("Do you have any old +5 posts on this 
topic?  Quick, post one!")  This third tactic describes copying an 
item to gain positive ratings, and therefore karma.  

The Slashdot environment is likely to be an ideal environment for 
this type of attack, due to several factors.  Its longevity as a news 
source (it celebrated its 10th Anniversary in 2008), and high 
volume of traffic gives it a large library of existing comments that 
could be recycled.  Since so many comments are posted every 
day, it is also reasonable to assume readers will be unable to 
recognize an older comment out of the millions authored on the 
site.  Additionally, the nature of "news cycles" means that certain 
topics recur frequently: a subject line search shows that Slashdot 
has over 200 stories on Windows Vista, which has been in the 
news for 2-3 years.  

Based on these factors we can make a few generalizations about 
where a copied-item attack might be used.  Certainly it must have 
an environment where the cost of item creation is low and also the 
cost of copying an item is similarly low.  The incentive to use the 
attack must come from when the author receives some indirect 
benefit from positive ratings on the items they create.  The Copied 
Item attack will also be easier where there are extremely large 
numbers of items so that the probability of duplication detection 
by recognition from readers is low.  Finally, it will be easier to 
deploy the attack when items have simple data structures, such as 
a comment with a block of text, a subject line, and an authorship 
reference, as opposed to items that might be indexed on many 
different attributes and therefore may have too many similar 
attributes to the original. 

4.2 Description of Slashdot Data 
We used a snapshot of Slashdot’s database from January 28, 2009, 
which contained 20,830,313 comments contributed by 307,158 
users across 158,867 news story discussions. Each comment 
record contained a short subject line, a longer message body, a 
timestamp of publication, the final rating for the comment, and 
numerical ids referencing for the story and author.   
The rating distribution for comments, shown in Figure 1, is 
roughly a right-skewed normal distribution centered on the mean 

of 1.158 with a standard deviation of 1.149.  1.30 million 
comments have a rating of 4 or 5, or about 6.2% of the entire 
population. 

Figure 1: Score Distribution for All Comments on Slashdot 
The comment text length distribution is shown in Figure 2 and 
follows a lognormal distribution.  After a logarithmic 
transformation, the mean comment length is 5.68 (293 characters) 
with a standard deviation of 1.11.  The entire body of text from all 
of these comments is roughly 11.0 billion characters. 

Figure 2: Histogram of Log-Transformed Comment Lengths 



4.3 Detection of Copied Items 
In this study, our goal was to detect plagiarized comments in this 
large Slashdot comment corpus.  The core of this process was 
finding comments that shared large substrings.  However, there 
are several conflating factors which could legitimately lead non-
attackers to reuse large substrings within their comments:  users 
quote from earlier comments or quote the same source; there is a 
form of political activism that involves posting the same text 
repeatedly such as the DeCSS decryption codes; and some users 
attempt to disrupt a forum by posting as many junk comments as 
possible.  We processed the comments conservatively, so that we 
would identify a comment as plagiarized only if none of the 
conflating factors is a plausible explanation for the duplicated 
text. 

In order to detect plagiarisms our first step was to detect 
comments that had significant duplicate text.  We implemented a 
Rabin-Karp search [7] with a window of 255 characters.  Using 
this method we converted each 255-character substring of a 
comment message body into a hash value, and searched for co-
occurrences of hash values across multiple comments.  The entire 
corpus generated about 6.4 billion (hash,comment_id) pairs.  Any 
comment found to have more than 3 hash collisions with any 
single previously posted comment was logged.  We then went 
through the logged comment pairs and confirmed that there was 
significant duplicated text using a longest common substring 
algorithm.  This process resulted in 196,349 pairs of potentially 
plagiarized comments among the 20-million comment corpus. 

In order to narrow this set of comment pairs to distinguish 
comments that may have been directly plagiarized with intent to 
boost ratings, we applied a sequence of filtering steps to the 
original set of copied items.  These included: 

1. We removed any pairs where the original comment had a 
final rating score of 3 or less.  This was eliminate comment 
copies that had little reason to expect a high rating. 

2. We removed any pairs where the longest common substring 
was less than 90% of the copied comment length.  This was 
to avoid comments that had significant original material as 
well as copied content. 

3. We eliminated comment pairs where the copied comment 
did not begin with the longest common substring.  This rule 
was used to weed out quotations since attributions or 
quotation marks would typically prefix a quote. 

4. We removed any comment pairs that appeared in the same 
story.  This was to avoid implicit quoting within replies. 

5. We eliminated comment pairs where the copied comment 
was posted anonymously, rather than by a logged in user, as 
anonymous users see no direct benefit from having their 
post rated highly. 

6. We eliminated comment pairs where the original comment 
was copied more than once; this was used to control for 
overt reposting, DeCSS code posts, or other forms of 
habitual reposting. 

With these conservative restrictions in place, the set of probable 
plagiarisms was 735 comment pairs, where 423 users had posted 
the copied comments.  We visually inspected about two dozen 
pairs manually to confirm that there was no other apparent reason 
for duplication. 

4.4 Hypotheses and Results 
Intuitively, we expect that copies of highly-rated comments will 
also garner high ratings and be useful to potential attackers for the 
purpose of acquiring karma.  In this section we formulate three 
hypotheses that test this conjecture.  

Hypothesis 1:  Copying a comment with a high rating is profitable 
for attackers, in that it produces a comment which is more likely 
on average to be highly rated. 
If the copying of comments were profitable for an attacker, we 
would expect the copies of these high scoring comments to garner 
higher ratings than the population at large.  We found in the target 
population of likely plagiarized comments the rating distribution 
of the copied comments was substantially changed versus the 
distribution of the global population, as illustrated in Figure 3.  
Indeed population of copied comments had a mean of 2.15 vs the 
global mean of 1.16, nearly a full standard deviation higher than 
the global mean, a difference of 0.987 points. Additionally, 30.4% 
of items in the copied set had a rating of 4 or 5 as opposed to 
6.2% of the global comment population.  A two-sample t-test 
confirmed significance of both results (p < 0.001). This 
discrepancy confirms Hypothesis 1. 

Figure 3: Distribution of Scores for Copied Comments 

Hypothesis 2: Copying a comment with a high rating is more 
profitable than contribution of other content by the attacker.  
To see if this strategy is incentive compatible for the attacker, we 
looked at our set of copied comments compared with the mean 
rating for the copied item authors other items.  By comparing each 
of the copied comments scores with the users mean post rating in 
a pair-wise t-test, we found the copied item had a mean 
improvement of 0.730 points (p < 0.001).  This confirms 
Hypothesis 2. 
Hypotheses 1 and 2 confirm that copies of highly-rated comments 
tend to be rated highly even when taken out of their original 
context. It is conceivable that these comments add value to the 



readers of multiple topics, and that little damage is done by 
rewarding the copiers for reposting them. We will discuss the 
harm caused by the copied-item attack in more detail in section 
5.1. Here, we provide evidence that the copies damage the 
signaling quality of the Slashdot rating system: 

Hypothesis 3: The average rating of comments, other than the 
copied comment, by the copier is lower than the average rating of 
other comments by the original poster. 
In order to test this hypothesis, we first excluded all instances in 
which the original comment was posted by an anonymous user. (If 
the original comment was posted by an anonymous user, we could 
not identify other comments posted by the same user; further, it is 
clear to the readers that a comment is anonymous, and hence it is 
unlikely that they would improve their expectation of other 
anonymous comments). For each of the 683 surviving instances, 
we measured the average rating of all comments (other than the 
copied comment) posted by the original poster, and the average 
rating of all comments (other than the copied comment) posted by 
the copier. We find that the average rating for the original poster 
is 1.70, vs 1.38 for the copiers; a two-sample t-test confirms 
significance (p <0.001). This suggests that the copiers actually 
had lower quality than the original posters, and thus, the high 
rating they receive for the copied content reduces the ability of 
readers to distinguish them from the higher-quality posters who 
posted the original comments. 

Hypothesis 4: Copied comments are much more likely to be topic 
starters (comments starting a discussion thread) than other 
comments, since it would be more difficult to have a copied 
response seem appropriate as a reply to multiple comments. 
We looked at the location of our copied comment population in 
Slashdot discussions and found that of the 734 copied comments 
573 were topic starters.  If you contrast this with the entire 
comment population of 20.8 million, 6.28 million comments 
started topics.  A two-sample t-test indicates that the copied 
comments are 47.8% (78.0% vs 30.2%) more likely to be topic 
starting than a comment in general (p < 0.001).  Hypothesis 3 is 
therefore confirmed. The consequence of this hypothesis is that 
copying can distort the pattern of interaction on the site, skewing 
it towards breadth rather than depth of exchange. 

5. DISCUSSION 
With H1, H2, and H3 confirmed, it seems evident that item 
copying has been successfully used on Slashdot to systematically 
garner high ratings for comments and therefore improve the users 
karma score.  We expect that this type of item injection attack has 
potential to be a widespread problem both in the realm of Slashdot 
and other moderation-based comment systems as well as other 
collaborative filtering spaces.  In any forum where inserting 
copies of highly rated content is incentive compatible and 
technically possible there is a strong likelihood of abuse.  At the 
core of this incentive problem on Slashdot is the transitive 
property of item scores to users, where a user stands to directly 
gain influence in the system by receiving positive feedback on 
their items.  However, systems containing low-cost item creation 
may present different incentives for this type of attack, and it may 
create variations in overall impact. 

Simple manipulations to try and disrupt this type of behavior may 
add only marginal costs to the effort required to copy comments.  
On March 20, 2001 Slashdot deployed a code update that 
attempted to curtail comment “re-posting” by logging an MD5 

hash encoding of the entire comment text.  Subsequent comments 
that were posted with the same MD5 sum as a previous comment 
were rejected from the discussion.  We looked at our copied 
comments sample set and found 28 comments posted before this 
feature was deployed, 26 of which were exact copies.  After this 
change it was not possible to post the identical comment again; 
however, it was possible to make a trivial change to a comment, 
such as addition of whitespace, and repost.  Of the 707 copies 
detected dated after the March 20, 2001, 618 were identical to the 
original except for the insertion or deletion of punctuation and/or 
whitespace. After controlling for whitespace and non-
alphanumeric characters we found no significant difference 
between entire/partial match ratio between the two populations 
using a binomial test. 
We suspect that this may possibly be due to the extreme ease with 
which a duplicated post could be altered by adding even a single 
whitespace character anywhere in the text.  It also may be that our 
conservative heuristics used to detect likely plagiarisms select 
primarily towards exact matches in this data set.   
 

5.1 Is Slashdot comment copying really 
harmful behavior? 
From a certain perspective, it may be reasonable to point out that 
the copied comments on Slashdot do add value to the system.  In a 
sense, the positive ratings that the duplicated comments receive 
are signals from the raters that the comment has value, and this 
may add insights that otherwise wouldn’t be seen in this 
discussion environment.  While it may take a certain moral 
flexibility to ignore the taboo of plagiarism, the copied item 
posters could be thought of as agents of conversational arbitrage, 
seeking out and shining up old gems from previous discussions.  
However, simply looking at the reposted comments as harmless 
injections ignores other externalities of having unattributed 
reposting in a discussion system. Although the user ratings reflect 
the immediate visceral reaction of the raters to the content, this 
may not capture the entire value of a piece of content to the 
system. 

For the Slashdot domain, we believe that the potential damage 
outweighs the potential benefit: Users can always jog the 
community’s memory by quoting earlier comments with 
attribution instead of resorting to plagiarizing comments, and 
quoting is fairly widespread, so there is little additional benefit 
accrued through these attacks. In fact, given the availability of 
quoting as an alternative which meets community norms and 
requires negligible additional effort by the copier, the fact that a 
user would choose to not credit the original author is illuminating: 
it indicates that they expect to gain a better reception (and better 
ratings) by suppressing the fact that the content was duplicated. 
This in itself suggests that the ratings are not perfectly aligned 
with the community’s perception of the long-term value of a 
contribution. 
 
It is likely any systemic method to gain karma would have an 
undesirable effect on the Slashdot system, and become 
increasingly widespread if the technique was communicated 
between users.  One problem is this tactic distorts karma as a 
signal of someone who has contributed good fresh content.  For 
instance, in the Slashdot system, karma has a direct impact on the 
starting score of a users post.  Therefore a user with high karma 
user may start their post at 2, rather than 0 or 1.  This means that 



the comment ratings lose their effectiveness as a signal of quality 
as well in this particular situation.  This loss of signaling quality 
was borne out in our confirmation of hypothesis 3. 

The other potential impact if this tactic of copying comments was 
widespread is that it would have a negative impact on the dynamic 
actual conversations that occur within Slashdot.  Hypothesis 4 
confirms that these comments tend to be discussion-topic starters, 
but any replies to these copied comments would be very likely to 
be disregarded by the attacker.  They are, after all talking to a 
different person than the user who originally generated the 
comment text.  This means in as copied comments became more 
frequent within the system, the harder it would be for users to find 
genuinely interactive experiences. 

Ultimately, we believe the threat is significant enough that 
defenses against it merit careful consideration. This phenomenon 
potentially weakens both incentive and signaling function of the 
site’s reputation system: Users may be incentivized to copy items 
as a lower-cost way of building reputation than creating original 
content, even though the latter is a more valuable contribution; 
and, future original contributions by the attacker may start as a 
misleadingly high recommendation level, because they reflect the 
quality of the author of the original item, rather than the attacker’s 
inherent quality. Additionally, it may create an incentive for 
copying content without attributing the original author, which can 
disrupt the norms of the online community.  
 

5.2 Variants in other domains 
It is possible that a copied item injection attack could potentially 
appear in other types of recommender spaces where items can be 
inserted into the system with relatively minor barriers, just as 
profile injection attacks are potentially problematic in spaces 
where a user creation in a system is extremely low-cost. In 
particular, any systems where ratings on items transitively score 
the users who create the items will provide incentive for this type 
of attack. 

Although the Slashdot recommender system uses a simple voting 
method of collaborative filtering, it is sophisticated in tracking 
reputations for users and using these reputations to allocate 
visibility and influence. Reputation tracking is a powerful method 
of identifying high-quality contributors over time, so we expect 
that many recommenders for social web applications will adopt 
some it in some form. Then, copied-item injection attacks, 
perhaps in conjunction with other attacks, will become a potential 
threat. 

In particular, it is the combination of an item and profile attack 
that could be extremely problematic.  A sophisticated attacker 
could use the copied items to establish validity for shill items 
posted by shill accounts, and likewise rate other comments 
similarly with shill accounts.  This would potentially create a 
system where scores could be quickly increased on both shill 
users and items. 

In a movie recommender system (or other traditional item 
recommenders) a combination of an item and user injection could 
potentially distort recommender predictions if site maintainers 
were not vigilant about repairing duplication.  A copied item, 
whether legitimately cataloged as a variant of an original film (ie 
a “directors cut”) or sorted under a different name, could be used 
as a target item in a manipulative attack in order to “push” or 
“nuke” according to an agents agenda. 

Another application in which copying items can increase the 
power of an attacker is in search engine website rankings. Here, 
the `ratings’ are expressed in the form of other sites linking to a 
particular site. By copying some content from a high-quality site, 
an unscrupulous site operator can increase the chances of other 
genuine sites linking to his site. This will drive up the ranking of 
his site on search engine results pages; some of these pages can be 
used to damage readers through unrelated advertisements or 
fraudulent content. 

There are several other domains that could potentially see item-
injection attacks. In the news website space, gaming a 
collaboratively filtered news aggregator such as Digg [3] could be 
profitable by increasing traffic and therefore ad revenue.  

6. POTENTIAL COUNTERMEASURES 
In this section, we describe a framework for reasoning about 
countermeasures to the copied-item injection attack, and identify 
several possible techniques that could effectively combat this 
threat. There are two core factors behind the copied-item attack: 
(1) Users have an incentive to increase their reputation, and incur 
effort costs when they attempt to do so, either by copying items or 
by creating fresh contributions. (2) Copied items are likely to 
garner ratings that are similar to those of the original item. We 
frame our discussion of countermeasures with these two aspects 
of the problem in mind.  

For a given domain, it is helpful to visualize a space A of 
possible pieces of content, coupled with a distance metric that 
captures the similarity between two pieces of content: The smaller 
the distance between x and y, the more similar the pieces of 
content. For example, A could be the space of all text strings, and 
the distance measure could be based on edit distance, or keyword 
frequencies. For a movie domain, A could be defined by a set of 
features (title, actors, director, etc.), with a distance metric based 
on this feature similarity. Modeling the content space in this way 
allows us to reason about near-copies as well as exact copies. The 
cost and benefit to an attacker a in executing an item-copy 
injection attack can then be described in terms of this reference 
model. When a copies an item i to generate a near-copy item c, 
her cost is presumably increasing in the distance between 
content(i) and content(c), reflecting the effort of obfuscating the 
fact that the item was copied; for example, it takes some effort to 
reword a comment or change the whitespace and punctuation. The 
benefit accruing to the attacker depends on the ratings that c 
garners; given that i was a very highly-rated item, the benefit 
might be highest for an exact copy but drop off as the distance 
between content(i) and content(c) increases.  

Techniques to combat item-copy injection attacks can work 
by raising the cost of carrying out the attack, imposing a penalty if 
the attack is detected, or reducing the benefit of creating the copy 
item c.  

• One natural technique is to detect copies, and either 
prohibit them outright, or impose a reputation penalty 
when they are injected. This is the approach that Slashdot 
implemented when they prohibited exact copies of 
comments. In practice, however, this imposes an 
insignificant cost on attackers, as they only have to make 
trivial changes to a previous comment. Instead of merely 
identifying exact copies, a slightly more sophisticated 
approach might detect an item within a certain distance of 



a pre-existing piece of content, using a distance metric 
appropriate for the domain. This has a two-fold 
advantage: it forces attackers to put in more effort in 
modifying the original content, and in doing so, the copy 
is less similar to the original item, leading to a lower 
expected benefit. Another variation would be to not 
prohibit near copies, but rather, to merge similar items 
into a single logical ‘item-cluster’. 

There are two drawbacks to this approach, however. First, 
it is only as good as the distance metric used. This might 
spark an arms race between attackers and site managers, 
in which attackers continually find clever ways to retain 
the quality of the original item while appearing to be 
distant under the current metric, and site managers 
continuously update the metrics to plug these gaps. 
Second, as the distance threshold increases, there is a 
growing threat of false positives: genuine items that get 
mistaken for copies. This could hamper the contribution 
of honest users.  

• Alternatively, the defense can focus on reducing the 
benefit to users of copying items, relative to more socially 
valuable activities such as the creation of original content. 
The attacker derives benefit because of the increase in her 
reputation and the privileges that accompany a better 
reputation. This suggests that a more sophisticated 
reputation update may be effective: When a user a creates 
an item i, rather than increase her reputation based merely 
on the average rating of i, we should account for the 
average rating of similar items as well. For example, the 
creator’s contribution might be calculated as the 
difference between the average rating of item i and the 
average rating of the nearest (in terms of content distance) 
pre-existing item j; or, perhaps, use a similarity-weighted 
average of all pre-existing items. This reduces the benefit 
of copying high-quality items, hopefully to the point that 
users choose more valuable ways of building their 
reputation. Genuine posting of similar items would still 
be possible, but there would be a reduced incentive to do 
so. 

The same approach can be extended to tailor the 
incentives of raters as well as creators. The Influence 
Limiter [18] scores raters based on the amount they 
improve predictions for future raters. Loosely, a rater who 
is the first to rate a high-quality item high will gain the 
highest score, while subsequent raters will be measured as 
having diminishing contributions. A rater’s accumulated 
score is then used to limit their influence on others’ 
predictions. In the case of a profile injection attack, the 
effectiveness of each shill is stunted – as it adds no 
information, it will not earn a high reputation score, and 
hence have limited influence. As described in [18], the 
Influence Limiter might be susceptible to copied-item 
injection attacks: The attacker expects the copy c to have 
similar ratings to the original i, and thus, attacker shills 
can be the first to put in high ratings where relevant. This 
can be countered by scoring the early raters on items 
relative to a benchmark prediction that is the average of 
pre-existing items with similar content. 

• A third technique might be to rely on targeted moderation 
that flags items as ‘legitimate’ or ‘plagiarized’. Human 

moderators could be shown nearest content items, and 
might be more skilled at distinguishing genuine forms of 
copying from reputation-boosting plagiarism. The 
tradeoff, of course, is that this requires additional human 
effort that might be better spent in creating or rating 
items. In addition, as with rating systems, there would 
need to be a system to prevent attacker shills from 
controlling this moderation process, perhaps necessitating 
a level of “meta-moderation” as well. 

One constraint on all of these techniques is that calculating 
distances between pieces of content in a large database can be 
very computationally intensive. This might preclude the use of 
these techniques in a online mode. Instead, the automated 
techniques could be used offline to periodically filter items or 
adjust reputations. Human moderators trying to locate similar 
pieces of content online would have to rely on simple distance 
metrics.  

It is not possible to meaningfully evaluate the performance of 
these techniques on our existing dataset, as the attackers are likely 
to adapt the detailed form of attack once a specific 
countermeasure has been deployed. This is borne out by the way 
in which users sidestepped Slashdot’s check for identical 
comments, as described in section 5. The evaluation of the relative 
effectiveness of these countermeasures is therefore left as a 
subject for future work. 
 

7. FUTURE WORK 
In this paper, we have identified a class of attacks, copied-item 
injection attacks, that user-generated content recommenders on 
the web may be vulnerable to. We have studied this attack in a 
single domain, but the attack pattern is relevant to many different 
settings; likewise, countermeasures developed in one setting will 
be helpful in others as well. There are several important directions 
for future work. The development and implementation of practical 
countermeasures should be a priority for applications where the 
copied item injection attack is a feasible strategy.  For some 
domains where duplicate detection of content is impractical, one 
direction of research may be to use patterns of user ratings to 
identify similarity between items. 
Additionally, it would be useful to conduct empirical or 
experimental measurement of the prevalence of this attack in 
other domains.  This would give confirmation as well as a broader 
understanding of attack patterns and the motivations of attackers. 

 Once countermeasures have been implemented and deployed, and 
users have had a chance to adapt to them, it will be important to 
experimentally determine their effectiveness by comparing the 
frequency and impact of attacks with and without defenses. 
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